T4c Practice problem (Refer to pages C46-C47 in the online manual)
Molecular formula $=\mathrm{C}_{8} \mathrm{H}_{8}$
(Refer to Figures 4-11 to 4-13)
a) Calculate the \# DBE, show the calculation. What does this value indicate?
\#H's indicated $=2 n+2=2(8)+2=18$
\#DBE = (\# H's indicated - \# H's in formula) $\div 2$

$$
=(18-8) \div 2=5 \text { DBE } \quad \text { benzene ring + one double bond }
$$

b) Are there any diagnostic IR bands? If so, what functional group(s) do these bands indicate?

991, $908 \mathrm{~cm}^{-1}$ (s) =C-H bend, monosub. alkene
$776,697 \mathrm{~cm}^{-1}$ (s) =C-H bend, monosub. benzene
c) Tabulate the ${ }^{1} \mathrm{H} \mathrm{nmr}$ data and assign all of the peaks using a diagram of the proposed
structure. Hint: the $\delta 1.50$ signal can be ignored (structurally) as it is due to water in the CDCl_{3}.

chemical shift, δ (ppm)	multiplicity	$\begin{aligned} & \hline \text { coupling } \\ & \text { constant (Hz) } \end{aligned}$	integration		assignment	coupled to
			actual	relative		
7.45-7.24	multiple resonances	-	88.087	5 H	$\mathrm{H}_{\text {Ar }}+\mathrm{CDCl}_{3}$	-
6.75	doublet of doublets	$\begin{aligned} & 18 \\ & 11 \end{aligned}$	17.170	1 H	$\boldsymbol{H}_{\text {C }}$	$\begin{gathered} \boldsymbol{H}_{B} \\ \boldsymbol{H}_{A} \end{gathered}$
5.78	doublet	18	18.389	1 H	$\mathrm{H}_{\text {B }}$	\boldsymbol{H}_{C}
5.27	doublet	11	18.710	1 H	$\mathrm{H}_{\text {A }}$	$\mathrm{H}_{\text {C }}$

notes:

- $\quad H_{A r}$ refers to the five aromatic protons on the benzene ring. These are not equivalent, but because the signals can't be differentiated they are lumped together in the assignment.
- Typical coupling constants: geminal $\left(\mathrm{H}_{A} \mathrm{H}_{B}\right) 0-2 \mathrm{~Hz}$, cis $\left(H_{A} H_{C}\right) \mathbf{7 - 1 0 ~ H z}$, trans $\left(H_{B} H_{D}\right) \mathbf{1 4 - 1 6 ~ H z . ~ S o ~}$ although H_{A} does couple to both H_{B} and H_{O} this is not seen in the nmr as the J value is too small. A bigger magnet (ie: 500 HMz) would likely show this.
d) Draw tree diagrams to justify all the observed multiplets. Include relative intensities.

1:1 doublet

1:1 doublet

1:1:1:1 doublet of doublets

