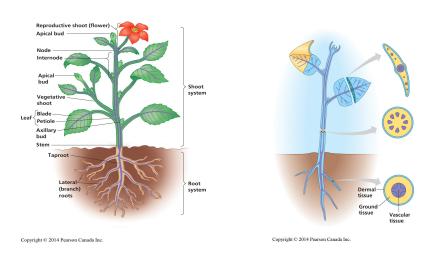
Key Features of Plants and Plant Function

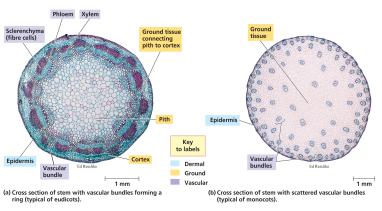
Plants have indeterminate growth

- no set body plan
- parts of different physiological ages

Plants are immobile

- mine the soil to get mineral nutrients (are any animals photosynthetic?)
- must adapt to stress via biochemical means

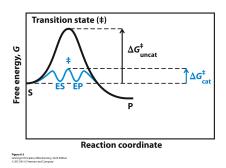

Plants are decentralized


- control of metabolic processes is decentralized, for example driven by demand (starch vs. sucrose synthesis)

Plants have a vascular system to transport molecules

Xylem: water, minerals, also some organic compounds (amino acids, proteins)

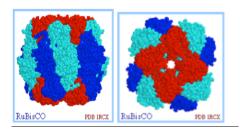
Phloem: nutrients (sugars), amino acids, also RNAs and proteins


Copyright © 2014 Pearson Canada Inc

Review of Enzymes and Enzyme Regulation

Metabolism and its control requires the coordinated activities of many enzymes.

Enzymes: proteins that catalyze specific chemical reactions


- speed up reaction rates by lowering activation energy
- contain active (catalytic) site (= pocket),
- highly specific, via specificity of binding site for substrate

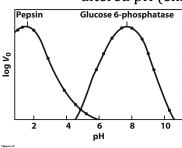
Enzyme structure

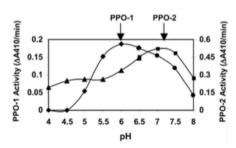
- can be **multi-subunit** (i.e. ribulose bisphosphate carboxylase/oxygenase, alcohol dehydrogenase)
- there can be multiple forms of very similar enzymes called **isoenzymes** (isozymes). These are encoded by separate genes (in gene families).
- often have **multi-enzyme complexe**s (sequential reactions)
- many enzymes require cofactors.

[enzyme cofactors: = small molecules or metal ions which are required for the action of certain enzymes]

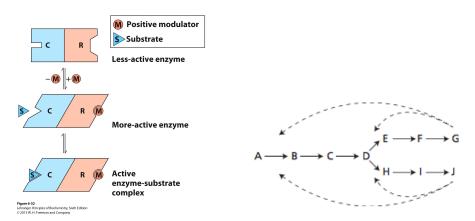
= organic or inorganic, low-MW, heat-stable i.e.: Mg++, heme, NADP

- are often vitamin-derived (i.e., biotin)

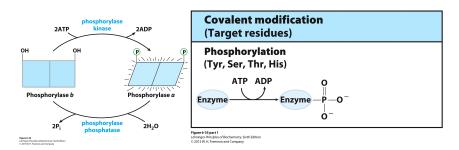

- can be covalently linked, but not necessarily


TABLE 6-2 Some Coenzymes That Serve as Transient Carriers of Specific Atoms or Functional Groups			TABLE 6-1	Some Inorganic Ions That Serve as Cofactors for Enzymes
			lons	Enzymes
Coenzyme	Examples of chemical groups transferred	Dietary precursor in mammals	Cu ²⁺	Cytochrome oxidase
Biocytin	co,	Biotin	Fe ²⁺ or Fe ³⁺	Cytochrome oxidase, catalase,
Coenzyme A	Acyl groups	Pantothenic acid and other compounds		
5'-Deoxyadenosylcobalamin (coenzyme B ₁₂)	H atoms and alkyl groups	Vitamin B ₁₂	K ⁺	Pyruvate kinase
Flavin adenine dinucleotide	Electrons	Riboflavin (vitamin B ₂)	Mg ²⁺	Hexokinase, glucose 6-phosphatase, pyruvate kinase
Lipoate	Electrons and acyl groups	Not required in diet		
Nicotinamide adenine dinucleotide	Hydride ion (:H ⁻)	Nicotinic acid (niacin)	Mn ²⁺	Arginase, ribonucleotide reductase
Pyridoxal phosphate	Amino groups	Pyridoxine (vitamin B _s)	Мо	Dinitrogenase
Tetrahydrofolate	One-carbon groups	Folate	Ni ²⁺	Urease
Thiamine pyrophosphate	Aldehydes	Thiamine (vitamin B ₁)	Zn ²⁺	Carbonic anhydrase, alcohol
Note: The structures and modes of action of these coenzymes are described in Part II. Table 6-2			•	de hydrogenase, carboxypeptidases A and B
Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company			Table 6-1 Lehninger Principles of Biochemistry, Six II 2013 W. H. Erreman and Company	h Edition

Common Mechanisms to Regulate Enzyme Activity


1. Modifications of the chemical environment

- substrate or cofactor concentrations
- altered pH (enzymes have distinct pH optima)



2. Allosteric regulation: = regulation of enzyme activity by the non-covalent binding of a specific metabolite at a site other than the catalytic site.

3. Covalent modifications of enzyme

- reduce S to SH (ribulose-5-P kinase)
- protein phosphorylation (kinases add phosphate to specific a.a. residues)
- proteolytic cleavage to activate (e.g. trypsin)
- other: ribosylation, prenylation

- 4. Alter localisation / substrate proximity; i.e. move to membrane (prenylation)
- **5. Degradation or synthesis of enzyme (gene expression)** generally considered as "coarse" control