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Abstract

A simple model of the thermohaline circulation of the World Ocean is con-

sidered, in which fluctuations in internal oceanic mixing and in freshwater

forcing are represented by stochastic processes. The effects on the station-

ary probability density function of correlations between fluctuations in mixing

and freshwater forcing, and of finite autocorrelation time in oceanic mixing,

are determined using a mixture of analytical and numerical techniques. The

quantitative behaviour of the system is found to depend on the strength and

correlation character of the noise processes, quite sensitively so in some regions

of parameter space. The results of this analysis suggest the importance of accu-

rately modelling high-frequency variability in nonlinear models of the climate

system.

1 Introduction

To a first approximation, the circulation of the World Ocean can be divided into

two components. The first, the wind-driven circulation, is the more familiar; it

is associated with the oceanic gyre circulations dominating the surface flow of the

World Ocean. As is suggested by its name, this circulation arises primarily through

mechanical interaction with the overlying atmospheric circulation. In contrast, the

thermohaline circulation (THC), characterising the circulation of the deep ocean,

is predominantly buoyancy-driven. Throughout the bulk of the World Ocean, the

vertical density gradient (stratification) is sufficiently strong that vertical motion is

strongly suppressed. However, in a few regions, such as the Greenland, Iceland, and

Norwegian seas in the Northern Hemisphere and the Ross and Weddell seas in the

Southern Hemisphere, the intense cooling of the surface waters can erode the strati-

fication to the point that large volumes of water can sink to the deep ocean. These

convection events feed a system of slow, deep currents that constitute the circulation

of the bulk of the World Ocean. Weak upwards flow distributed throughout the rest

of the ocean returns this deep water to the surface, where currents in the thermocline

layer flowing toward the convection sites complete the circuit. The present picture of
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the THC holds that convection in the North Atlantic is the primary engine driving

this circulation. Overviews of the global thermohaline circulation are provided in

Weaver and Hughes [40] and in Schmitz [31]; Broecker [7] presents an introduction

for non-specialists to the THC and its variability.

The thermohaline circulation is believed to play a central role in climate variability

on timescales from decades to millennia, through both its internal dynamics and its

response to external forcing (see e.g. [28] and [39]). In the Atlantic Ocean, as it

operates today, the THC has the net effect of transporting a tremendous quantity of

heat northward, with what are believed to be significant consequences for the climate

of Northwest Europe [29]. However, the present configuration of the THC may not be

the only one it can take. Investigations involving simple heuristic models (e.g. [27],

[32], [35]), models of intermediate complexity (e.g. [10], [30]), and complex general

circulation models (GCM; e.g. [14], [20], [26], [37]) indicate that the THC may display

multiple, and very different, regimes of circulation, transitions between which are very

rapid relative to the length of time spent within a regime. Furthermore, evidence of

rapid shifts in the climate state abounds in the geological record, with timescales

from those of glaciation cycles to higher frequency, millennial scale fluctuations (e.g.

[2], [6], [9], [33]); it is widely believed that rearrangements of the THC play a central

role in this variability.

Simple box models have demonstrated a remarkably good ability to reproduce the

multiple regimes of the thermohaline circulation found in full GCMs. They are an

attractive conceptual tool because of both their low computational cost and the small

number of parameters that govern their dynamics. Considerable attention has been

paid to both purely deterministic models (e.g. [19], [27], [32], [35]) and to models with

a stochastic component (e.g. [8], [12], [18], [34], [36]). With deterministic models,

the natural framework of analysis is dynamical systems theory, and discussion has

centred on the nature and stability of attractors admitted by the model, and on the

nature and location of bifurcations. Analysis of the stochastic class of models involves

introducing the theory of stochastic differential equations (e.g. [11]). Attention in

these models has primarily been focused on the nature of the spectrum and on gross
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features of the stationary distribution.

A study combining perspectives from both stochastic analysis and dynamical sys-

tems theory was that of Timmermann and Lohmann [36], in which changes in the

qualitative behaviour of the stationary distribution with changes in bifurcation pa-

rameters were mapped out. Monahan [21] (hereafter M02) extended the analysis of

Timmermann and Lohmann using a somewhat more general model, and noted that for

physically relevant noise levels, the stationary distribution was concentrated around

one of the two regimes for most of the parameter range in which the distribution

was technically bimodal. That is, although the model admits two THC regimes, the

presence of noise renders one regime much more frequently occupied than the other.

This phenomenon was denoted stabilisation by noise. It was shown in M02 that the

partitioning of probability mass between the regimes is a complicated and potentially

sensitive function of the noise levels.

In M02, fluctuations in internal oceanic mixing and in freshwater flux were pa-

rameterised as independent white-noise processes. In the present study, we extend

the results of the earlier analysis by considering the effects of correlations between

freshwater flux and internal mixing, and of finite autocorrelation time in mixing fluc-

tuations. Section 2 describes the simple model of the THC considered in this study

and recapitulates the basic results of M02. In Section 3, the effects of correlations

between the fluctuating parameters are considered. Section 4 addresses the effects

of nonzero autocorrelation times in the internal mixing process. A summary and

conclusions are presented in Section 5.

2 The Stochastic Stommel Model

The model considered in M02 is a generalisation of the classical Stommel [35] two-

box model of the THC, illustrated schematically in Figure 1. Two ocean boxes are

considered, representing respectively mid- and high-latitude oceans. The boxes are

characterised by average temperatures T1 and T2, and salinities S1 and S2. Heat

exchanges with the atmosphere relax the box-averaged temperatures to the climato-
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logical values Ta1 and Ta2, while the salinities are driven by freshwater fluxes F oa
1 and

F oa
2 . Density gradients between the boxes are assumed to establish large-scale cur-

rents which lead to an interbox exchange of salinity and temperature ; the Stommel

ansatz is that the exchange is proportional to the absolute density gradient

q ∝ |α(T1 − T2)− β(S1 − S2)|, (1)

where α and β are respectively the thermal and haline expansivity coefficients. The

model studied in M02 further assumes the existence of a fluctuating interbox eddy

exchange, denoted η. While this mixing process appears ad hoc, such a fluctuating

eddy exchange term arises naturally from fluctuations in mechanical forcing in the

more sophisticated model of the ocean circulation introduced by Maas [19].

