T4c Practice problem (Refer to pages C46-C47 in the online manual)

Molecular formula = C_8H_8 (Refer to Figures 4-11 to 4-13)

a) Calculate the # DBE, show the calculation. What does this value indicate? #H's indicated = 2n + 2 = 2(8) + 2 = 18 #DBE = (# H's indicated - # H's in formula) ÷ 2 = (18-8) ÷ 2 = 5 DBE benzene ring + one double bond

- b) Are there any diagnostic IR bands? If so, what functional group(s) do these bands indicate?
 991, 908 cm⁻¹ (s) =C-H bend, monosub. alkene
 776, 697 cm⁻¹ (s) =C-H bend, monosub. benzene
- c) Tabulate the ¹H nmr data and assign all of the peaks using a diagram of the proposed structure. *Hint: the* δ 1.50 *signal can be ignored (structurally) as it is due to water in the CDCl*₃.

chemical shift,	multiplicity	coupling	integration		assignment	coupled to
δ (ppm)		constant (Hz)	actual	relative		
7.45-7.24	multiple resonances	-	88.087	5 H	$H_{Ar} + CDCl_3$	-
6.75	doublet of doublets	18 11	17.170	1 H	H _C	$egin{array}{c} H_B \ H_A \end{array}$
5.78	doublet	18	18.389	1 H	H_B	H_{C}
5.27	doublet	11	18.710	1 H	H_A	H_{C}

- notes:
 - H_{Ar} refers to the five aromatic protons on the benzene ring. These are not equivalent, but because the signals can't be differentiated they are lumped together in the assignment.
 - Typical coupling constants: geminal (H_AH_B) 0-2 Hz, cis (H_AH_C) 7-10 Hz, trans (H_BH_C) 14-16 Hz. So although H_A does couple to both H_B and H_C , this is not seen in the nmr as the J value is too small. A bigger magnet (ie: 500HMz) would likely show this.
- d) Draw tree diagrams to justify all the observed multiplets. Include relative intensities.

1:1:1:1 doublet of doublets