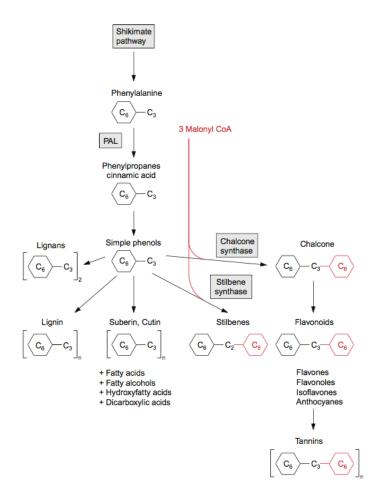
Lignin and the General Phenylpropanoid Pathway

Introduction and Importance:

Phenolic: a compound consisting of an aromatic ring plus at least one hydroxyl [= phenyl group], or derived from such a compound.

Phenylpropanoid: a compound consisting of a phenyl plus a propane (3C), or derived from such a compound.

Phenylpropanoids and phenolics are a major biochemical pathway in plants


- 20,000 compounds, huge chemical diversity
- types: flavonoids, tannins, lignans, stilbenes, phenolic acids & lignin

Ecological and evolutionary importance:

- functions: pigments and light screens, antimicrobials and toxins, signals
- closely linked to plants' invasion of the land
- UV light screens, lignin for xylem

Functions and importance of lignin:

- reinforces CW in dead cells (xylem, wood)
 - -> efficient water conductance (all vascular plants)
 - -> allows for vertical growth (trees)
 - -> recalcitrant to degradation (C storage in ecosystems)
 - -> lignin a key part of wood major building material

Lignin and its Synthesis

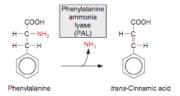
"A highly branched phenolic polymer with complex structures, made from phenylpropanoid alcohols, deposited in secondary cell walls"

I. Roadmap for biosynthesis (handout)

- synthesis from phenylalanine, via phenylpropanoid pathway
- need **monolignols** (*p*-coumaryl, coniferyl, sinapyl alcohols)
- these are then polymerized in situ to assemble lignin

Two trends within biosynthesis

- i) hydroxylation and methoxylation
- ii) reduction from acid to alcohol (via CoA thioester)


II. Key Steps in Monolignol Formation (to Coniferyl Alcohol)

i) General phenylpropanoid pathway [Phe $\rightarrow p$ -coumaroyl-CoA]

- these steps are also in for many other phenylpropanoid pathways (flavonoids, coumarins etc)

1. Deamination of Phe to cinnamic acid

phenylalanine ammonia-lyase (PAL) [- famous enzyme, discovered in 1961, Eric Conn]

- 2. **Hydroxylation** to *p*-coumaric acid by *cinnamate* 4'-hydroxylase (C4H)
- 3. **Ligation** with Coenzyme A to make coumaroyl-CoA (= activated precursor) *4-coumarate:CoA ligase* (4CL)

(NB: 4-coumaroyl-CoA is also a precursor for many other pathways)

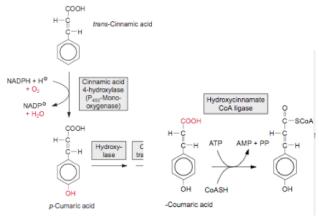


Figure 18.4 Synthesis of various hydroxycinnamic acids from trans-cin

ii) Additional hydroxylations and methylations (see handout)

- 1. the mysterious 3'-hydroxylase puts on the second -OH (makes caffeic acid, but as the shikimic acid ester)
- 2. O-methylation

caffeoyl-CoA O-methyltransferase (CCoAOMT)

3. Reduction to coniferaldehyde

cinnamoyl-CoA reductase (CCR)

4. Reduction to alcohol

cinnamyl alcohol dehydrogenase (CAD)

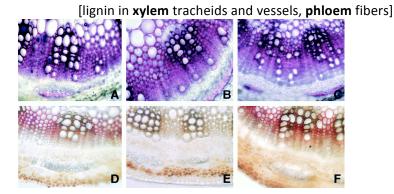
coniferaldehyde----> coniferyl alcohol

- 5. Additional steps to sinapyl alcohol
 - coniferaldehyde 5' hydroxylase
 - aldehyde O-methyltransferase (COMT)
 - CCR & CAD/Sinapyl Alcohol Dehydrogenase)

NB: There is the analogous path to **coumaryl alcohol**. CCR and CAD work in several places i.e., take several substrates.

