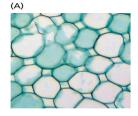
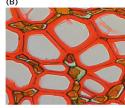
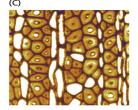

THE PLANT CELL WALL

A. Introduction.

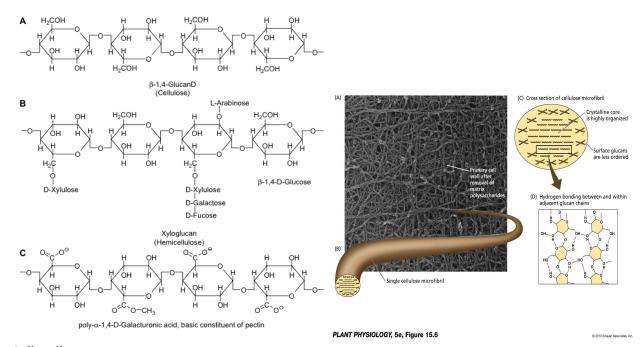

- = a tough coat of polysaccharides and proteins, which surrounds the plant cell external to the plasmalemma.
 - acts as "extracellular" matrix, semi-rigid, integral to cell
 - is a major **long-term sink of fixed carbon** in the biosphere (cellulose & lignin).
 - dynamic structure: sensitive to environment, developmental signals, external stresses


Biological importance of the CW:


- structural support for plants (via turgor). In specialized cells, lignin further strengthens the CW
- gives plant cells shape, tied closely to cell development. [Protoplasts are cells w/o CWs, round]
- gives protection from pathogens, and acts as stress sensors to invasion and damage
- facilitates water movement between cells (capillary action of carbohydrates in CW)
 - are the primary point of contact with the environment, including neighboring cells (positional

PLANT PHYSIOLOGY, 5e. Figure 15.3

Practical importance of the CW:


- importance of industrial fiber (cotton, flax, hemp)
- health / dietary fiber (β-glucans in the diet postivitely affect cholesterol, insulin levels)
- source of 'solar' energy > biofuels from cellulose?

General features:

- primary CWs can expand, found all plant cells
- secondary CWs develop:

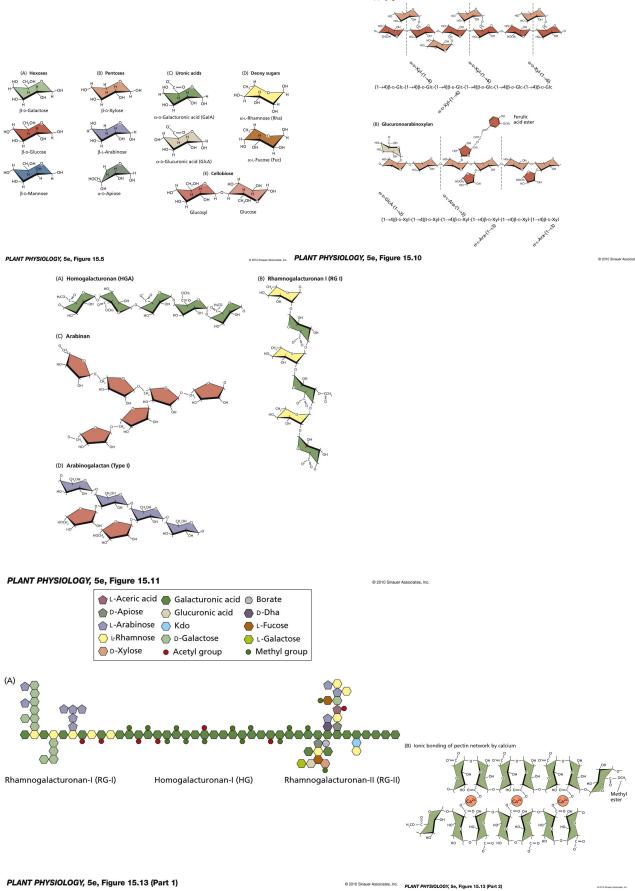
only in specialized cells

- permeable to small molecules only, but larger molecules may go thru plasmodesmata (virus mov't)

B. Cell wall components

- composed of cellulose micro- and macro-fibrils in a complex matrix of carbohydrate and protein (similar to cloth and resin of fiberglass)

1. Microfibrils (cellulose)


- unbranched ß-(1->4) glucose polymer [the repeating unit is called 'cellobiose'] [note ß anomers of glucose is used, unlike starch which is α -1,4 linked glucose]
- microfibrils are stabilized by H-bonds (intra-, inter-molecular)
 - 36 glucose chains make up one microfibril, many of these are coiled into macrofibrils
- arrangement of fibrils around the cell like a "slinky" permits expansion of the cell along long axis
- 2. Matrix (a very complex "glue", subdivided empirically by extraction methods, and can be quite variable)
 - contains pentoses, hexoses, deoxy sugars (review nomenclature and sugar structures?