Because the bulk exchange between the boxes depends only on the density gradi-

ent, the dynamics of the Stommel model depend only on the meridional (i.e. north-

south) gradients of temperature and salinity. In nondimensionalised variables (defined

in M02), the stochastic Stommel model is expressed:

ẋ = −|x− y|x− ηx+ λ(1− x) (2)

ẏ = −|x− y|y − ηy + µ+ σ2Ẇ2 (3)

η̇ = −1

τ
η +

σ1

τ
Ẇ1. (4)

Here, x and y denote the nondimensionalised meridional temperature and salinity

gradients, respectively; λ−1 is the nondimensional timescale on which the temperature

gradient relaxes to the climatological value (which is 1 in these units); and µ is the

meridional gradient of surface freshwater flux, which in principle can depend on the

temperature gradient x. Fluctuations in the freshwater flux µ are parameterised as a

white noise process, Ẇ2, scaled by the noise strength σ2. The fluctuating diffusivity

η is modelled as an Ornstein-Uhlenbeck (red noise) process with autocorrelation e-

folding time τ and variance σ2
1/(2τ). In the limit that τ → 0, η becomes white noise

with strength σ1.

The deterministic version of equations (2)-(4) was introduced by Stommel [35],

and inspired considerable interest because it admits multiple stable fixed points for

4



a range of values of λ and µ. One of these resembles the present-day THC, in which

water sinks at the poles and rises at lower latitudes, while in the other state the circu-

lation is weaker and reversed. The existence of multiple THC regimes has since been

demonstrated in a hierarchy of climate models, including full ocean/atmosphere/ice

GCMs (e.g. [14], [20], [26], [27], [30], [37]). While the Stommel model is far too simple

to provide a quantitatively accurate description of THC dynamics, it is sufficiently

simple to admit analytic solutions while capturing what paleoclimate data and more

sophisticated models suggest is an essential nonlinear feature of the THC (e.g. [9],

[33], [40]).

Equations (2)-(4) are a stochastic differential equation (SDE) for the three-dimensional

Markov process (x, y, η); the evolution of the joint probability density function (PDF)

of (x, y, η) is given by a Fokker-Planck equation (FPE). A review of the theory of SDEs

is given in Penland [25]; a more comprehensive discussion appears in Gardiner [11].

M02 considered the system (2)-(4) in the limits that τ → 0 and λ → ∞. The

second of these limits implies that x = 1; physically, this corresponds to a situation in

which the timescale of the temperature dynamics is substantially shorter than that of

the salinity dynamics, so it can be assumed that the temperature gradient x adjusts

instantaneously to the climatological value. This idealisation, also considered in Cessi

[8], renders the stationary Fokker-Planck equation of the resulting system analytically

tractable.

We review briefly the main results of M02. The SDE that arises in the limits that

τ → 0 and λ→∞ is

ẏ = −|1− y|y − σ1y ◦ Ẇ1 + σ2Ẇ2, (5)

where the open circle denotes that the white noise Ẇ1 is to be interpreted in the

Stratonovich sense. This is the appropriate interpretation for the white-noise limit of

the autocorrelated process η [11]. The associated stationary Fokker-Planck equation

for the stationary PDF, ps, is

0 = − d

dy

([
−|1− y|y + µ+

σ2
1

2
y

]
ps
)

+
1

2

d2

dy2
([σ2

1y
2 + σ2

2]ps). (6)
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This FPE can be integrated to obtain a closed-form expression for ps: for y < 1,

ps(y) = N exp

[−2

σ2
1

{
−y + 1 +

(
σ2

σ1

− µσ1

σ2

)(
tan−1

(
σ1

σ2

y

)
− tan−1

(
σ1

σ2

))

+
σ2

1 + 2

4
ln

(
σ2

1y
2 + σ2

2

σ2
1 + σ2

2

)}]
, (7)

and for y > 1,

ps(y) = N exp

[−2

σ2
1

{
y − 1−

(
σ2

σ1

+ µ
σ1

σ2

)(
tan−1

(
σ1

σ2

y

)
− tan−1

(
σ1

σ2

))

+
σ2

1 − 2

4
ln

(
σ2

1y
2 + σ2

2

σ2
1 + σ2

2

)}]
, (8)

where N is a normalisation constant. The stationary PDF has three extrema for

−2 + 4
√
µ < σ2

1 < 2µ < 2, (9)

two maxima at

y− =
1

2
+
σ2

1

4
−
√(

1

2
+
σ2

1

4

)2

− µ (10)

y+ =
1

2
− σ2

1

4
+

√(
1

2
− σ2

1

4

)2

+ µ, (11)

(12)

and a local minimum at

yo =
1

2
+
σ2

1

4
+

√(
1

2
+
σ2

1

4

)2

− µ. (13)

The peak around y−, corresponding to a relatively weak meridional salinity gradient

and strong overturning circulation, most closely corresponds to the present state of

the THC. Note that the strength of the fluctuations in freshwater flux, σ2, plays no

role in determining the number or location of peaks in the system; this is because the

white noise process Ẇ2 enters (5) additively. We will be primarily concerned with the

range of parameter values within which ps is bimodal; the populations corresponding

to each of the peaks of the distribution will be referred to as regimes.

