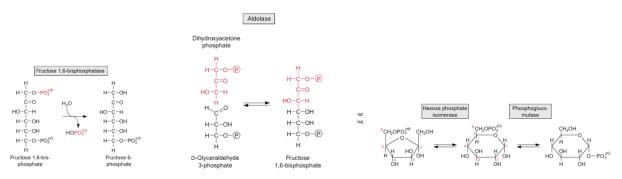

Sucrose and Other Sugars

1. Sucrose is a key product of photosynthesis ("default")

- note dissaccharide structure: glucose (1a -> 2ß) fructose (recall the two anomers of monosaccharides)
- sucrose is a **non-reducing** sugar, and key transport form of carbon (energy) in plants (source to sink)
- sucrose and related sugars also for long-term storage

Biosynthesis of sucrose

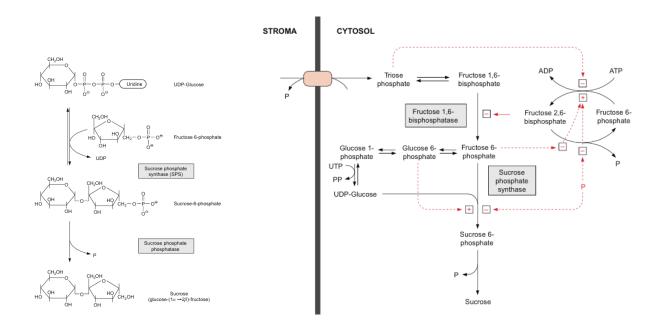

- in cytoplasm, not the plastids
- source of triose-P is the chloroplast (via triose-P phosphate translocator), a channel protein which exchanges triose for *Pi*
- => this connects sucrose & starch pathways

Overall: 4x triose-P ==> 1 glucose + 1 fructose ==> 1 sucrose

Step 1: [make glucose-1-P]

2x triose-P ---> fructose-1,6-P2 ---> fructose-6-P ---> glucose-6-P ---> glucose-1-P

Enzymes: aldolase, fructose-1,6 bisphosphatase, hexose phosphate isomerase, phosphoglucomutase NB: these enzymes are cytosolic isoenzymes, and are not targetted to plastids like for starch



$$\label{eq:step 2. Decomposition} \begin{array}{l} \underline{\text{Step 2.}} & \text{(activation step)} \\ & \text{glucose-1-P + UTP --> UDP-glucose + PP}_{i}. \end{array}$$

[UDP-glucose pyrophosporylase]

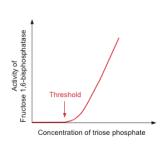
Step 3. (synthesis of sucrose)

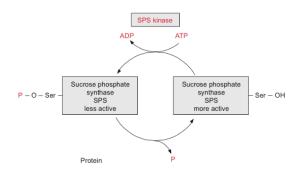
sucrose-6-P --> sucrose + Pi [Sucrose-phosphate phosphatase] (irreversible step)

2. Regulation of sucrose synthesis is important and needs to balance with Calvin cycle and starch synthesis

Key regulatory enzymes

i. Fructose-1,6-bisphosphatase:


- inhibited by <u>fructose-2,6-P2</u> (key regulatory molecule), which exists in a dynamic pool (competing <u>kinase</u> and <u>phosphatase</u> reactions)
 - "senses" triose-P, fructose-6-P, Pi levels


ii. Sucrose-phosphate synthase:

i) allosteric mechanisms:

- stimulated by glucose-6-P
- inhibited by Pi, sucrose (?)
- ii) inactivated by phosphorylation
- balance of kinase and phosphatase (NB: ser residue)
- light stimulates phosphatase

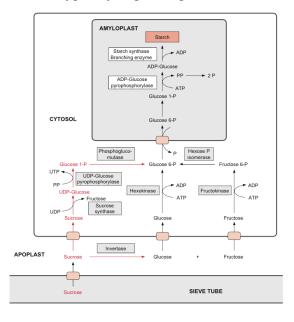
Complex regulation of the whole pathway (see Figure 9.14)

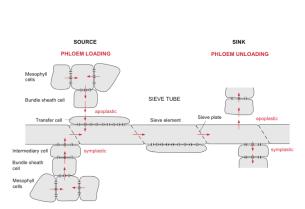
- i) light on -> (triose-P up, Pi, down) = sucrose synthesis
- ii) midday (export saturated) -> sucrose synthesis slowed (via SPS, Pi, feedbacks)
- iii) inhibit starch synthesis via triose-P-phosphate translocator (TPT).

NB: TPT connects starch & sucrose, but maintain enough starch for night

4. Enzymes of sucrose breakdown:

- has to be rapid, to maintain gradient for phloem transport.
- two biochemical routes, depends on species and tissues
- i) catalysed by invertase:


sucrose + H2O --> glucose + fructose [a hydrolytic reaction]


- vacuolar or cell wall (apoplastic phloem unloading)
- in cereal grains and other storage organs
- ii) catalysed by 'sucrose synthase' (note the confusing name...):

sucrose + UDP <----> UDP-glucose + fructose

Note: UDP-glucose can be used directly for cell wall synthesis, etc.

- energetically more efficient than hydrolysis, used in **symplastic** unloading
- typically in growing roots and shoots, potato tubers

5. Other Storage/Transport Sugars

- plants make other interesting and unique types of sugars

i. Raffinose-type oligosaccharides

Structure: sucrose + one or more 1,6 linked galactose units E.g.: raffinose Gal-(1a ->6)-Glc-(1a->2ß)-Fru stachyose: Gal-(1a ->6)-Gal-(1a ->6)-Glc-(1a->2ß)-Fru

Synthesis: Requires a *UDP-glucose epimerase*)

[Epimer: isomer differing at one asymmetric center]

- common in lime, olive and other trees (transport function)
- important for phloem transport via "polymer trapping"
- in peas, beans (storage function, and can act as a cold protectant)
- difficult to digest when in the diet

ii. Fructans (soluble, ß-linked polyfructose sugars, DPM >200)

6-kestose type (**levan**-type) (6->\mathbb{R}2) linkage 1-kestose type (**inulin**-type) (1->\mathbb{R}2) linkage

- energy storage in many bulbs (dahlias, onion, some lilies)
- additional storage in stem and leaves of grasses
- vacuolar, synthesized from sucrose
- advantages of accumulating fructans for plant: frost hardiness
- in the human diet: promote probiotic bacteria (chicory, artichoke, leek, onion)
- for First Nations **Camas Lily** was a major carbohydrate (rich in fructans)

Raffinose HO
$$\frac{1}{OH}$$
 $\frac{1}{OH}$ $\frac{1}{OH$