Alkaloids:

- many human
physiological effects and
uses

- diverse mechanisms of
action

- features and
characterisitics
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Alkaloid Families and Biosynthesis
(mostly derived from amino acids)

Heldt, Fig 16.1
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Pyrrolizidine Alkaloids (Senecionine N-Oxide) in Senecio

Background

- basic structural type, but many variations

- occurrence in plants in Compositae,
Boraginacaceae, Orchidaceae

- extremely toxic to both mammals and insects

- documented co-evolution with insects

Senecio jacobaea Senecionine

A B

FIGURE 24.35 Pyrrolizidine and quinolizidine alkaloids. (A) Structure of the pyrrolizidine alkaloid senecionine from ragwort (Senecio
jacobaea). (B) Structure of the quinolizidine alkaloid lupanine from the bitter lupine Lupinus polyphyllus. Lupanine is a bitter compound that
functions as a feeding deterrent.

Biochemistry ¢ Molecular Biology of Plants, Second Edition. Edited by Bob B. Buchanan, Wilhelm Gruissem, and Russell L. Jones.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/buchanan/biochem




Biosynthesis of Pyrrolizidine Alkaloids (Senecionine N-Oxide) and the
Major Structural Types of Pyrrolizidine Alkaloids
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Homospermidine synthase catalyzes the first specific
step of the biosynthesis of the necine base moiety
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Five structural types of pyrrolizidine alkaloids (note macrocyclic diester)
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Senecio jacobaea

Ecology of Pyrrolizidine Alkaloids
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Senecio jacobaea

Ecology of Pyrrolizidine Alkaloids
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Fig. 4. Structural diversification of senecionine N-oxide documented
for five Senecio species. The transformations are species-specific; each
species produces its own PA bouquet. The transformation products
are formed in a position-specific and stereoselective manner
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Toxicity of Pyrrolizidine Alkaloids and its Avoidance

Alkaloid N-oxide Tertiary alkaloid
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Toxicity of Pyrrolizidine Alkaloids and its Avoidance
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Toxicity of Pyrrolizidine Alkaloids and its Avoidance

- N-oxide forms are stored in plant, these are the less toxic form (see figure)
- after ingestion: N-oxide are reduced to tertiary amine in reducing conditions in gut

- in mammals, a liver cytochrome P450 oxidase (general detoxification enzymes, xenobiotics)
actually activates the toxin by converting to pyrrolic compounds (=alkylating agents)

- generalist insects are similarily susceptible to this

- however, specialist insects have a specific senecionine N-oxidase that keeps PA in N-oxide
form and prevents the toxic effects

Interestingly, guinea pigs are immune to the pyrrolizidine alkaloids. They have non-specific
oxidase which maintains the PA as the N-oxide form.



Additional specialist insect adaptations to the pyrrolizidine alkaloids

i) tolerance (see above - senecionine N-oxidase)

ii) uptake and sequestration: (a/kaloid-sequestering species are brightly colored)

- cinnabar moths tolerate and accumulate PAs (keep in the N-oxide form)

- specialized storage and secretion by Oreina beetles (spray predators with PAs)

- in American arctiid moths, the PAs are sequestered, and retained through metamorphosis
to eggs and sperm.

iii) derivatives used as pheromones

iv) pharmacophagy (Danainae butterflies)



Ecology of Pyrrolizidine Alkaloids

Cinnabar moth on Senecio flowers
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Ecology of Pyrrolizidine Alkaloids

Cinnabar moth on Senecio flowers

iii) derivatives used as pheromones
hydroxydanaidal

- specialized organs (hair pencils) of male as a
courtship pheromone

= PA content of male signaled via hydroxydanaidal
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Summary: Levels of adaptation of specialist insects to
pyrrolizidine alkaloids (plant toxins)

i) tolerance by maintaining as N-oxides
ii) sequestration
iii) packaging PAs with eggs and sperm for protection

iv) pharmacophagy by adult butterflies to obtain PAs



Ecology of Nicotine Alkaloids

Nicotine

Nicotiana tabacum

FIGURE 24.32 Structure of nicotine from Nicotiana tabacum.

