Symbiotic Nitrogen Fixation (in legumes)

Define: The process by which molecular nitrogen (N_2) is reduced ("fixed") directly to NH_4^+

Reaction: $N_2 + 10H^{+} + 8e^{-} --> 2 NH_4^{+} + H_2^{-}$

- requires large energy input (see Haber-Bosch process: 30% of energy input for maize is N fertilizer

Why is N fixation important?

- net nitrogen input into soil (5-10 % of global N input)
- legume-Rhizobium interaction is a model system for plant-microbe signaling

Nitrogenase is a prokaryotic enzyme found only in some bacteria, but plants often benefit:

- free-living cyanobacteria (Nostoc) (associates with in Azolla water ferns in rice paddies)
- symbiotic bacteria: Frankia, an actinomycete (alder trees (Alnus), also Causuarina)
- lichens often contain cyanobacteria as symbionts -> net N input into forest ecosystems
- Rhizobium and relatives (Bradyrhizobium, Azorhizobium) form nodules leguminous plants of great importance for agriculture: NB: plants can have a specific bacterial biovar high specificity!

The plant provides energy and carbon (sucrose-> malate), bacteria provides NH₄

Features of the Legume-Rhizobium symbiosis:

- 1. orchestrated formation of nodules, a new organ with distinct development
- 2. plant & Rhizobium communicate via chemical signals
- 3. the biochemistry of nitrogen fixation, metabolism and regulation

1. Root nodule formation is a 'controlled infection'

- i) root hairs curl, ultimately leads to invagination of membranes, and CW hydrolysis in crook.
- ii) bacteria enter via infection thread and migrate into root cortex where they enter a cell
- iii) root cortex cells undergo division / morphogenesis, begin to make a nodule
- iv) bacteria eventually develop in special vacuoles (symbiosomes)

=> how is all this orchestrated??

Mature nodule structure: bacteroid + peribacteroid membrane = symbiosomes.

- nodulins = plant proteins required for the formation / functioning of symbiotic nodules
- early nodulins function in nodule formation,
- late nodulins in functions (metabolism, fixation, assimilation)

2. Plant-Rhizobium communication (= chemical ecology of this interaction)

- roots release flavonoid signals (ie., flavone) which stimulate Rhizobium nod genes
- **nod genes** can be either 'common' or 'host-specific', and the corresponding enzymes synthesize **nod** factors (see below).
- nodD is the flavonoid receptor & activator that regulates other rhizobial nod genes

Nod factors are lipo-oligosaccharide signals

- chitin-like, different from plant CW etc
- symbiotic specificity derives from nod factor structure (= 'key' for invasion)
- perceived at cell membrane of plant

Summary: Both plant and bacterial signals are involved

3. Nodule function and nitrogen fixation:

recall: rhizobia changed to **bacteroids**, and a completely new set of genes/pathways are expressed.

This includes **nitrogenase**, as well enzymes of the **citric acid cycle** and **respiratory chain** (energy)

Nitrogenase enzyme (= nitrogenase complex) is bacterially encoded (prokaryotic enzyme)

- contains Fe-protein dimer and MoFe tetramer
- highly abundant, inactivated by **oxygen** (see leghemoglobin)
- electrons move from NADH --> ferredoxin --> dinitrogen reductase--> nitrogenase --> N2
- high energy requirement 16 ATPs, 4 NADH for each N₂ reduced.
- H2 is also formed as a side reaction [nitrogenase also reduces acetylene]

Other nodule cell components

Leghemoglobin: (a late nodulin) - has high oxygen affinity, functions to reduce oxygen tension and protect nitrogenase from being inactivated.

Peribacteroid membrane: specialized for exchange between plant cell cytoplasm and bacteroid

Metabolic Considerations:

- N assimilatory enzymes similar to those seen previously (glutamine synthetase, glutamate synthase, aspartate aminotransferase). These are found in host cell cytoplasm, and utilize the NH4 released from bacteroid.
- Amino acids as well as **allantoic acid** / **allantoin** are products that are exported via phloem.
- in exchange, plant is providing malate as carbon skeleton for amion acids, and for respiratory substrates. It is imported into the host cell as sucrose.

Regulation of nitrogen fixation

- nitrogenase is down-regulated by soil nitrogen (no nodules at high N in soil).
- regulation of bacterial N fixation genes (fix genes) via oxygen levels in nodule.
- fixation requires high ATP/ADP, so energy supply from the plant (malate) also regulates process.

PLANT PHYSIOLOGY, Fourth Edition, Figure 12.9 © 2006 Snauer Associates, Inc.