T8 Practice problems (Refer to pages C95-C98 in the online manual)

1. Use the pattern of the parent ion and isotope peaks seen in the mass spectrum to predict the correct formula of molecules A-G.

Mass Spectrum	#C	#S	#C1	#Br
А	20	-	-	3
В	12	-	1	-
С	9	1	-	-
D	1	-	-	1
Е	10	-	2	-
F	7	-	-	2
G	2	2	-	-

2. Compound information: $M^+ = 59.031 + -0.025 \text{ g/mol}$ С Н И О m/z 1 1 2 59.000727 1 1 5 3 59.048345 -5 1 1 59.037111 2 59.073496 3 9 1 -

Options of $C_1H_5N_3$ and C_2H_5NO are both possible.

IR shows peaks at 3380(s, two bands) and 1675 (s) cm⁻¹ 1675 cm⁻¹ is a carbonyl so the molecule contains Oxygen and the formula must be C_2H_5NO .

m/e	% abundance	interpretation
59	100	parent ion, M ⁺
44	77	loss of CH ₃ from M ⁺ , leaving CONH ₂ ⁺
43	58	loss of O or NH ₂ from M ⁺ , leaving CH ₃ CO ⁺ or CH ₃ CNH ₂ ⁺
42	28	loss of O and H from M ⁺ , leaving CH ₃ CNH ⁺

Major MS fragments and features:

Structure and conclusions:

acetamide

confirmed by:

• IR shows presence of 1° amine (NH_2) at ~3400 cm⁻¹ and a carbonyl on an amide group $(O=C-NH_2)$ at ~1690 cm⁻¹.

3. Compound information:

Draw a stick-plot of the % natural abundance vs isotope number for molybdenum. (Hint: a) isotopic abundances are available in the CRC or on-line at http://www.webelements.com)

Isotopic Distribution of Molybdenum

Analyze the mass spectrum (previous page)and complete the table to assign all significant b) fragments of the $Mo(CO)_6$ sample. In the second m/e column, assign one fragment (of your choice) in enough detail to show all isotopes of the metal center.

m/e	% relative abundance	fragment	m/e	% relative abundance	fragment
266	66	⁹⁸ Mo(CO) ₆ ⁺	100	22	¹⁰⁰ Mo ⁺
238	8	$^{98}Mo(CO)_{5}^{+}$	<i>9</i> 8	54	⁹⁸ Mo ⁺
210	12	⁹⁸ Mo(CO) ₄ ⁺	97	21	⁹⁷ Mo ⁺
182	100	$^{98}Mo(CO)_{3}^{+}$	96	36	⁹⁶ Mo ⁺
154	56	$^{98}Mo(CO)_{2}^{+}$	95	35	⁹⁵ Mo ⁺
126	43	$^{98}Mo(CO)_{1}^{+}$	94	19	⁹⁴ Mo ⁺
			92	35	⁹² Mo ⁺

How do the patterns seen in the mass spectrum of Mo(CO)₆ compare to the stick-plot drawn c) in question (a)?

> Same overall pattern seen in each fragment containing Mo as seen in the stickplot.

Examine the structure at left to answer the following questions.

a) Where would you find $\pi_3 \rightarrow \pi_3^*$ for the diene-one chromophore?

$\pi \rightarrow \pi *$ base value of 190 for the C=O + 2(30) for two conjugated double bonds = 250 nm

b) What ε value would this absorption have?

$\pi \rightarrow \pi *$ is an allowed transition, so $\varepsilon > 1000$

- c) Where would you find $n \rightarrow \pi_3^*$ for diene-one chromophore?
- $n \rightarrow \pi_3^*$ base value of 280 for the C=O + 2(30) for two conjugated double bonds = 340 nm
- d) What ε value would this absorption have?

$n \rightarrow \pi_3^*$ is an forbidden transition, so $\varepsilon < 50$

e) Where would you expect to find the longest wavelength absorption for the most intense transition of the amino-benzene chromophore?

longest wavelength means the most conjugated version of the transition, most intense means largest ε value so together this question is asking about the conjugated $\pi \rightarrow \pi *$ $\pi \rightarrow \pi *$ base value of 190 for the amine + 3(30) for three conjugated double bonds = 280 nm

f) Where would you expect to find $\pi \rightarrow \pi^*$ for the acetylene chromophore?

$\pi \rightarrow \pi * base value of 190 nm$

4.