Based on an analysis of the average rate of transitions between regimes, it was

argued in M02 that the physically-relevant range of noise strengths is σ1 < 0.2,
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σ2 < 0.2. It was further noted that for these noise levels, for most of the range of

µ in which ps is bimodal, most of the probability mass of ps is concentrated in one

of the two regimes. This is illustrated in Figure 2. Contoured in Figure 2(a) is ps

as a function of µ for σ1 = σ2 = 0.1. The thick black lines denote the range of µ

within which ps is bimodal. For lower values of µ, the density is concentrated in

the regime around y−; there is a small window of µ within which the two regimes

have comparable populations; and for higher values of µ, ps is concentrated around

y+. Thus, for for a broad range of values of µ, while ps is technically bimodal, it is

effectively unimodal. In M02, this effect was denoted stabilisation by noise. Regime

stabilisation is also apparent in Figure 2(b), which contours ps as a function of σ2

for µ = 0.205, σ1 = 0.1. For low values of σ1, the regime around y− dominates. The

regime around y+ dominates as σ2 is increased, although the regime around y− begins

to be repopulated for larger σ2.

The partitioning of probability mass between the two regimes is a complicated

function of the parameters (µ, σ1, σ2). It can be characterised by the surface µ0.5(σ1, σ2),

defined as the value of µ for given (σ1, σ2) at which the probability mass is equal on

either side of yo:

∫ yo

−∞
dy ps(y;σ1, σ2, µ0.5) =

∫ ∞

yo

dy ps(y;σ1, σ2, µ0.5). (14)

This surface is contoured in Figure 3. For µ < µ0.5, the regime around y− is more

populated than that around y+; the converse is true for µ > µ0.5.

The asymptotic behaviour of a deterministic system with multiple attractors is

determined by the basin of attraction in which the initial conditions lie. With the

addition of stochastic fluctuations, the long-time behaviour is characterised by the

stationary distribution, irrespective of the initial conditions. In the present example,

stabilisation by noise preferentially populates one regime in ps, leading to very differ-

ent long-time behaviour than that characterising the deterministic system. However,

this is only physically relevant if the characteristic escape time of the regime within

which the system starts is substantially smaller than the relevant timescales of the

physical phenomenon under consideration. If the escape time from the regime in
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which the system started is longer than, for example, the lifetime of the Earth, then

for all intents and purposes the system will remain in this regime, and the stationary

PDF is not relevant for the discussion of the system. The regime escape times for the

system (5) can be calculated; it was shown in M02 that for a broad range of noise

parameters the escape times are smaller than relevant timescales of THC dynamics,

so stabilisation of regimes is relevant.

Rahmstorf [27] demonstrated the existence of multiple THC regimes in a full

oceanic GCM, and showed furthermore that the hysteresis loop obtained by varying

the freshwater forcing parameter (equivalent to µ in the present study) above and be-

low the region in which there exist multiple regimes could be fit to the hysteresis curve

obtained from a simple Stommel-like model. By construction, noise was suppressed

in this OGCM experiment; transitions between regimes were interpreted as occurring

at deterministic bifurcation points. However, the ocean-atmosphere system contains

substantial high-frequency variability, and we have seen that the presence of noise

in a simple Stommel model can stabilise one regime relative to the other. Figures 2

and 3 illustrate that the stabilisation of a regime generally occurs some distance from

the deterministic bifurcation points. Consequently, we would expect that fluctuations

can induce transitions between regimes before the deterministic bifurcation points are

reached. This is demonstrated in Figure 4, which compares the deterministic and the

stochastic hysteresis curves obtained at two different sets of noise levels (see Figure

caption). As anticipated, the hysteresis loops in the presence of fluctuations are sub-

stantially narrowed relative to the deterministic loop. Transitions between regimes

occur not at the deterministic bifurcation points, but at random points within the

region in which the regime to which the transition occurs has been stabilised. A rig-

orous analysis of the effects of noise on the hysteresis structure of nonlinear systems

is given by Berglund and Gentz ([4], [5])

In the following two sections, we will consider the effects on the stationary dis-

tribution ps of relaxing some of the assumptions used to obtain equation (5). First,

we will investigate the effects of allowing the fluctuations in internal mixing and in

freshwater forcing to be correlated. Secondly, the effects of a nonzero autocorrelation
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time τ in the mixing process η will be addressed.

3 Correlated Mixing and Freshwater Flux Fluctu-

ations

In the previous section, the fluctuations in internal mixing and freshwater forcing

were represented as independent white noise processes. To a certain extent, however,

the high-frequency variability parameterised by these processes shares a common

source: internal atmospheric dynamics. The processes parameterised by the fluctuat-

ing mixing σ1Ẇ1 include those associated with the wind-driven circulation, and the

fluctuations in freshwater forcing σ2Ẇ2 represent, among other processes, variations

in atmospheric moisture transport associated with mid-latitude storminess. Other

processes drive fluctuations in internal eddy activity (e.g. instability of oceanic jets)

and freshwater fluxes (e.g. ice melting/freezing), so these fluctuations are not entirely

mutually dependent. We proceed to investigate the extent to which mutual depen-

dence between the mixing and freshwater forcing fluctuations changes the results

described in the previous section.

