Nitrogen Assimilation

1. Introduction and Overview

Importance of nitrogen to plant metabolism:

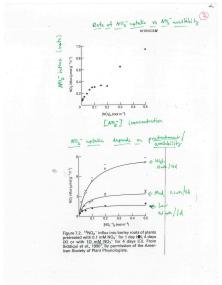
- often the limiting nutrient in plants (& agriculture)
- nitrogen can regulates growth processes, due to integration of N and C metabolism

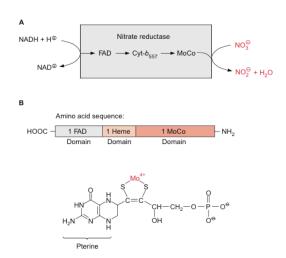
The Nitrogen cycle - position of organic N in the biosphere

- plants can use inorganic nitrogen (N₂, NO₃, NH₄, but ultimately need in in reduced form (NH₄)
- plants have a central position in biosphere N-cycle, compete with microbial denitrification and nitrification
- nitrate reduction is different from nitrogen fixation

Overview of reactions

(Uptake ->) NO₃ -> NO₂ -> NH₄ -> glutamine -> glutamate -> amino acids Uptake, reduction, assimilation, biosynthesis


Note: **Nitrogen Fixation** is different $(N_2 -> NH_4^+ -> glutamine -> amino acids)$ (occurs only in some plants)


Topics:

- 1. NO₃ uptake & reduction (to NH₄⁺)
- 2. NH₄ assimilation (get to organic N) -> glutamate
- 3. principles of synthesis of amino acids
- 4. nitrogen fixation as a special case (legumes)

2. Uptake and Reduction of NO₃: NO₃ uptake is very dynamic (microbial competition)

- NO_3 concentration in soil is <u>highly variable</u> [$10\mu M$ 100mM]
- specific transporters with **saturable kinetics** (2H⁺/NO₃ co-transporter mechanism)
 - i. LATS (low-affinity transport system, (non-)saturable)
 - ii. HATS (high-affinity transport system, saturable)
 - => two systems for both high and low NO₃ levels
 - uptake activity <u>inducible</u> by NO₃ (= adaptive response)

- N oxidation number from +5 to -3 = 8 e⁻(requires 2 enzymes)
- requires a lot of reducing power (NADH, NADPH or ferredoxin)
- occurs in leaves or roots (the latter especially in trees)

Step 1: Enzyme: Nitrate reductase (NR)

- Net reaction: $NO_3^- + 2 e^- + 2 H_2^+ ----> NO_2^- + H_2^0$
- enzyme has three several domains (= structural units)
- prosthetic groups and co-factors: FAD, haem, Mo⁴⁺
- electrons come from NADH (or NADPH)
- cytoplasmic localization
- ClO₃ (chlorate) is also reduced if it is present. The product, chlorite, is toxic.

Step 2: Enzyme: Nitrite reductase (NiR)

- Net reaction: $NO_{2}^{-} + 6 e^{-} + 8 H^{+} ----> NH_{4}^{+} + 2 H_{2}O$
- prosthetic groups: iron-sulfur centers (4Fe-4S), FAD, sirohaem (also contains Fe)
- electrons source is ferredoxin (or NADPH);
- located in chloroplast/plastid
- NO₂ is toxic (thus, NiR capacity needs to be very high to use it up)

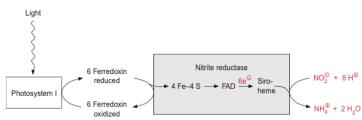
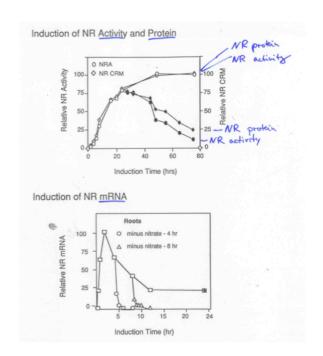
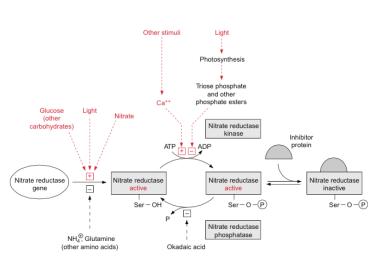


Figure 10.4 Nitrite reductase in chloroplasts transfers electrons from ferredoxin to nitrite. Reduction of ferredoxin by photosystem I is shown in Figure 3.16.

