T8 Practice problems (Refer to pages C95-C98 in the online manual)

1. Use the pattern of the parent ion and isotope peaks seen in the mass spectrum to predict the correct formula of molecules A-G.


| Mass Spectrum | \#C | \#S | \#Cl | \#Br |
| :---: | :--- | :--- | :--- | :--- |
| A | 20 | - | - | 3 |
| B | 12 | - | 1 | - |
| C | 9 | 1 | - | - |
| D | 1 | - | - | 1 |
| E | 10 | - | 2 | - |
| F | 7 | - | - | 2 |
| G | 2 | 2 | - | - |

2. Compound information: $\quad \mathrm{M}^{+}=59.031+/-0.025 \mathrm{~g} / \mathrm{mol}$

| C | H | N | O | $\mathrm{m} / \mathrm{z}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 2 | 59.000727 |
| 1 | 5 | 3 | - | 59.048345 |
| 2 | 5 | 1 | 1 | 59.037111 |
| 3 | 9 | 1 | - | 59.073496 |

Options of $\mathrm{C}_{1} \mathrm{H}_{5} \mathrm{~N}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$ are both possible.
IR shows peaks at 3380 (s, two bands) and 1675 (s) $\mathrm{cm}^{-1}$ $1675 \mathrm{~cm}^{-1}$ is a carbonyl so the molecule contains Oxygen and the formula must be $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$.

Major MS fragments and features:

| m/e | $\%$ abundance | interpretation |
| :--- | :--- | :--- |
| 59 | $\mathbf{1 0 0}$ | parent ion, $\mathbf{M}^{+}$ |
| 44 | 77 | loss of $\mathrm{CH}_{3}$ from $\mathbf{M}^{+}$, leaving $\mathrm{CONH}_{2}{ }^{+}$ |
| 43 | $\mathbf{5 8}$ | loss of O or $\mathrm{NH}_{2}$ from $\mathbf{M}^{+}$, leaving $\mathrm{CH}_{3} \mathrm{CO}^{+}$or $\mathrm{CH}_{3} \mathrm{CNH}_{2}^{+}$ |
| 42 | $\mathbf{2 8}$ | loss of O and H from $\mathbf{M}^{+}$, leaving $\mathrm{CH}_{3} \mathrm{CNH}^{+}$ |

Structure and conclusions:
acetamide

confirmed by:

- IR shows presence of $1^{\circ}$ amine $\left(\mathrm{NH}_{2}\right)$ at $\sim 3400 \mathrm{~cm}^{-1}$ and a carbonyl on an amide group ( $\mathrm{O}=\mathrm{C}-\mathrm{NH}_{2}$ ) at $\sim 1690 \mathrm{~cm}^{-1}$.

3. Compound information:

a) Draw a stick-plot of the \% natural abundance vs isotope number for molybdenum. (Hint: isotopic abundances are available in the CRC or on-line at http://www.webelements.com)

b) Analyze the mass spectrum (previous page)and complete the table to assign all significant fragments of the $\mathrm{Mo}(\mathrm{CO})_{6}$ sample. In the second $\mathrm{m} / \mathrm{e}$ column, assign one fragment (of your choice) in enough detail to show all isotopes of the metal center.

| m/e | \% relative abundance | fragment | m/e | \% relative abundance | fragment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 266 | 66 | ${ }^{98} \mathrm{Mo}(\mathrm{CO}){ }_{6}{ }^{+}$ | 100 | 22 | ${ }^{100} \mathrm{Mo}^{+}$ |
| 238 | 8 | ${ }^{98} \mathrm{Mo}(\mathrm{CO})_{5}{ }^{+}$ | 98 | 54 | ${ }^{98} \mathrm{Mo}^{+}$ |
| 210 | 12 | ${ }^{98} \mathrm{Mo}(\mathrm{CO})_{4}^{+}$ | 97 | 21 | ${ }^{97} \mathrm{Mo}^{+}$ |
| 182 | 100 | ${ }^{98} \mathrm{Mo}(\mathrm{CO})_{3}{ }^{+}$ | 96 | 36 | ${ }^{96} \mathrm{Mo}^{+}$ |
| 154 | 56 | ${ }^{98} \mathrm{Mo}(\mathrm{CO})_{2}{ }^{+}$ | 95 | 35 | ${ }^{95} \mathrm{Mo}^{+}$ |
| 126 | 43 | ${ }^{98} \mathrm{Mo}(\mathrm{CO}){ }_{1}^{+}$ | 94 | 19 | ${ }^{94} \mathrm{Mo}^{+}$ |
|  |  |  | 92 | 35 | ${ }^{92} \mathrm{Mo}^{+}$ |

c) How do the patterns seen in the mass spectrum of $\mathrm{Mo}(\mathrm{CO})_{6}$ compare to the stick-plot drawn in question (a)?

Same overall pattern seen in each fragment containing Mo as seen in the stickplot.
4.

a) Where would you find $\pi_{3} \rightarrow \pi_{3} *$ for the diene-one chromophore?
$\pi \rightarrow \pi *$ base value of 190 for the $C=O+2(30)$ for two conjugated double bonds $=250 \mathrm{~nm}$
b) What $\varepsilon$ value would this absorption have?
$\pi \rightarrow \pi *$ is an allowed transition, so $\varepsilon>1000$
c) Where would you find $n \rightarrow \pi_{3}$ * for diene-one chromophore?
$n \rightarrow \pi_{3}{ }^{*}$ base value of 280 for the $C=O+2(30)$ for two conjugated double bonds $=340 \mathrm{~nm}$
d) What $\varepsilon$ value would this absorption have?
$n \rightarrow \pi_{3}{ }^{*}$ is an forbidden transition, so $\varepsilon<50$
e) Where would you expect to find the longest wavelength absorption for the most intense transition of the amino-benzene chromophore?
longest wavelength means the most conjugated version of the transition, most intense means largest $\varepsilon$ value so together this question is asking about the conjugated $\pi \rightarrow \pi^{*}$
$\pi \rightarrow \pi *$ base value of 190 for the amine $+3(30)$ for three conjugated double bonds $=280 \mathrm{~nm}$
f) Where would you expect to find $\pi \rightarrow \pi^{*}$ for the acetylene chromophore?
$\pi \rightarrow \pi *$ base value of 190 nm

