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ABSTRACT 

We construct an OLG model with network effects to examine skill obsolescence when 
individuals can choose technological vintages. In the absence of transfer payments, some 
regions of the parameter space have unique stationary equilibria, others have unique 
cyclical equilibria, and others have multiple stationary equilibria. All equilibria are 
Pareto efficient. However, “rat race” equilibria can exist in which all agents currently 
alive prefer a slower rate of progress than occurs in equilibrium. When contemporaneous 
transfers are allowed, equilibria are unique everywhere, but a cycle still exists, and a rat 
race can still arise in equilibrium. Allowing intertemporal transfers (debt) ensures that all 
equilibria are stationary. In the relevant parameter range, the introduction of debt can 
eliminate cycles and increase the long-run growth rate.  No rat race equilibria exist when 
debt is allowed. 
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1. INTRODUCTION 

Skill obsolescence is a major problem that comes with economic progress. Skills that 

individuals learn when young can become devalued when new technologies arrive that 

require a different set of skills. This can be a problem particularly for older workers. In 

traditional societies, where the pace of technological change is relatively slow, elders 

remain valuable because the skills in which they have experience are still relevant. In 

contrast, in societies with a fast pace of technological change, seniors can become 

marginalized. The introduction of new techniques can force older people to either learn 

the new techniques or face obsolescence, since the productivity of their skills is largely a 

function of the number of other people who have complementary skills. This externality, 

inherent in skill choices, can potentially lead to intergenerational conflict and suboptimal 

outcomes.  

 Recent analyses of this problem, such as Krusell and Rios-Rull (1996) and 

Aghion and Howitt (1998, chapter 9) have used the vintage human capital model 

developed by Chari and Hopenhayn (1991) to argue that this potential conflict can lead to 

political action by older generations to suppress new technologies. In their framework, 

uniform technology choices are determined by majority voting. This gives an 

intergenerational conflict interpretation to Olson's (1982) "vested interests" argument: 

inefficient periodic occurrences of technological slowdowns may occur due to 

intergenerational conflicts, through democratic government policy.  

 In this paper, we examine conditions under which individual choices of vintages 

can lead to similar outcomes, without government policy. We present an overlapping 

generations model of human capital vintages, similar in spirit to those in the above 

studies, but with a different approach to modeling skill complementarities which allows 

for a relatively simple analysis of individual skill choices. We eliminate the distinction 

between “skilled” and “unskilled” workers and focus on the commonality of 

technological vintage as the source of skill complementarity. The productivity of each 

vintage is assumed to be an increasing function of the number of individuals who use that 

vintage, and hence have compatible skills. This modeling approach draws upon the 
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“network effect” literature, pioneered by Katz and Shapiro (1985), in the context of 

product complementarities.1   

 Most forms of production involve extensive interaction between agents, and the 

productivity of that interaction depends to a considerable degree on the compatibility of 

the skills of the agents involved. This is not to say that productive matches require 

individuals to have the same skills; on the contrary, interaction is often most valuable 

when it brings together individuals with different expertise. However, if different skill 

sets are to complement each other, they must be compatible. We believe that these 

network effects are equally important at a more primitive level. The ability of agents to 

interact productively relies on a commonality of language, not just in terms of words 

spoken, but more fundamentally, in terms of the way they think and the methods they 

use. It is from this perspective that we view vintages of human skills; we think of a 

technological vintage as akin to a language, in the broadest sense of that word. 

 In any model with network effects, coordination problems can lead to multiple 

equilibria and inefficiency. This issue is not our primary concern in this paper. Here, we 

set aside the usual coordination problems by focusing on coalition-proof Markov perfect 

equilibria.  We examine the properties of such equilibria under different assumptions 

about the extent to which transfers between agents are possible.  One can think of the 

availability of transfers as an institutional mechanism, the existence of which reflects the 

degree of social capital in the economy, and in that sense our analysis examines how 

patterns of technological progress depend on the richness of social capital. 

