T5a Practice problem (Refer to pages C58-C61 in the online manual):

1. \quad sample $=d_{6}$-acetone
(Refer to Figures 5-1 and 5-2)
a) Draw the structure. Show all bonds and atoms explicitly.
b) Tabulate the ${ }^{13} \mathrm{C} n m r$ data and assign all of the peaks using a
 diagram of the proposed structure.

chemical shift, $\delta(\mathrm{ppm})$	multiplicity	coupling constant (Hz)	assignment	coupled to
206.0	singlet	-	C_{b}	-
29.7	septet	19	C_{a}	D

c) How do you calculate the coupling constant in Hz? Show the calculation in this case. (note: SF = spectrometer frequency on the spectrum)
$\mathrm{Hz} \quad=\mathrm{ppm} x$ spectrometer frequency in MHz

$$
=0.307 \mathrm{ppm} \times 62.896 \mathrm{MHz} \quad \text { note: } 0.307 \text { is avg of } 6 \text { 'gaps' in the septet }
$$

$=19.3 \mathrm{~Hz}$ rounded to nearest $1 \mathrm{~Hz}=19 \mathrm{~Hz}$
d) Draw tree diagrams to justify all the observed multiplets. Include relative intensities. Graph paper is strongly recommended.

Notes:

- because the C_{a} is split by $D(I=1)$, each 'fork' in your diagram will result in three branches
- there are three equivalent D on each C_{a} so you will need to split the tree three times
- careful tracking of the number of lines produced by each split is essential
- this will result in a 1:3:6:7:6:3:1 septet
- $\quad C_{b}$ is a singlet as the ${ }^{2} J\left(C_{b} D\right)$ coupling is very small

e) Which band(s) in the IR are diagnostic? What functional group(s) do these bands indicate?
$1705 \mathrm{~cm}^{-1} \quad C=O$ str.
$2256 \mathrm{~cm}^{-1}$ C-D str.
f) What would the ${ }^{1} \mathrm{H}$ nmr show for this sample? Why?

Nothing - because there are no protons
OR $\quad \delta 2.05 \mathrm{~s}$ - due to d_{5}-acetone contamination in d_{6}-acetone (see manual page D82)
2. Molecular formula $=\mathrm{C}_{8} \mathrm{H}_{6}$ (Refer to Figures 5-3 to 5-5)
a) Calculate the \# DBE. Show the calculation.

$$
\begin{aligned}
& \text { \#H's indicated }=2 n+2=2(8)+2=18 \\
& \text { \#DBE }
\end{aligned}=(\# H \text { H's indicated }-\# H \text { H's in formula }) \div 2 \begin{aligned}
& \\
& \\
& =(18-6) \div 2=6 \text { DBE }
\end{aligned}
$$

b) Give two suggestions of what this number of DBE could indicate?

$$
\begin{aligned}
& \text { benzene ring + two double bonds } \\
& \text { benzene ring + one triple bond }
\end{aligned}
$$

c) Which band(s) in the IR are diagnostic? What functional group(s) do these bands indicate?
$3291 \mathrm{~cm}-1 \quad \equiv \mathrm{C}-\mathrm{H}$ str.
and/or $2109 \mathrm{~cm}^{-1} C \equiv C$ str., conj.
and/or 757, $691 \mathrm{~cm}^{-1}$ mono sub. benzene ring
d) Tabulate the ${ }^{13} \mathrm{C}$ and DEPT-135 nmr data and assign all of the peaks using a diagram of the proposed structure.

chemical shift, δ (ppm)	DEPT	-135	assignment
	signal	inference	
132.2	t	CH or CH_{3}	C_{d} or C_{e}
128.8	t	CH or CH_{3}	C_{f} (by height)
128.3	t	CH or CH_{3}	C_{e} or C_{d}
122.2	x	C	$\mathrm{C}_{\text {c }}$
83.7	x	C	C_{b}
77.2	t	CH or CH_{3}	C_{a}
77.1 t	x	-	CDCl_{3}

