T4b Practice problems (Refer to page C36 in the online manual)

1. Predict the ¹H nmr spectrum of acetylsalicylic acid (ASA) by:

a) predicting the shift of the protons using the tables in appendix A (yellow pages) of the manual. Show your work for any calculated values.

b) predicting the multiplicity assuming aromatic coupling of ${}^{4}J_{HH}$ can be resolved.

H ^x	shift, δ (ppm)	multiplicity	coupling constants (Hz)
А	2.4 p. A6: CH ₃ -CO-O-Ar	S	-
В	7.23 p. A4: 7.27 - 0.2 (o-OCOR) + 0.16 (m-COOH)	dd	${}^{3}J_{BC} = 8$ ${}^{4}J_{BD} = 2$
С	7.62 p. A4: 7.27 + 0.1(mOCOR) + 0.25 (pCOOH)	td	${}^{3}J_{CB and CD} = 8$ ${}^{4}J_{CE} = 2$
D	7.23 p. A4: 7.27 - 0.2 (p-OCOR) + 0.16 (m-COOH)	td	${}^{3}J_{DC and DE} = 8$ ${}^{4}J_{DB} = 2$
Е	8.17 p. A4: 7.27 + 0.80 (o-COOH) + 0.1 (m-OCOR)	dd	${}^{3}J_{ED} = 8$ ${}^{4}J_{EC} = 2$
F	9-13 p. A5: RCOOH <u>OR</u> 10-12 p. A3: RCOOH	S	-

- 2. Print a completed copy of the above table and bring it with you to the lab. It will likely mean you are able to leave early.
- 3. Watch the Royal Society of Chemistry video on proton NMR instrumentation at http://www.youtube.com/watch?v=uNM801B9Y84&feature=relmfu, or follow the link from the tutorial website.