The simplest model of dependence between Ẇ1 and Ẇ2 is linear dependence, i.e.,

W2 = γW1 + (1− γ2)1/2W3, (15)

where W3 is a Wiener process independent of W1 and γ ∈ [−1, 1]. The SDE for y can

then be written:

ẏ = −|1− y|y + µ+ (−σ1y + γσ2) ◦ Ẇ1 + (1− γ2)1/2σ2Ẇ3. (16)

The associated Fokker-Planck equation for the stationary density ps is:

0 = −
(
−|1− y|y + µ+

1

2
σ2

1y −
1

2
γσ1σ2

)
ps+

1

2

d

dy

(
[σ2

1y
2 − 2γσ1σ2y + σ2

2]ps
)
, (17)

which can be expressed

dps

ps
= 2

(−|1− y|y + µ− 1
2
σ2

1y + 1
2
γσ1σ2

σ2
1y

2 − 2γσ1σ2y + σ2
2

)
dy. (18)
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The right-hand side of (18) can be integrated to obtain a closed-form expression for

the stationary distribution ps: for y < 1:

ps(y) = N exp

[
− 2

σ2
1

{
1− y +

(
−γσ2

σ1

+
2 + σ2

1

4

)
ln

(
σ2

1y
2 − 2γσ1σ2y + σ2

2

σ2
1 − 2γσ1σ2 + σ2

2

)

+
1√

1− γ2

(
σ2

σ1

(1− 2γ2) + γ − σ1

σ2

µ

)
(19)

×
(

tan−1

(
σ1y − σ2γ

σ2

√
1− γ2

)
− tan−1

(
σ1 − σ2γ

σ2

√
1− γ2

))}]
,

and for y > 1:

ps(y) = N exp

[
− 2

σ2
1

{
y − 1 +

(
γ
σ2

σ1

+
σ2

1 − 2

4

)
ln

(
σ2

1y
2 − 2γσ1σ2y + σ2

2

σ2
1 − 2γσ1σ2 + σ2

2

)

− 1√
1− γ2

(
σ2

σ1

(1− 2γ2) + γ +
σ1

σ2

µ

)
(20)

×
(

tan−1

(
σ1y − σ2γ

σ2

√
1− γ2

)
− tan−1

(
σ1 − σ2γ

σ2

√
1− γ2

))}]
,

where N is a normalisation constant. Clearly, in the limit that γ → 0, (19) and

(20) reduce to (7) and (8). It is also clear that the correlation between fluctuations

in freshwater forcing and mixing has a non-trivial effect on the the structure of the

stationary PDF.

Extrema of ps occur when the numerator of the RHS of equation (18) vanishes.

The PDF is bimodal when the following inequalities obtain:

σ2
1 − γσ1σ2 < 2µ < 2

(
1

2
+
σ2

1

4

)2

− γσ1σ2 (21)

σ2
1 < 2 (22)

−µ <

(
1

2
− σ2

1

4

)2

+
1

2
γσ1σ2. (23)

In this range of parameter values, ps has maxima at :

y− =
1

2
+
σ2

1

4
−
√(

1

2
+
σ2

1

4

)
− µ− 1

2
γσ1σ2 (24)

y+ =
1

2
− σ2

1

4
+

√(
1

2
− σ2

1

4

)
+ µ+

1

2
γσ1σ2, (25)
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and a local minimum at

yo =
1

2
+
σ2

1

4
+

√(
1

2
+
σ2

1

4

)
− µ− 1

2
γσ1σ2. (26)

When γ = 0, the strength of fluctuations in freshwater forcing, σ2, has no effect on the

number or location of extrema in ps. The coupling of mixing and freshwater forcing

fluctuations, however, induces a dependence on both γ and σ2 of the parameter range

in which there is bimodality, through the combination γσ2. Figure 5 displays the

phase diagram of the system as a function of µ, σ1, and γσ2. Within the shaded area,

ps is bimodal, while outside it is unimodal. The solid black line outlines the region of

multiple equilibria in the limit of uncorrelated fluctuations, γ = 0. The coupling of

mixing and freshwater forcing fluctuations greatly increases the range of values of µ

for which there exists some set of parameter values (γ, σ1, σ2) such that ps is bimodal.

Regime stabilisation still occurs for γ 6= 0; indeed, allowing γ to be nonzero

introduces another parameter which affects the partition of the probability mass of

ps between the regimes around y− and y+. Figure 6(a) contours ps as a function

of γ for (µ, σ1, σ2) = (0.17, 0.05, 0.1). As γ increases, the probability mass shifts

from the regime around y− to that around y+. However, increasing γ can also shift

probability mass from the y+ regime to that around y−, as is illustrated in Figure

6(b) for (µ, σ1, σ2) = (0.2, 0.1, 0.05).

A comprehensive picture of the partitioning of probability mass between the two

regimes can be obtained by considering the surface µ0.5(σ1, σ2, γ), defined as in equa-

tion (14). Figure 7 contours µ0.5 as a function of σ1 and σ2 for different values of

γ; clearly, γ has a nontrivial quantitative effect on µ0.5. Generally speaking, as γ is

decreased (increased) from zero, µ0.5 becomes a less (more) sensitive function of σ1

and σ2, and the range of values taken by µ0.5 decreases (increases). Indeed, increasing

γ above zero introduces ranges of σ1, σ2 in which µ0.5 is lower than any value obtained

for γ = 0.

It was demonstrated in M02 that the partitioning of probability mass between

THC regimes is a complicated function of the noise strengths σ1, σ2. The preceding

analysis demonstrates that regime populations can also depend sensitively on the
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strength of the correlation γ between the fluctuations in mixing and freshwater forcing.

The next section considers the effects on ps of a finite autocorrelation timescale in

the mixing fluctuations.

4 Red Noise Mixing

Generally speaking, the timescales of internal ocean eddy variability are greater than

those of atmospheric eddy variability. In the analyses presented above, the noise

processes associated with internal oceanic eddy mixing and freshwater flux have both

been represented as white-noise processes. As was anticipated in equations (2)-(4),

eddy mixing may be more appropriately represented as a process with a nonzero

autocorrelation time. In this section, we will consider the effects of red-noise internal

mixing on the structure of the stationary PDF of y.

