Chapter 33 — Stereoselective reactions of cyclic compounds: Part A

- Stereoselective reactions for acyclic and cyclic compounds (25 picoseconds in the life of a ketone)
- 4-membered rings
- 5-membered rings, and stereoselectivity in epoxidations
- Enantiomers, diastereomers, and reaction selectivity
- Saturated 6-membered rings: chair conformations, A-values
- Equatorial vs. axial selectivity for small and large reagents

Reading guide:

. . .

Ch. 18 Read only pages 457–474

Ch. 33 Skip section on unsaturated 6-membered rings (858–861)

Cyclic vs. Acyclic

Stereoselectivity in flexible acyclic compounds is possible, but much harder to understand... we'll handle cyclic compounds in this chapter

4-membered rings

Saturated 4-membered rings:

puckered squares

Unsaturated 4-membered rings:

essentially flat

Reactions of unsaturated (flat) 4-membered rings

Attack of Nucleophile or Electrophile from least hindered face

Saturated 5-membered rings: envelopes

Unsaturated 5-membered rings — basically flat

Enantiomers, Diastereomers, and Stereoselectivity 1.

Marking a racemic product with (\pm) is used to avoid having to draw every enantiomer of a molecule with ≥ 2 stereocenters. For molecules with a single stereocenter, don't specify the stereochemistry or use a wiggly line

Enantiomers, Diastereomers, and Stereoselectivity 2.

Enantiopure starting materials can give enantiopure products

Enantiomers, Diastereomers, and Stereoselectivity 3.

Achiral starting materials give racemic products

Saturated 6-membered rings (Good-old chair)

"Locked" cyclohexane rings (won't ring flip)

Trans-decalins are locked, but cis-decalins can ring flip!

trans-decalin

cis-decalin

Reactions, orbitals, and axial vs. equatorial attack

Small nucleophiles attack axially

Large nucleophiles attack equatorially