The Dynamic Nature of the Cell Wall

Introduction: The cell wall is a dynamic structure that allows the plant cell to grow and to adapt to external stresses.

Example 1: Cell wall loosening during cell expansion

- growth is "plastic, not elastic", and is diffuse (not at the end but along the whole cell)
- the arrangement of microfibrils (slinky, or hoops around a barrel) is critical to facilitate growth as the microfibrils slide against each other
- enzymes to loosen matrix, turgor expands CW
 - i) **B(1->4) endoglucanase** (hydrolyses xyloglucan or non-crystalline cellulose)
 - ii) xyloglucan endotransglycosylase (XET) breaks glycosidic bonds of xyloglucan backbone, and transfers polysaccharide chains to new acceptor xyloglucans
 - iii) expansin proteins that loosen xyloglucan/cellulose H-bonds via pH activation (see the "acid growth" hypothesis. Can be assayed by hypocotyl and filter paper experiments.
 - after expansion (final cell size), CW is 'locked' into final shape by HRGP crosslinks & desterification of pectins.

Example 2: Defense against plant pathogens: CW as a barrier to entry and a pathogen sensor

- CW is a physical barrier to pathogen, needs to be broken or breached. [there are also other defenses, such as defense proteins and toxins called phytoalexins, see below.]

Some background on Plant Pathogens

i) phytopathogenic bacteria:

- cannot enter cells.
- -remain extracellular, and thus kill plant cells 'from the outside', but absorb nutrients
- secrete toxins and CW-degrading enzymes (i.e., pectate lyase) into the plant

ii) fungal pathogens are classified as:

Necrotrophs - also kill cells first, then absorb nutrients that are release (require dead cells for nutrition)

- often secrete polygalacturonases which attack the plant CW (**=arms race**)
- ---> to defend themselves, plants can secrete polygalacturonase inhibitory proteins (PGIPs), as well as chitinases and ß-glucanases

Biotrophs - require living cells and tissues to grow and reproduce (cannot be grown in culture)

- use **haustorium** to absorb nutrients (note special absorptive membrane)
- need a penetration peg to 'drill' into the cell and establish internal hyphae and haustoria
- to be successful, they must actively suppress plant defense responses very sneaky

See example of poplar rust fungus Melampsora medusae - super sneaky pathogen that stays well below the plant's radar!

Plant defense against biotrophs can take many forms.:

- increased **HRGP** synthesis to reinforce the CW.
- crosslinking of PRPs (=disappearance from extracts), reinforce CW
- papillae formation to block penetration (callose: £1,3 glucose), CW proteins.
- ultimately, the cells can trigger hypersensitive response (cell death), depriving pathogen of nutrients
- this is typically an active process, involving gene expression and protein synthesis

How do plants know they are being invaded? What triggers these active defenses?

- -> pathogen-derived elicitors: molecules that are recognized by the plant and stimulate defense mechanisms
 - i) peptides, ie systemin or flag22, derived from bacterial flagellin fragment
 - ii) plant-derived CW fragments:
 - xyloglucan nonasaccharide
 - oligogalacturonide (n=11-14)
 - ii) pathogen-derived CW fragments:
 - hepta ß-glucoside
 - -oligochitin (oligo N-acetyl glucosamine)

Note high degree of specificity! (Group Discussion/Assignment).

Pathogen signals are sometimes referred to as MAMPs (microbe associated molecular patterns), as well as **DAMPs** (damage-associated molecular patterns)

The Plant CW is potentially huge source of biofuels

- there is a large amount of biomass in plant CWs (polysaccharide that make up the polymeric structures)
- but, it is difficult to get the energy stored in these polymers as they cannot be broken up or digested easily (takes lots of energy and harsh chemical treatments)
- thus we we need to understand CW structure, to be able to modify or select the best source
- 1. Biofuels problem: need a transportable form of energy
- 2. CW sugars can be fermented to ethanol by microbes
- 3. Where are the bottlenecks?
 - ironically, the CW evolved in part to resist microbial attack
 - the sugars are not easily accessible to microbial enzymes (especially crystalline cellulose)
 - hemicelluloses are very variable in composition
- 4. Attempts to modify the CW for cellulosic biofuels
 - i) decrease crystalline cellulose
 - ii) reduce H-bonding of xyloglucan, modify the structure
 - iii) less pentoses (arabinose, xylose), more hexose (mannose, glucose)
 - iv) reduce lignin content

[Can these by modified and still have a viable plant?]

Pauly and Keegstra (2008) Plant J. 54, 559-568