We consider the system (2)-(3) in the limits that λ→∞ and that W1 and W2 are

independent. We then obtain the SDE in the variables (y, η):

ẏ = −|1− y|y − ηy + µ+ σ2Ẇ2 (27)

η̇ = −1

τ
η +

σ1

τ
Ẇ1. (28)

Denoting by qs(y, η) the stationary joint PDF of y and η, the associated stationary

FPE is

0 = ∂y[(|1− y|y + ηy − µ)qs] + ∂η

[
1

τ
ηqs
]

+
1

2
σ2

2∂yyq
s +

1

2

σ2
1

τ 2
∂ηηq

s. (29)

The stationary distribution of y, ps(y), is the marginal distribution:

ps(y) =

∫ ∞

−∞
dη qs(y, η) (30)

For τ 6= 0, the stationary FPE (29) is a partial differential equation in two vari-

ables which does not admit an analytic solution. This system, with σ2 = 0, was

considered in Timmermann and Lohmann [36] and Monahan et al. [22]. The first of

these studies employed an approximation scheme known as the Unified Colored Noise

Approximation (UCNA, [17]) to obtain the stationary distribution of y. However,

12



as was noted in Monahan at al. [22], the UCNA is only valid for τ much less than

the timescale of the deterministic dynamics of y; in particular, it breaks down for

τ ' O(1) and greater. These are values of τ which are in principle of interest, and

thus other approaches must be found to estimate ps(y). Unfortunately, as is discussed

in Hänggi and Jung [13], analytic methods for the study of the stationary distribution

of a system subject to red-noise fluctuations do not exist for general τ , and so we must

take recourse to numerical schemes. Before presenting the results of the numerical

analysis, we will consider the dynamics of the deterministic component of the system

(27)-(28), and investigate the structure of the PDFs obtained by linearising these

equations around the deterministic fixed points.

4.1 Red Noise Heuristics

As is described in Hänngi and Jung [13], some intuition into the system (27)-(28) can

be obtained by considering the vector field associated with the deterministic drift:

f = (fy, fη)

=

(
−|1− y|y − ηy + µ,−1

τ
η

)
. (31)

For µ ∈ (0, .25), the vector field has two stable fixed points: (y, η) = (y−, 0) and

(y+, 0), and one unstable fixed point: (y, η) = (yo, 0), where

y− =
1

2
−
√

1

4
− µ (32)

y+ =
1

2
+

√
1

4
+ µ (33)

yo =
1

2
+

√
1

4
− µ. (34)

(35)

The fixed points yo and y+ meet at a bifurcation point at µ = 0; below this value of

µ, only the stable fixed point y− survives. Similarly, yo and y− meet in a saddle-node

bifurcation at µ = 0.25; above this value, only the stable fixed point y+ survives.

The bifurcation diagram is illustrated in Figure 8. Figure 9 displays a plot of f for
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µ = 0.19, τ = 1. The direction of f is indicated by arrows, and its magnitude is

contoured. The solid dots indicate the fixed points. The thick line is the stable

manifold of the unstable fixed point (yo, 0), which is also the separatrix of the basins

of attraction of the stable fixed points; this curve satisfies the differential equation:

dη

dy
=

1

τ

η

|1− y|y + ηy − µ , η(yo) = 0 (36)

Figure 10 displays the vector field f for µ = 0.19 and τ = 0.05, 0.5, 5, 50. For τ << 1,

|fη| >> |fy| except in a boundary layer around the line η = 0. For τ ∼ O(1), the

components fη and fy are of comparable magnitude over large regions of the state

space. For τ >> 1, |fy| >> |fη| except in a boundary layer around the line fy = 0,

that is, near η = µ/y − |1− y|.
The full SDE (27)-(28) can be interpreted as a diffusion in this vector field. The

vector field f drives the system toward the fixed points (via boundary layers for

τ << 1 and τ >> 1), while the stochastic fluctuations drive it away; the stationary

distribution arises as the equilibrium between these tendencies. Transitions between

regimes occur when a trajectory crosses the separatrix. Note that while τ has no

effect on the number or location of the fixed points, it has a substantial effect on the

structure of f .

4.2 Small Noise Approximation

For small values of the noise strengths σ1 and σ2, most of the mass of the stationary

joint PDF qs(y, η) will be concentrated around the deterministic fixed points. In this

limit, a local description of the dynamics of the nonlinear SDE (28)-(27) around each

of these fixed points is provided by the corresponding linearised system.

We consider first the linearised dynamics around the fixed point (y+, 0). Defining

ŷ = y − y+, η̂ = η − 0, the linearised system is:

d

dt


 ŷ

η̂


 =


 1− 2y+ −y+

0 − 1
τ




 ŷ

η̂


+


 σ2 0

0 σ1

τ




 Ẇ1

Ẇ2


 (37)

We denote the matrices associated with the linearised drift and diffusion by A and

B respectively. The stationary covariance of the linearised SDE, Co, satisfies the
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Lyapunov equation [11]:

ACo + CoA
T +BBT = 0. (38)

This equation can be solved using the eigenvalue decomposition of A:

A = uΛvT (39)

where

u =
1

1− 2y+ + 1
τ


 1 y+

0 1− 2y+ + 1
τ


 (40)

Λ =


 1− 2y+ 0

0 − 1
τ


 (41)

v =


 1− 2y+ + 1

τ
0

−y+ 1


 , (42)

and

uvT = uTv = I. (43)

The Lyapunov equation (38) can be expressed:

Dij = −(vTBBTv)ij
λi + λj

(44)

where

D = vTCov, (45)

and λ1 = 1 − 2y+, λ2 = −1/τ are the eigenvalues of A. The stationary covariance

matrix Co follows from the relation

Co = uDuT . (46)