 In the absence of transfers, we find that some regions of the parameter space have 

unique stationary equilibria while others have unique cyclical equilibria, and others have 

multiple stationary equilibria. All of these equilibria are Pareto efficient.  However, “rat 

race” equilibria can exist in which all agents currently alive prefer a slower rate of 

progress than occurs in equilibrium. When contemporaneous transfers are allowed, 

equilibria are unique everywhere in the parameter space, but a cyclical equilibrium still 

                                                 
1 Katz and Shapiro (1994) also consider the notion of “forming systems”: collections of compatible 
individual goods (such as nuts and bolts) that work together to provide services. Network effects pervade 
such systems.  Languages are another important area where network effects arise: the usefulness of a 
language increases with the number of people who speak it (Church and King (1993), Lazear (1999)). Shy 
(2001) provides an excellent survey of the network economics literature.  
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exists, and a “rat race” can still arise. Allowing intertemporal transfers (through debt) 

ensures that all equilibria are stationary, and reduces the equilibrium outcome to one of 

only two types: those where all agents learn a new technology in every period, and those 

where no-one ever learns a new technology. This affects only the region of the parameter 

space in which the unique equilibrium would otherwise be cyclical, and changes the 

nature of the equilibrium in that region to one in which all agents learn the technology in 

every period. Thus, in the relevant parameter range, the introduction of debt can 

eliminate cycles and increase the long-run growth rate. Moreover, the introduction of 

debt eliminates the possibility of a “rat race”.  

 The closest model to ours in the literature is presented in Shy (2001). The two 

models differ in the following important ways. First, new innovations occur in Shy’s 

model regardless of the patterns of adoption whereas, in our model, innovations occur 

only if newer technologies are adopted. Secondly, we allow both young and old agents to 

choose technologies. Finally, the precise specification of the network effect is different in 

the two models. In particular, given the rate of innovation, Shy characterizes the duration 

of a technology’s usage as a function of the size of the innovation and the number of 

people in the network. Here, we endogenize the innovation rate, and characterize the 

equilibrium allocations under different assumptions about the availability of transfers.  

This allows us to address the interplay of intergenerational conflict and  the richness of 

social capital in the determination of economic progress. 

 The remainder of the paper is organized as follows.  Section 2 introduces the 

model.  Section 3 characterizes the equilibrium allocations under different assumptions 

about the availability of transfer payments. Section 4 presents some concluding remarks. 

Proofs of all propositions are given in the appendix. 

 
2. THE MODEL 

We examine an economy with overlapping generations in which agents live for two 

periods, and each generation has N (initially identical) agents. When young, agents must 

choose which technology to learn. When old, they must choose whether to retain the 

technology they learned when young, or re-tool by learning another technology. The 

payoff from using a particular technology is subject to a network effect. In particular, the 
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payoff yt ( )τ  to an agent using a particular technology τ  in period t, is proportional to 

xt ( )τ  the number of agents using it:  

                                                             )()( τγτ τ
tt xy =                                                    (1) 

where γ > 1  is a parameter reflecting the productivity of the technology. 2 

 Technologies evolve in the following way. If technology τ  is learned by the 

young in period t, then a new technology τ +1  becomes available in period t+1. 

Otherwise, technology τ  remains the most productive technology available. The 

following learning-by-doing rationale underlies this evolution: only when agents adopt a 

new technology do they discover new ways in which it can be improved. Moreover, 

technology will only progress if some young agents learn the new technology, since only 

they have any incentive to develop further technologies.3 

 We assume that in period 0, all old agents enter the period endowed with 

technology τ = 0 . Technology τ = 1 also becomes available in period 0. If any young 

agents adopt technology τ = 1, then technology τ = 2  becomes available in period 1, in 

addition to the existing technologies, τ = 0  and τ = 1. Otherwise, only technologies 

τ = 0  and τ = 1 are available in period 1. This evolution continues with a new, more 

advanced technology becoming available each time any young agents adopt the previous 

new technology.  Agents can choose any technology from those available. 

