Nitrogen Assimilation #### 1. Introduction and Overview #### Importance of nitrogen to plant metabolism: - often the limiting nutrient in plants (& agriculture) - nitrogen can regulates growth processes, due to integration of N and C metabolism ## The Nitrogen cycle - position of organic N in the biosphere - plants can use inorganic nitrogen (N₂, NO₃, NH₄, but ultimately need in in reduced form (NH₄) - plants have a central position in biosphere N-cycle, compete with microbial denitrification and nitrification - nitrate reduction is different from nitrogen fixation #### **Overview of reactions** (Uptake ->) NO₃ -> NO₂ -> NH₄ -> glutamine -> glutamate -> amino acids Uptake, reduction, assimilation, biosynthesis Note: **Nitrogen Fixation** is different $(N_2 -> NH_4^+ -> glutamine -> amino acids)$ (occurs only in some plants) **Topics:** - 1. NO₃ uptake & reduction (to NH₄⁺) - 2. NH₄ assimilation (get to organic N) -> glutamate - 3. principles of synthesis of amino acids - 4. nitrogen fixation as a special case (legumes) # 2. Uptake and Reduction of NO₃: NO₃ uptake is very dynamic (microbial competition) - NO_3 concentration in soil is <u>highly variable</u> [$10\mu M$ 100mM] - specific transporters with **saturable kinetics** (2H⁺/NO₃ co-transporter mechanism) - i. LATS (low-affinity transport system, (non-)saturable) - ii. HATS (high-affinity transport system, saturable) - => two systems for both high and low NO₃ levels - uptake activity <u>inducible</u> by NO₃ (= adaptive response) - N oxidation number from +5 to -3 = 8 e⁻(requires 2 enzymes) - requires a lot of reducing power (NADH, NADPH or ferredoxin) - occurs in leaves or roots (the latter especially in trees) #### Step 1: Enzyme: Nitrate reductase (NR) - Net reaction: $NO_3^- + 2 e^- + 2 H_2^+ ----> NO_2^- + H_2^0$ - enzyme has three several domains (= structural units) - prosthetic groups and co-factors: FAD, haem, Mo⁴⁺ - electrons come from NADH (or NADPH) - cytoplasmic localization - ClO₃ (chlorate) is also reduced if it is present. The product, chlorite, is toxic. ## Step 2: Enzyme: Nitrite reductase (NiR) - Net reaction: $NO_{2}^{-} + 6 e^{-} + 8 H^{+} ----> NH_{4}^{+} + 2 H_{2}O$ - prosthetic groups: iron-sulfur centers (4Fe-4S), FAD, sirohaem (also contains Fe) - electrons source is ferredoxin (or NADPH); - located in chloroplast/plastid - NO₂ is toxic (thus, NiR capacity needs to be very high to use it up) Figure 10.4 Nitrite reductase in chloroplasts transfers electrons from ferredoxin to nitrite. Reduction of ferredoxin by photosystem I is shown in Figure 3.16. Regulation of NO_3 reduction is tight (due to toxicity, and coordination of N to C) i. $\underline{transcriptional\ regulation}$ of NR (also NiR, HATS) inducers: NO₃, light, sucrose, circadian cycle repressors: NH₄⁺, glutamine ii. tight post-transcriptional regulation of NR: - rapid NR mRNA and protein turnover (short half-life) - phosphorylation and inactivation are sequential # 3. NH_A assimilation to glutamic acid (glutamate) occurs in two linked steps # Step 1: Glutamine synthetase glutamate + $$NH_{4}^{+}$$ + ATP -> glutamine + ADP + Pi #### Step 2: Glutamate synthase glutamine + α -ketoglutarate + ferredoxin (reduced) --> 2x glutamate + 2x ferredoxin (oxidized) - source of electrons is - closely coupled to glutamine synthetase - chloroplastic, but there are cytosolic forms for N fixers #### Regulation of both enzymes: - transcription is activated by NO₃-, NH₄+, light (both enzymes) - large amount present rapid assimilation of NH₄⁺ (toxic) - connected to **photorespiration** (= metabolic reactions to recover 2-P-glycollate (side reaction to carbon fixation) Herbicides frequently target N-metabolism (glufosinate: ('Basta', 'Liberty') is a glutamate analog Some differences in assimilation in the <u>leucoplast</u> vs chloroplast ## 4. Synthesis of amino acids and other nitrogenous metabolites - Amino Acid synthesis: via Gln/Glu, organized by C-skeleton - Aminotransferase enzymes are key to N metabolism - they transfer amino group from glutamate (donor) to carbon skeleton --> produce a new amino acid (Eg) aspartate aminotransferase glutamate + oxaloacetate <---> a-ketoglutarate + aspartate (Eg) alanine aminotransferase glutamate + pyruvate <---> a-ketoglutarate + alanine _ Glutamate has a central position in N metabolism and is used a nitrogen donor for many molecules: - ---> all other amino acids (in families often late in the pathway) - ---> nitrogenous bases (nucleic acids) - ---> chlorophyll (glu) - ---> alkaloids (from trp, tyr) #### Overall transport of nitrogen in plants - whole plant perspective: nitrate reduction in leaves or roots - transport of glutamine, asparagine or alanine - ureides: allantoate and allantoic acid are alternate transport forms of N (legume plants)