III. Lignin Assembly and Composition

[Three monolignols: (p-coumaryl alcohol, coniferyl alcohol & sinapyl alcohol)


- 1. Reversible glucosylation (transport and storage) coniferyl alcohol glucosyl transferase (UDP-glucose), and \(\beta\)-glucosidase
- 2. Oxidation gives rise to resonance-stabilized free radicals of monolignols

Enzymes: laccase and peroxidase

- 3. Polymerisation of "activated" monolignols (possibly in somewhat random patterns)
- 4. Variation in lignin composition is common:
 - guaiacyl vs syringyl lignin types
 - variable in species, cell types, tissues etc.
 - impact on pulping efficiency of types:
 - G lignin (softwood) but harder to digest.
 - S lignin (hardwoods) is easier to pulp
 - makes lignin interesting biotechnological targets

IV. Control of Lignin Synthesis

1. Developmentally-regulated (via gene expression). There are master transcription factors (ie NAC) that respond to plant hormones (auxins, ethylene), to trigger tissue-specific gene expression.

2. Environmentally-regulated (via gene expression): stress-responses to pathogens ("stress-lignin") (see Campbell & Ellis, *Planta* 184:49)'

Induced lignification in cell cultures: - why use cell cultures?

- pathogen responses (recall cell wall responses); elicitor vs living pathogen

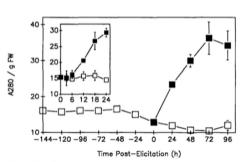


Fig. 2. The effect of elicitation on the accumulation of thioglycolicacid-extractable complexes in Pinus banksiana cell cultures. Elicited (\blacksquare) and control (\square) cultures were monitored for the accumulation of TGA-extractable material at 24-h intervals. The accumulation of TGA-extractable material within the first 24 h post-elicitation was monitored at 0, 3, 6, 12, 18 and 24 h (inset, same axes). Each graph was prepared from an independently derived time-course. Error bars \blacksquare 1 SD

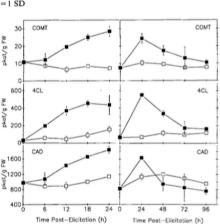
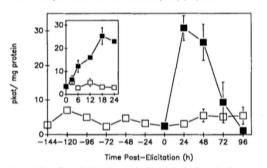
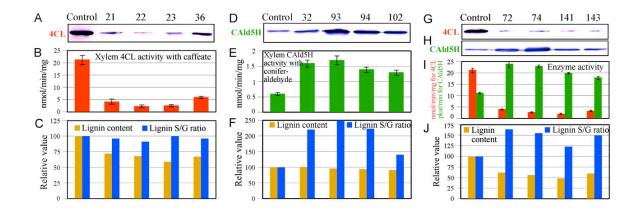



Fig. 5. The effect of elicitation on the activities of enzymes related to lignification in *Pinus banksiana* cells. S-adenosyl-L-methio-inne: caffeate O-methyltransferase (COMT), 4-coumarate: CoA ligase (4CL), and coniferyl alcohol dehydrogenase (CAD) activities were measured in soluble protein extracts from elicited () control () cultures at various times post-elicitation. Cultures were

M.M. Campbell and B.E. Ellis: Elicited phenylpropanoid metabolism


Fig. 4. The effect of elicitation on PAL activity in *Pinus banksiana* cell cultures. Soluble protein extracts from elicited (■) or control (□) cultures were assayed for PAL activity at 24-h intervals. The change in extractable PAL activity within the first 24 h post-elicitation was monitored at 0, 3, 6, 12, and 24 h (*inset*, same axes). Each graph was obtained from an independently derived time-course. Error bars = 1 SD

Genetic Engineering of Altered Lignin in Trees

- reduction of lignin content (pulp, forages, biofuel) could have huge benefit, as long as the plants are still viable.
- it is possible to genetically transform poplar / aspen, which are fast growing and suitable for plantations.

Examples:

- i) RNAi down regulation of *p-coumaroyl shikimate 3-hydroxylase* (hybrid poplar (Coleman et al, PNAS 2008) reduce lignin content, can get novel H-lignin
- ii) 4CL and coniferaldehyde 5-hydroxylase[Li L et al. PNAS 2003]
 - > <u>double</u> transformation with both genes, and separate transgenics.
 - >4CL suppression reduces lignin content , but coniferaldehyde 5-hydroxylase suppression led to greater S/G ratio

