T1 Practice problems (Refer to page C7 in the online manual)

1. Calculate the frequency of the ultraviolet line of wavelength 285 nm in MHz .

$$
v=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{285 \times 10^{-9} \mathrm{~m}}=1.05 \times 10^{15} \mathrm{~s}^{-1}=1.05 \times 10^{9} \mathrm{MHz}
$$

2. Calculate the energy of a photon of wavelength 232 nm . What region of the electromagnetic spectrum does this lie in?

$$
E=\frac{h c}{\lambda}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)}{232 \times 10^{-9} \mathrm{~m}}=8.56 \times 10^{-19} \mathrm{~J}
$$

3. A laser used to weld detached retinas to the human eye produces radiation with a frequency of $4.69 \times 10^{14} \mathrm{~Hz}$. What is the wavelength of this radiation in nm ? What color would this wavelength appear?

$$
\lambda=\underline{c}=\frac{3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{v}=6.40 \times 10^{-7} \mathrm{~m}=640 \mathrm{~nm}
$$

4. Calculate the energy per mole that an object can absorb from the 589 nm wavelength light emitted from a sodium lamp.

$$
E=\frac{N h c}{\lambda}=\frac{\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)}{589 \times 10^{-9} \mathrm{~m}}=2.03 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}
$$

$2.03 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}=203 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5. A unknown element with 1.00×10^{23} molecules in the ground state shows an emission at 656 nm . How many molecules are present in the excited state at 1741 K ?

$$
\begin{aligned}
& \text { using } R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& E=\frac{N h c}{\lambda}=\frac{\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)}{656 \times 10^{-9} \mathrm{~m}}=182477 \mathrm{~J} \mathrm{~mol}^{-1} \\
& N_{\text {upper }}=N_{\text {lower }} \cdot e^{\frac{-\Delta E}{R T}}=1.00 \times 10^{23} \cdot e^{\frac{-182477 \mathrm{Jmol}}{}\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(1741 \mathrm{~K})}
\end{aligned}=3.35 \times 10^{17} .
$$