Regulation of NO_3 reduction is tight (due to toxicity, and coordination of N to C)


i. $\underline{transcriptional\ regulation}$ of NR (also NiR, HATS)


inducers: NO₃, light, sucrose, circadian cycle

repressors: NH₄⁺, glutamine

ii. tight post-transcriptional regulation of NR:

- rapid NR mRNA and protein turnover (short half-life)
- phosphorylation and inactivation are sequential

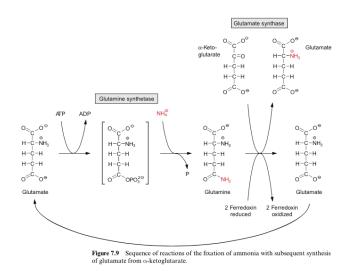
3. NH_A assimilation to glutamic acid (glutamate) occurs in two linked steps

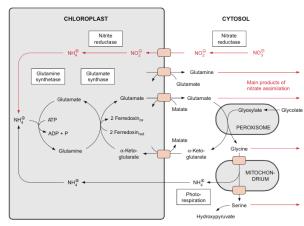
Step 1: Glutamine synthetase

glutamate +
$$NH_{4}^{+}$$
 + ATP -> glutamine + ADP + Pi

Step 2: Glutamate synthase

glutamine + α -ketoglutarate + ferredoxin (reduced) --> 2x glutamate + 2x ferredoxin (oxidized)

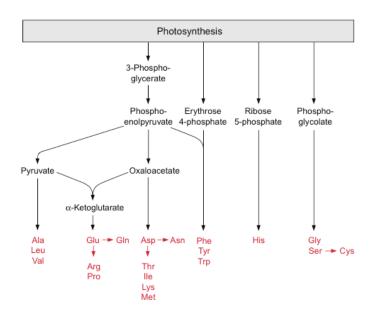

- source of electrons is
- closely coupled to glutamine synthetase
- chloroplastic, but there are cytosolic forms for N fixers


Regulation of both enzymes:

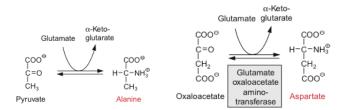
- transcription is activated by NO₃-, NH₄+, light (both enzymes)
- large amount present rapid assimilation of NH₄⁺ (toxic)
- connected to **photorespiration** (= metabolic reactions to recover 2-P-glycollate (side reaction to carbon fixation)

Herbicides frequently target N-metabolism (glufosinate: ('Basta', 'Liberty') is a glutamate analog

Some differences in assimilation in the <u>leucoplast</u> vs chloroplast



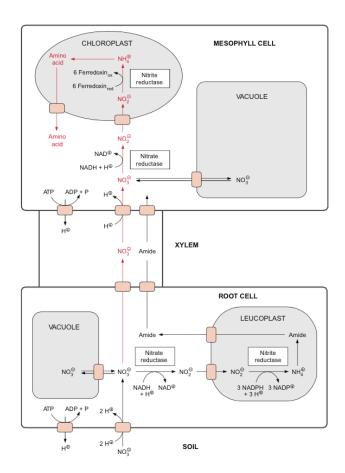
4. Synthesis of amino acids and other nitrogenous metabolites


- Amino Acid synthesis: via Gln/Glu, organized by C-skeleton
- Aminotransferase enzymes are key to N metabolism
 - they transfer amino group from glutamate (donor) to carbon skeleton --> produce a new amino acid

(Eg) aspartate aminotransferase glutamate + oxaloacetate <---> a-ketoglutarate + aspartate

(Eg) alanine aminotransferase glutamate + pyruvate <---> a-ketoglutarate + alanine

_



Glutamate has a central position in N metabolism and is used a nitrogen donor for many molecules:

- ---> all other amino acids (in families often late in the pathway)
- ---> nitrogenous bases (nucleic acids)
- ---> chlorophyll (glu)
- ---> alkaloids (from trp, tyr)

Overall transport of nitrogen in plants

- whole plant perspective: nitrate reduction in leaves or roots
- transport of glutamine, asparagine or alanine
- ureides: allantoate and allantoic acid are alternate transport forms of N (legume plants)