Biochemistry & Molecular Biology of Plants, Second Edition. Edited by Bob B. Buchanan, Wilhelm Gruissem, and Russell L. Jones.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Ecology of Nicotine Alkaloids

- very small structural family: nicotine, nornicotine, anatabine
- occurrence: Nicotiana spp. (flowers, seeds, young leaves)

- highly toxic to mammals and insects, binds and stimulates cholinergic
synapses

- in humans causes: "nausea, vomiting, diarrhea, mental confusion,
convulsions, respiratory paralysis "

- highly addictive (interacts w. dopamine)
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Synthesis of Nicotine Alkaloids

Nicotine synthesis is induced by wounding
- this is somewhat unusual for an alkaloid
- 'topping' of commercial tobacco plantations is known to increase nicotine synthesis
- putrescine methyltransferase is wound-induced in root. - Defensive function (?)

- a good example of systemic signaling. It is now known to require methyl jasmonate

Nicotine

1 L. Jones.
WILEY Blackwell
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Alkaloids

Chemical Ecology of Nicotine Alkaloids
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Chemical Ecology of Nicotine Alkaloids
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List experimental evidence of nicotine for defense function against insect pests

- wounding induces greater nicotine accumulation

- RNAi-mediated suppression & lower nicotine leads to faster growth of insect pests



Interesting counteradaptation by specialist insects

i) Manduca sexta (tobacco hornworm) tolerates otherwise lethal doses of nicotine
(metabolism / excretion)

- larvae can at least partially suppresses nicotine induction during feeding

- nicotine in larvae helps defend against parasitoid wasp predators of Manduca

ii) Nicotine in nectar prevents overconsumption and promotes shorter feeding times

(data not shown)

iii) Nicotine is used by tobacco hornworm to repel predators (Kumar et al., PNAS 111:
1245 (2014)

Parasitoid pupae
on lepidopteran pest




Ecology of Nicotine Alkaloids
(Nicotiana attenuata system, lan Baldwin)

o Nicotine
Nicotiana tabacum

FIGURE 24.32 Structure of nicotine from Nicotiana tabacum

Biochemistry & Molecular Biology of Plants, Second Edition. Edite dbyB bB Buchanan, Wilhelm Gruissem, and Russell L. Jones.
@2015I}| W]y&S lde] hdZOleth W]y&S
c website: www.

WILEY Blackwell

Field study site Utah
(Max Planck Institute for Chemical Ecology, Jena)




Wolf spiders are deterred by nicotine-fed Manduca larvae.
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Wolf spiders are deterred by Manduca larvae fed on high and low nicotine
leaves( EV vs irPMT) or artificial diet (AD +/- N)
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CYP6BA46 silencing in transgenic N. attenuata reduces larval nicotine emission
and increases spider predation
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CYP6BA46 silencing in transgenic N. attenuata reduces larval nicotine emission
and increases spider predation
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iii) Nicotine is used by tobacco hornworm to repel wolf spiders (Kumar et al.,
PNAS 111: 1245 (2014)

- larvae feeding on low nicotine N. attenuata (PMT-RNAi silenced) are
preferred by nocturnal spiders

- observations and loss of nicotine suggest that nicotine is emitted from
spiracles of larvae ("defensive halitosis")

- larvae feeding on plants expressing a Manduca CYPB46 RNAi gene
show reduced nicotine emission



_ N Lupanine
NN (Chinolizidine)
3 Lysine —_— [ [

Example 3. Quinolizidine alkaloids (lupines - Lupinus sp.) [lupanine]

Lupines (legume family) are common native species, highly toxic due to alkaloids, only
eaten by herbivores if starving.

- strong biological effects in mammals: "loss of coordination, convulsions, liver damage, ..
crooked calf disease (teratogen)"

- cattle poisoning, especially in autumn, from high alkaloid seeds of lupines on range.

