Chapter 24 — chemoselectivity

Regioselectivity vs. chemoselectivity vs. stereoselectivity

Carbonyls as electrophiles

Salmefamol synthesis

Reagent control of selectivity: chemoselective carbonyl reductions

More reductions

Oxidizing alcohols

Summary of protecting groups

Carbonyls as electrophiles

more electrophilic...

...less electrophilic

Carbonyl reduction by hydride reagents

more electrophilic...

...less electrophilic

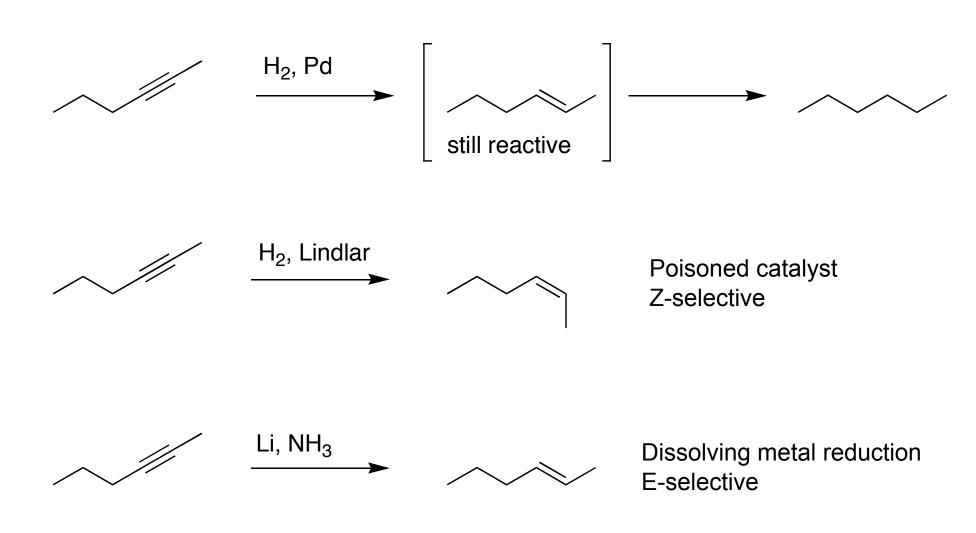
$$R \longrightarrow R$$

----- H₂, Pd

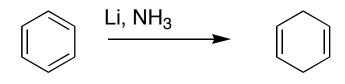
---- NaCNBH₃ ·····

----- NaBH₄

LiBH₄


.....BH₃

Reductive removal of functional groups


$$Ts = OOO p-toluenesulfonyl "tosyl"$$

Tosylation is commonly used to convert alcohols to leaving groups

Alkyne reductions

More dissolving metal reductions

Note regioselectivity effects of EDG and EWG

Miscellaneous oxidations

H H
$$CrO_3$$
 CrO_3 O R OH OH OH

H H PCC Pyridinium chlorochromate — mild, neutral oxidation that stops at aldehyde

Protecting groups 1.

Name		Addition		Protects from	Removal
acetal (dioxolane)	O R R	HO OH H+, -H ₂ O	O O R	Protects aldehydes and ketones from nucleophiles and bases	H ⁺ , H ₂ O
silyl ether	R∕OH	R₃SiCl base ➤	R ÓSiR₃	protects alcohols from bases and nucleophiles, the bulkier versions also protect from weak acid	H ⁺ (TMS, TES) F ⁻ (all = TMS, TES, TIPS, TBDMS, TBDPS)
benzyl ether	R∕OH	NaH BnBr →	ROO	protects alcohols from bases, nucleophiles, electrophiles, and all but the strongest acid/nucleophile combinations	H ₂ , Pd/C or HBr
benzyl amine	$R^{\sim}NH_2$	K ₂ CO ₃ BnBr or PhCHO, NaCNBH ₃	R^N	protects amines from bases, nucleophiles, some electrophiles, and acids	H ₂ , Pd/C (high pressure)