
423/523 Organometallic Chemistry Mid-term, 10:00 am Thursday 22nd October 2009

NAME:		
		_

You may use this cover page if you run out of space in the answer booklet.

			1					
		87 F ;	55 CS 132.91	37 Rb 85.468	39.098	11 Na 22.990	3 6.941	1.0079
‡actir	[†] lanthanides	88 Ra [226]	56 Ba 137.33	38 Sr 87.62	20 Ca 40.078	12 Mg 24.305	4 Be 9.0122	₹2
inthanides [‡] actinides		89- 102	57- 70					
89 Ac [227]	57 La 138.91	103 L [262]	71 Lu 174.97	39 ~ 88.906	21 Sc 44.956		Att	≣ω
90 Th 232.04	58 Ce 140.12	104 75 [261]	72 Hf 178.49	40 Zr 91.224	22 Ti 47.867		Atomic number Symbol Atomic weight	
91 Pa 231.04	59 Pr	105 Db [262]	73 Ta 180.95	41 Nb 92.906	23 V 50.942		ber Jht	8 5
92 C 238.03	60 Nd	106 Sg [266]	74 W 183.84	42 Mo 95.94	24 Qr 51.996			o 6 VB
93 Np [237]	61 Pm [145]	107 Bh [264]	75 Re 186.21	43 7 [98]	25 Mn 54.938			√IB 7
94 Pu	62 Sm 150.36	108 Hs	76 OS 190.23	44 101.07	26 Fe 55.845			ω
95 Am [243]	63 Eu	109 Mt [268]	77 	45 P. 102.91	27 Co 58.933			≦9
96 Cm [247]	64 Gd 157.25	110 Ds [281]	78 Pt 195.08	46 Pd 106.42	28 Ni 58.693			10
97 Bk [251]	65 Tb 158.93	111 Rg [272]	79 Au 196.97	47 Ag 107.87	29 Cu 63.546			⊞ 1
98 [251]	66 Dy 162.50		80 Hg 200.59	48 Cd 112.41	30 Zn 65.39			12 IIB
99 ES [252]	67 Ho		81 1 204.38	49 In	31 Ga 69.723	13 A 26.982	5 10.811	13 IIA
100 Fm [257]	68 E		82 Pb 207.2	50 Sn 118.71	32 Ge 72.61	14 S i 28.086	6 12.011	14 IVA
101 Md [258]	69 Tm 168.93		83 E . 208.98	51 Sb	33 As 74.922	15 P 30.974	7 N	15 VA
102 No [259]	70 Yb 173.04		84 [209]	52 Te 127.60	34 Se 78.96	16 S 32.065		16 VIA
			85 At	53 — 126.90	35 Br 79.904	17 Ω 35.453	9 18.998	17 VIIA
			86 R n [222]	54 Xe 131.29	36 83.80	18 Ar 39.948	10 Ne 20.180	18 VIIIA VIIIA 2 He

1. Irradiating Fe(CO)₅ with UV light in the presence of cyclopentadiene results in the formation of **A** and colourless gas **B**. **A** has four different ¹H NMR environments in a 2:2:1:1 ratio. Heating **A** further results in the release of more **B** to make **C**, having the formula FeC₇H₆O₂. Molecule **C** reacts rapidly with itself at room temperature to eliminate colourless gas **D**, forming solid **E**. Compound **E** has two strong IR bands, one near 1850 cm⁻¹, the other near 2000 cm⁻¹. Heating **E** with MeSSMe gives a product **F** that has an elemental analysis consistent with FeC₇H₈OS and with a single strong IR band near 2000 cm⁻¹. Treatment of **E** with Na metal generates solid **G** of empirical formula FeC₇H₅O₂Na. Reaction of **G** with Me₃CCl in a non-polar solvent produces **C**, **H** and a white precipitate. Draw structures for **A** to **H** in the appropriate boxes below.

2. Draw the two singly occupied molecular orbitals of the cycloheptatrienyl anion, $[C_7H_7]^-$. Sketch alongside each of these singly occupied MOs the metal orbitals with the correct symmetry for a bonding interaction. Assume the *z*-axis runs through the metal centre and the centre of the ring of carbon atoms.

[6 marks]

4. *N*-heterocyclic carbenes are very poor π -acceptors, and are less tunable both sterically and electronically than phosphines. Explain the reasons for these observations.

[8 marks]

5. Trimethylenemethane (below) is a planar diradical and very unstable in the free state. However, it is stable as a ligand for transition metals, and all four carbon atoms bind to the metal. Draw possible resonance forms for this ligand binding to a metal, and suggest how it might be distorted from planarity on binding. How many electrons does it donate to the metal? In an $M(CO)_3(\eta^4$ -trimethylenemethane) complex, what is the oxidation state of M?

[7 marks]

6. Cobaltocene, Cp_2Co , is stable at room temperature, but the rhodium analogue dimerizes to give the compound $Rh_2C_{20}H_{20}$. Draw two possible structures for the product; both should obey the 18 electron rule.

[7 marks]