- wild hares learn to avoid high-alkaloid lupine (feeding deterrent)




Quinolizidine Alkaloid-Containing Plants

P Lupanine
/\[/ N (Chinolizidine)
3 Lysine - - [

o~ N~_~
"
(0]

Castilleja miniata
scarlet paintbrush, common red paintbrush
Scrophulariaceae
[root parasite, accumulates lupanine from Lupinus]



Quinolizidine Alkaloid-Containing Plants

Laburnum anagyroides Medic
Golden chain tree

Fabaceae Cytisus scoparius
(non-native, ornamental) Scotch broom
[Cytisin] Fabaceae

(non-native, invasive)
[Spartein]
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4. Solanine and Potato Steroid Alkaloids (Human chemical ecology)
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Solanum tuberosum

FIGURE 24.34 Structure of the steroid alkaloid glycoside a-solanine from Solanum tuberosum (potato). The aglycone solanidine is derived from
cholesterol.

Buchanan, 2015 solanidine (tripterpene alkaloid of potato)

Biochemistry & Molecular Biology of Plants, Second Edition. Edited by Bob B. Buchanan, Wilhelm Gruissem, and Russell L. Jones.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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4. Solanine and Potato Steroid Alkaloids (Human chemical ecology)
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Biochemistry & Molecular Biology of Plants, Second Edition. Edited by Bob B. Buchanan, Wilhelm Gruissem, and Russell L. Jones.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

Companion website: www.wiley.com/go/buchanan/biochem W l L EY BIaCkWe”

Biological effects:
- can lead to respiratory failure in humans (mammalian defense?)

- antifungal agent in potato and tomato, also toxic to Colorado potato beetle
(anti-herbivory)
- low levels in commercial potatoes, often found in leaves, flowers, fruit



4. Solanine and Potato Steroid Alkaloids (Human chemical ecology)

FIGURE 24.34 Stricct
cholesterol.
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4. Solanine and Potato Steroid Alkaloids (Human chemical ecology)

Journal of Chemical Ecology, Vol. 12, No. 3, 1986
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FIGURE 24.34 Structure of the steroid alkaloid glycoside a-solanine from Solanum tuberosum (potato). The aglycone solanidine is derived from
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Abstract—Detoxification as the adaptive function of geophagy is demon-
strated from ficld and historical data associating clay consumption with the
domestication of potentially toxic potatoes. In vitro analyses showed that the
glycoalkaloid, tomatine, was effectively adsorbed by four classes of edible
clays over a range of simulated gastrointestinal conditions. These results, in
conjunction with reports of geophagy by nonhuman primates, suggest geo-
phagy as a solution to the impasse chemical deterrents pose to the process of
domestication and to chemical constraints on plant exploitation by non-fire-
using hominids. The inorganic component of the chemical environment de-
serves increased attention from chemical ecologists.

Key Words—Geophagy, hominid, primate, detoxification, glycoalkaloids,
tomatine, domestication, potatoes, clay-organic interactions.
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Implications for human diet:

- solanidin is found in edible potatoes at very levels, so it doesn't have discernable
effects.

- synthesis induced by greening (triggered by light)

- wild potato species (Peru, Bolivia) contain high levels of these compounds. Commercial
varieties were selected for lower levels (at the risk of greater disease or herbivory)

Geophagy (eating of soil or clay) = binding of alkaloids by special clays
- detoxification and removal of alkaloids.

- effectiveness can be shown in lab experiments (binding to clay)



Concluding thoughts on alkaloids
- there are many very toxic plant chemicals (ie alkaloids) in common plant species
- toxic chemicals are present in many food plants, and in nature

- plant toxins are effective against generalist insects or herbivores, but specialists have evolved
counter-adaptations

- alkaloids are part of evolved chemical warfare systems between plants and insects (of
different trophic levels)



Study Question

Describe the evidence (using specific examples and experiments) that demonstrates the importance
of alkaloids in plant-insect interactions or their effectiveness in defense

[Think of different types of arguments you could use, in terms of different adaptations, that
demonstrate the efffectiveness of alkaloids as protective agents]