After some algebra, we obtain

Co =




1
2(2y+−1)

(
σ2

2 +
y2
+σ

2
1

1+τ(2y+−1)

)
−1

2

σ2
1y+

1+τ(2y+−1)

−1
2

σ2
1y+

1+τ(2y+−1)

σ2
2

2τ


 (47)

For perturbations sufficiently small that the linearised system is a good approximation

to the full system, the stationary PDF of y around y+ can be approximated as a
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Gaussian with mean y+ and variance

var(y) =
1

2(2y+ − 1)

(
σ2

2 +
y2

+σ
2
1

1 + τ(2y+ − 1)

)
(48)

A similar calculation for the system linearised around the fixed point (y−, 0) yields

the covariance matrix:

Co =




1
2(1−2y−)

(
σ2

2 +
σ2

1y
2
−

1+τ(1−2y−)

)
−1

2

σ2
1y−

1+τ(1−2y−)

−1
2

σ2
1y−

1+τ(1−2y−)

σ2
2

2τ


 (49)

Thus, for noise levels sufficiently small that the mass of the stationary PDF is

concentrated around the deterministic fixed points, the width of the PDFs around

the fixed points decreases monotonically as τ is increased.

While the linearisations can approximate the shapes of the peaks of the stationary

PDF around the fixed points, they cannot estimate the relative amplitudes of these

peaks. The evolution of the fraction of the total probability mass around y−, denoted

N−, can be obtained from the FPE (29) by integrating over the region y < yo:

d

dt
N− =

∫ yo

−∞
dy

∫ ∞

−∞
dη ∇ · J, (50)

where the FPE has been expressed in terms of the divergence of the probability

density current J (see Appendix). Using the divergence theorem, equation (50) can

be expressed as a surface integral over the line y = yo:

d

dt
N− =

∫ ∞

−∞
dη Jy(yo, η) (51)

The stationary distribution is such that the total probability flux across this line

vanishes. Thus, the partitioning of probability mass between the two regimes depends

on the structure of qs in the neighbourhood of the line y = yo; in this region, the PDFs

obtained from the linearised systems cannot be expected to be accurate. To estimate

the global structure of the stationary distribution, we turn in the next subsection to

numerical techniques. Of course, if the escape time of the system from the regime in

which it started is substantially greater than any relevant THC timescale, then for

all intents and purposes the system will remain in this regime and the PDF of the

linearised system will be a good approximation.
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4.3 Numerical Estimates of ps(y)

Approximate solutions qs to the Fokker-Planck equation (29) are obtained using a

finite-difference scheme described in the Appendix. Estimates of the stationary PDF

can also be obtained through long numerical integrations of the original SDE (27)-

(28), as in Monahan et al. [22]. This approach is not practical, however, for lower noise

levels as the characteristic escape times of the regimes become very large, and very

long integrations need to be carried out to obtain good estimates of the stationary

distribution. For the noise levels of interest in the present study, it is much more

efficient to estimate qs directly from the Fokker-Planck equation.

Figure 11(a) contours ps as a function of µ for σ1 = σ2 = 0.1, τ = 1. Comparing

this Figure with Figure 2, it is seen that there is a slight quantitative change, but

no qualitative change, in regime stabilisation. The value of τ can have an effect on

the stabilisation of regimes, as is illustrated in Figure 11(b), which contours ps as a

function of τ for µ = 0.175 and σ1 = σ2 = 0.075. A more comprehensive picture of

the effect of τ on the partitioning of the probability mass between THC regimes is

presented in Figure 12, which contours the surface µ0.5 as a function of σ1 and σ2 for

τ = 0.1, 0.5, 1, 5. Inspection of this Figure indicates that, in general, as τ increases,

µ0.5 decreases and becomes a less sensitive function of σ1.

Figure 13(a) plots the numerical estimate of ps for µ = 0.235 and σ1 = σ2 = 0.1,

along with the approximation from the linearised system calculated in the previous

subsection. The numerical estimate and the linearised approximation are essentially

indistinguishable. Plotted in Figure 13(b) are the numerical estimate and linearised

approximation of ps for µ = 0.19 and σ1 = σ2 = 0.1. For the linearised approximation,

the relative amplitudes of the two peaks was estimated from the numerical estimate

of ps. While the linearised approximations cannot estimate the partitioning of proba-

bility mass between the two regimes, they provide a reasonable approximation of the

shape of the distribution within each regime.

Figure 5 demonstrates that the presence of multiplicative white noise can produce

peaks of the stationary PDF that do not correspond to stable fixed points of the
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deterministic system. The same is true of red noise, as is illustrated in Figure 14.

This Figure plots ps for τ = 1, µ = 0.255, σ2 = 0.15, and σ1 = 0.1, 0.2, and 0.3. At

this value of µ, the deterministic vector field has only the single fixed point (y+, 0).

For σ1 = 0.1, ps is unimodal, with probability mass concentrated around y+. As σ1

increases, a distinct shoulder develops in ps at low values of y. For σ1 = 0.3, a second

peak has appeared which does not correspond to a fixed point of the deterministic

system.

A heuristic explanation of the origin of this second peak in ps follows from inspec-

tion of the vector field f ; this is plotted in Figure 15. The magnitude of f has two

minima: one at the fixed point (y+, 0), and a second near (y, η) = (0.5, 0). Near the

second minimum, the deterministic trajectories slow down without stopping. While

trajectories starting from all initial conditions in the (y, η) state space are ultimately

driven toward the fixed point (y+, 0), there are regions of the state space in which

the paths to the fixed point proceed via the region around (0.5, 0) in which the speed

has a local minimum. In the presence of fluctuations, the system will occasionally

be driven into the parts of state space that are attracted to the fixed point via this

region of reduced speed. Passing through this region, probability mass is accumu-

lated as the trajectories slow down. For low noise levels, trajectories rarely escape

from the region around the fixed point, and the probability mass around the region

of reduced speed is small. As the noise level is increased, trajectories pass through

the low speed region more frequently and the probability mass in this area increases.