Hemicellulose (xyloglucan- alkali or KOH extracted)

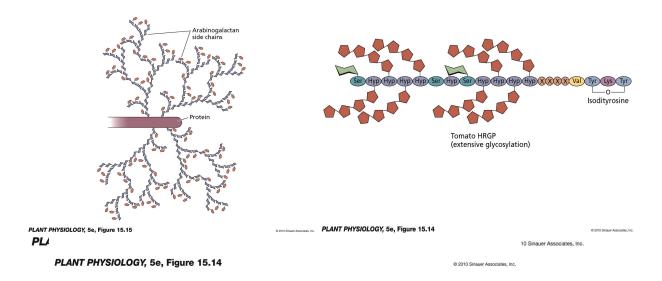
- composed of **B(1->4)** glucose with xylose sidechains
- also contain many arabinose, galactose, fucose subunits linked to xylose
- xyloglucan forms "adaptors" with cellulose and crosslinks microfibrils
- hemicellulose also contains: glucuronoarabinoxylan, especially common in grasses.

Pectic polysaccharides (pectin - boiling H₂O extracted)

- stabilize and bind water to make a "hydrated gel"
- key component is polygalacturonic acid
- typcially abundant in middle lamella,
- other sugars: **arabinose**, **rhamnose** {->arabinogalactans, rhamnogalacturonan][these can link to borate]
- carboxyl interaction with Ca⁺⁺, pectin methylesterase remove methyl groups after export from the cell, and thus expose the charge.

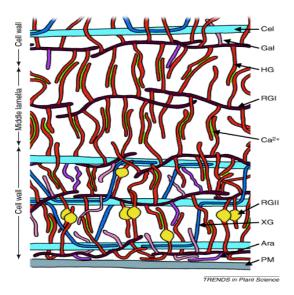
3. CW Proteins [structural & enzymes]:

Structural Proteins in CW:


- usually heavily glycosylated, linked to polysaccharides
- typcially contain simple, repeated sequences of amino acids

Common structural CW proteins

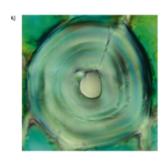
- Hydroxyproline-rich glycoproteins (HRGPs, (extensin)
- [...-ser-hyp-hyp-hyp-ser etc...tyr-lys-tyr] glycosylated
- Glycine-rich proteins (GRPs) [...-gly-gly-X-...]
- Proline-rich proteins (PRPs) [pro, hyp]
- Arabinogalactan-proteins (AGPs): typically 90% carbohydrate!

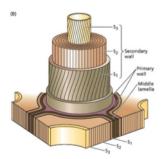

Enzymes - [see dynamic nature of CW, later]:

- ß-glucanase, polygalacturonase -
- xyloglucan endotransglycosylase (XET) -
- expansins proteins which loosen H-bonds in CW

4. Model of polysaccharides in primary CW

- xyloglucans H-bond to microfibrils (MFs), crosslink MFs
- pectins make connections between MF's via xyloglucans, which act like 'adaptors'
 - pectins also connect to CW proteins, act as hydrophilic filler




5. Secondary CW

- more xylan and less xyloglucan, making polymers less branched, tighter fibrils
- lots of glucomannose
- secondary CW is formed in tracheids/xylem, fibers, sclereid cells (mechanical support)

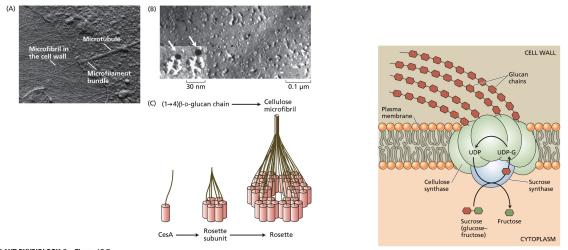
6. Lignin:

- = high MW polymer, in matrix, derived from phenylalanine (see later lectures)
- predominantly in xylem (i.e., wood), where it makes up 30% DW
- resists crushing forces, important because xylems is dead at maturity.

C. Summary of CW & Biosynthesis

- primary CW:

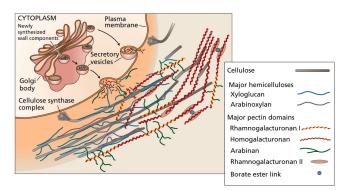
cellulose 20-30% hemicellulose (xyloglucan) 25 % pectic substances 30% proteins 5-10%


- secondary CW: up to 90 % cellulose
- wood: 40 % cellulose, 30 %hemi-cellulose, 30 % lignin
- there are both homo- and hetero-polymers

Biosynthesis of cellulose and CW

Components all get exported NB: Assembly in situ

i) cellulose: - cellulose synthase is organized into rosettes (hexamer), visible by electron microscopy.


- = "sugar nucleotide polysaccharide glycosyl transferase"
- encoded by CesA genes. This is a large family, with 10 CesA genes in Arabidopsis, and a large number of CesA-like genes that encode other glucosyltransferases for CW synthesis
- embedded guided by microtubules of cytoskeleton (see double-labele experiment
 - Sucrose synthase (associated) provides **UDP-glucose**, which is the immediate substrate
- ii) xyloglucans and pectic substances: secretory pathway and Golgi, assembly in CW space
- iii) proteins secreted via Golgi, and then attached to matrix in the CW space

PLANT PHYSIOLOGY, 5e, Figure 15.8

(A) Randomly oriented cellulose microfibrils (B) Transverse cellulose microfibrils

