Substitution in Square Planar Metal Complexes

Extensively studied for square planar Ni^{2+} , Pd^{2+} and Pt^{2+} (d⁸) substitutions in water and non-polar solvents:

$M(A)_2(T)(X) + Y \rightarrow M(A)_2(T)(Y) + X$

- rates depend on [M(A)₂(T)(X)] and [Y]
- ΔS^{\ddagger} and ΔV^{\ddagger} are generally large and negative
- sensitive to nature of **Y**

Ligand directing effects: some ligands (denoted T in the previous reaction) preferentially direct substitution to the site trans to themselves (*kinetic trans effect*).

The *trans* effect of a ligand may be due to:

- a) destabilization of the trans M-L bond in the ground state (also called the *trans influence*) *see:* middle of Fig. 7-2, next page (from Organometallic Chemistry by Spessard and Miessler)
 - strong σ-donors (H⁻, PR₃, I⁻, Me⁻ etc.) weaken the M-L bond *trans to themselves*
 - observable by IR (v_{M-L}), X-ray (longer M-L bond length) and NMR (reduced ¹J_{M-L} values)

Figure 7-2

Activation Energy and the *trans* Effect The depth of the energy curve for the intermediate and the relative heights of the two maxima will vary with the specific reactants. (Adapted from G.L. Miessler and D.A.Tarr, *Inorganic Chemistry*, Prentice-Hall, Englewood Cliffs, NJ, 1991, 397.)

b) stabilization of the transition state (true trans effect)

see: Fig 7-2, right on the page above

strong π-acceptors (eg. CO, C₂H₄, NO⁺ etc.) remove electron density in the equatorial plane of 5-coordinate tbp transition states thus decreasing electrostatic repulsion

Combining σ - and π -effects gives the observed *trans effect* order: CO, CN⁻, C₂H₄ > PR₃, H⁻ > Me⁻ > Ph⁻ > NO₂⁻, I⁻, SCN⁻ > Br⁻ > Cl⁻ > py, NH₃, OH⁻, H₂O *Egs. trans*-Pt(PEt₃)₂Cl(L) + py \rightarrow *trans*-Pt(PEt₃)₂(py)(L)⁺ + Cl⁻

L (trans)	$k (M^{-1}s^{-1})$
H^{-} , PEt ₃	4
Me	0.2
Ph⁻	0.01
Cl-	0.0001

Trans effect can dictate the product obtained as well:

Metal effects on square planar substitution:

- almost all examples of square planar geometry are d8 electron counts so electron counts are not a factor
- however, $\Delta CFSE$ going from SqP to TBP geometry is still unfavourable by $-0.242\Delta_{oct}$ so this adds to the barrier for square planar substitution and this is one of the main reasons why SqP substitution is slower for 2nd and 3rd row metals