Figure 16 displays a sample trajectory of 50 time units duration in the (y, η) state

space. The transition from the regime around y+ occurs when the trajectory moves

into a region of the state space in which f directs it toward the reduced-speed region.

The trajectory moves around in this region for some time before gradually moving

back toward the fixed point.

In the presence of red noise, then, the phenomenon of stabilisation is qualitatively

unchanged. Quantitatively, increasing τ tends to shift the mass of the stationary

distribution ps to higher values of y, or, equivalently, to reduce µ0.5. Furthermore,

as is the case for multiplicative white noise, the red noise fluctuations can induce
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peaks in the stationary distribution that do not correspond to fixed points of the

associated deterministic system. This can also occur in a deterministic system with

many degrees of freedom (e.g. [23]).

5 Summary and Conclusions

In M02, the phenomenon of regime stabilisation by noise in a simple model of the

THC was noted, and it was demonstrated that stabilisation can have a marked ef-

fect on diagnoses of the stability of the present climate. By relaxing some of the

assumptions used to obtain the model considered in M02, the present study extends

this earlier work. The effects on the partition of probability mass between THC

regimes of nonzero correlations between fluctuations in internal oceanic eddy mixing

and freshwater fluxes from the atmosphere, and of eddy mixing with a nonzero auto-

correlation time, were considered using analytical and numerical approaches. It was

demonstrated that while regime stabilisation was qualitatively unchanged, there were

potentially substantial quantitative changes in the partitioning of probability mass

between THC regimes.

The possibility that the THC can display rapid shifts between very different

regimes of circulation is of interest in the study of both past and future climates,

and in particular response of the climate system to anthropogenic forcing (e.g. [15],

[16]). The structure of multiple regimes of thermohaline circulation has been in-

vestigated using models throughout the hierarchy of climate models, from simple

conceptual models such as the one in this study (e.g., [8], [27], [32], [35]), through

models of intermediate complexity (e.g., [10], [30]), to full GCMs (e.g., [14], [20], [26],

[27], [37]). In general, the models of intermediate complexity and GCMs used in the

study of THC regimes are purely deterministic; the effects of variability not explicitly

resolved by the model are ignored or represented by deterministic functions of the

resolved variables. A generic feature of such models is the systematic underestimation

of internal variability in the system [3]. Some studies have considered the effects on

THC variability of high-frequency fluctuations parameterised as stochastic processes
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(e.g. [1], [24], [38], [41]), but did not undertake extensive studies of the dependence of

this variability on noise parameters. The study of M02 demonstrated that the regime

dynamics of the system can depend sensitively on the strength of fluctuations in the

system; the present study demonstrates a further sensitivity to correlations within

and between fluctuations. These results point to the potential importance of the ac-

curate representation of the details of internal variability in sophisticated models of

the climate system.
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Appendix: Numerical Scheme

This appendix describes the numerical scheme used to solve the stationary Fokker-

Planck Equation (29). The y and η coordinates were discretised on uniform meshes:

ηi = ηmin + (i− 1)δη i = 1, ...,M (52)

yj = ymin + (j − 1)δy j = 1, ..., N. (53)

The FPE for the joint PDF qs can be written as the divergence in (η, y) space of a

probability current J = (F,G):

0 = ∂ηF + ∂yG, (54)

where

F =
1

τ
ηqs +

1

2

σ2
1

τ 2
∂ηq

s (55)

G = (|1− y|y + ηy − µ)qs +
1

2
σ2

2∂yq
s. (56)

The discrete FPE is

0 =
Fi+ 1

2
,j − Fi− 1

2
,j

δη
+
Gi,j+ 1

2
−Gi,j− 1

2

δy
, (57)
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where

Fi,j =
1

τ

ηi+ 1
2
qs
i+ 1

2
,j

+ ηi− 1
2
qs
i− 1

2
,j

2
+

1

2

σ2
1

τ 2

qs
i+ 1

2
,j
− qs

i− 1
2
,j

δη
(58)

Gi,j =
([|1− yj+ 1

2
|+ ηi]yj+ 1

2
− µ)qs

i,j+ 1
2

− ([|1− yj− 1
2
|+ ηi]yj− 1

2
− µ)qs

i,j− 1
2

2

+
1

2
σ2

2

qs
i,j+ 1

2

− qs
i,j− 1

2

δy
. (59)

The discretised FPE can then be written:

0 = ai,jq
s
i+1,j + bi,jq

s
i,j+1 + ci,jq

s
i,j + di,jq

s
i−1,j + ei,jq

s
i,j−1, (60)

where

ai,j =
1

2δ2
η

(
1

τ
ηi+1δη +

σ2
1

τ 2

)
(61)

bi,j =
1

2δ2
y

(
(|1− yj+1|yj+1 + ηiyj+1 − µ)δy + σ2

2

)
(62)

ci,j = − 1

δ2
η

σ2
1

τ 2
− 1

δ2
y

σ2
2 (63)

di,j =
1

2δ2
η

(
−1

τ
ηi−1δη +

σ2
1

τ 2

)
(64)

ei,j =
1

2δ2
y

(
−(|1− yj−1|yj−1 + ηiyj−1 − µ)δy + σ2

2

)
. (65)

We impose the boundary conditions that the normal component of the probability

flux vanishes at η = ηmin, ηmin +Mδη; y = ymin, ymin +Nδy. That is,

F 3
2
,j = FM− 1

2
,j = 0 (66)

Gi, 3
2

= Gi,N− 1
2

= 0. (67)

We must also apply the normalisation constraint

M∑

i=1

N∑

j=1

qsi,jδηδy = 1. (68)

Together, equations (60),(66)-(67), and (68) define a linear system that can be in-

verted to solve for qsi,j.

