

The ¹H NMR spectra of some octahedral iridium **hydrides** (hydride region). Each stereochemistry gives a characteristic coupling pattern.

¹**H NMR** spectra of (η⁴-*cis*-1,3-pentadiene)Fe(CO)₃ and of free 1,3-pentadiene in CDCl₃ at 200 MHz. $\Delta \delta^{1}$ H decreases in the order endo (H₁) > terminal, exo (H_{2,5}) > central (H_{3,4}).

Consider a molecule having two hydrogens in **non-equivalent** environments. In this example, the carbon to which the hydrogens are attached is bonded to another atom by a bond that has hindered rotation as a result of π -bonding.

At **low T**, rotation around this bond is very slow, and the NMR shows two signals: one for each hydrogen. Since the magnetic environments of these hydrogens are different, their corresponding chemical shifts are different.

As T is raised, the rate of rotation about the bond increases. Instead of showing the hydrogens in their original positions, the NMR now shows the peaks beginning to **merge** or "**coalesce**".

At **high T**, the rate of rotation about the bond becomes so rapid that the NMR can no longer distinguish the individual environments of the hydrogens; instead, it now shows a simple signal corresponding to the average of the two original signals.

Molecular rearrangement processes.

"**Ring whizzer**" mechanism and variable-temperature ¹H NMR spectra of $(\eta^5-C_5H_5)Fe(CO)_2(\eta^1-C_5H_5)$.