For a given discretisation, this numerical approach can be expected to be most

accurate for τ ∼ O(1). As is illustrated in Figure 10, for both τ << 1 and τ >> 1,

an important part of the deterministic component of the dynamics is concentrated in

narrow boundary layers, the resolution of which requires a fine local mesh.
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Figure Captions

Figure 1: Schematic diagram of the Stommel two-box model.

Figure 2: Contour plot of ps as a function of (a) µ for σ1 = σ2 = 0.1 (contours:

1,2,...,6) and (b) σ2 for µ = 0.205 and σ1 = 0.1 (contours: 0.5,1,1.5,...,10.5)

Figure 3: Contour plot of µ0.5 as a function of σ1 and σ2.

Figure 4: Deterministic (thick lines) and stochastic (thin lines) hysteresis loops for

(a) σ1 = σ2 = 0.05. (b) σ1 = σ2 = 0.1

Figure 5: Plot of the region of parameter space in which ps is bimodal (shaded), as

a function of µ, σ1, and γσ2. The solid lines denote the boundary of the region of

bimodality for γ = 0.

Figure 6: Contour plots of ps as a function of γ for (a) (µ, σ1, σ2) = (0.17, 0.05, 0.1)

and (b) (µ, σ1, σ2) = (0.2, 0.1, 0.05).

Figure 7: Contour plots of µ0.5 as a function of σ1, σ2, and γ.

Figure 8: Bifurcation diagram of the y component of the fixed points of the

deterministic vector field (31).

Figure 9: Plot of the vector field f for µ = 0.19, τ = 1. The direction of f is

indicated by the arrows; the magnitude is contoured. The solid dots indicate the

fixed points, and the thick line is the stable manifold of the unstable fixed point.

Contours: 0.1,0.3,0.5, ... The lowest contour surrounds the fixed points.

Figure 10: As in Figure 9, for τ = 0.05, 0.5, 5, 50. For τ = 0.05, contours: 1,2,3, ...

Figure 11: Contour plots of ps(y) as (a) a function of µ for τ = 1, σ1 = σ2 = 0.1.

Contours: 1,2,...,6 (b) a function of τ for µ = 0.175, σ1 = σ2 = 0.075. Contours: 1,2,

... 8.

Figure 12: Contour plots of µ0.5 as a function of σ1, σ2 for τ = 0.1, 0.5, 1, 5.

Figure 13: Numerical estimate of ps(y) (thick line) and linearised approximation

(thin line) for σ1 = σ2 = 0.1 and (a) µ = 0.235, (b) µ = 0.19.

Figure 14: Plots of ps for τ = 1, µ = 0.255, σ2 = 0.15, and σ1 = 0.1 (thin line),

σ1 = 0.2 (dashed line), and σ3 = 0.3 (thick line).

Figure 15: As in Figure 9, for τ = 1 and µ = 0.255.
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Figure 16: Sample trajectory in the (y, η) space for µ = 0.255, τ = 1,σ1 = 0.3, and

σ2 = 0.15. The duration of the trajectory is 50 time units.
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Figure 1: Schematic diagram of the Stommel two-box model.
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Figure 5: Plot of the region of parameter space in which ps is bimodal (shaded), as

a function of µ, σ1, and γσ2. The solid lines denote the boundary of the region of

bimodality for γ = 0.
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Figure 6: Contour plots of ps as a function of γ for (a) (µ, σ1, σ2) = (0.17, 0.05, 0.1)

and (b) (µ, σ1, σ2) = (0.2, 0.1, 0.05).
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Figure 7: Contour plots of µ0.5 as a function of σ1, σ2, and γ.
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Figure 8: Bifurcation diagram of the y component of the fixed points of the deter-

ministic vector field (31).
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Figure 9: Plot of the vector field f for µ = 0.19, τ = 1. The direction of f is

indicated by the arrows; the magnitude is contoured. The solid dots indicate the

fixed points, and the thick line is the stable manifold of the unstable fixed point.

Contours: 0.1,0.3,0.5, ... The lowest contour surrounds the fixed points.
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Figure 10: As in Figure 9, for τ = 0.05, 0.5, 5, 50. For τ = 0.05, contours: 1,2,3, ...
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Figure 11: Contour plots of ps(y) as (a) a function of µ for τ = 1, σ1 = σ2 = 0.1.

Contours: 1,2,...,6 (b) a function of τ for µ = 0.175, σ1 = σ2 = 0.075. Contours: 1,2,
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Figure 12: Contour plots of µ0.5 as a function of σ1, σ2 for τ = 0.1, 0.5, 1, 5.
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Figure 13: Numerical estimate of ps(y) (thick line) and linearised approximation (thin

line) for σ1 = σ2 = 0.1 and (a) µ = 0.235, (b) µ = 0.19.
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Figure 14: Plots of ps for τ = 1, µ = 0.255, σ2 = 0.15, and σ1 = 0.1 (thin line),

σ1 = 0.2 (dashed line), and σ3 = 0.3 (thick line).
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Figure 15: As in Figure 9, for τ = 1 and µ = 0.255.
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Figure 16: Sample trajectory in the (y, η) space for µ = 0.255, τ = 1,σ1 = 0.3, and

σ2 = 0.15. The duration of the trajectory is 50 time units.
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