 Learning costs are a key element of our model. We assume that learning is 

costless for young agents but re-tooling is costly for the old.4 In particular, any old agent 

who re-tools must devote a fraction k ∈[ , ]0 1  of his available productive time to 

learning.5 Thus, an old agent in period t who re-tools with technology τ  receives a 

payoff equal to ( ) ( )1− k yt τ  in that period. 

 

                                                 
2 The functional form used in (1) is relatively standard in the network literature. It implies that total surplus 
from a network is proportional to the square of the number of users. See Shy (1995) for a discussion, and 
Schmalensee (2002) for a recent application to payment systems.  
3 Incentives to invent new technologies are not modeled explicitly in this paper.  Our specification (that 
progress is only made if young agents adopt the latest technology) endogenizes technological progress in a 
very simple way, in the spirit of the learning-by-doing approach used by Jovanovic and Nyarko (1996).  
4 It makes no difference if learning is costly for the young, provided learning costs are independent of 
which technology they learn. 
5 Our use of the male pronoun throughout was decided by a coin toss. 
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As in Chari and Hopenhayn (1991), preferences take the following form: 

                                                          u c c c c( , )1 2 1 2= + β                                                  (2) 

where c1  denotes consumption when young, c2  denotes consumption when old, and 

β ∈[ , ]0 1  is the discount factor.   

 

3. COALITION-PROOF MARKOV PERFECT EQUILIBRIA 

As one would expect, the network effects in this economy give rise to multiple Nash 

equilibria. Our intention is not to exhaustively characterize all of the equilibria that can 

occur. Our purpose is to characterize the equilibrium outcomes with respect to the rate of 

economic progress, under different assumptions about the types of transfer payments that 

are possible in an economy. We therefore restrict attention to coalition-proof Markov 

perfect Nash equilibria, under these different assumptions.6  For brevity, hereafter, we 

use the term “equilibrium” rather than “coalition-proof Markov perfect Nash 

equilibrium”. We first consider equilibria when no transfer payments are allowed at all. 

We then allow for transfer payments, but only between agents that are alive at the same 

time – requiring no external dynamic enforcement mechanism. Finally, we allow for 

transfer payments among all current and future agents, where future generations can 

make transfers to current ones through chains of intermediate generations.  

 We identify six distinct patterns of technological adoption on which our analysis 

will focus. Four of these are stationary, and two are cyclical.7   

• Eternal Stagnation (ES) outcomes are those in which all agents use the initial 

technology, and no technological change occurs.  

                                                 
6 A Markov perfect equilibrium is a profile of Markov strategies that yields a Nash equilibrium in every 
proper subgame. See Fudenberg and Tirole (1991), chapter 13, for further details. 
7 We have in fact been able to prove that no other technological adoption patterns can arise in equilibrium 
but the proof is extremely long and could not be included in this paper in a succinct way. Heuristically, the 
proof proceeds in the following way. A sequence of technology adoption choices can be an equilibrium if 
and only if every three-period subsequence that forms part of the candidate equilibrium sequence, is itself 
an equilibrium subsequence.  There are 64 distinct three-period subsequences to consider.  We examined 
each one, and found that only 32 of these can be equilibrium subsequences.  We then examined which of 
these three-period subsequences could be joined to form a five-period subsequence such that every three-
period subsequence in that five-period subsequence could simultaneously be an equilibrium subsequence.  
By proceeding in this way, we were able to eliminate all non-stationary sequences except the one identified 
in the paper.  A complete proof is available from the authors upon request. 
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• Partial Learning 1 (PL1) outcomes are those in which each agent learns the new 

technology when young, but does not re-tool with the subsequent new technology 

when old. 

• Partial Learning 2 (PL2) outcomes are those in which only the old learn new 

technologies. 

• Complete Learning (CL) outcomes are those in which each agent learns the new 

technology when young and re-tools with the subsequent new technology when 

old. 

• Periodic Partial Learning (PPL) outcomes are those in which old agents never 

learn new technologies and young agents adopt new technologies every second 

period.  

• Periodic Complete Learning (PCL) outcomes are those in which all agents learn 

new technologies every second period. 

 

3.1 Equilibria Without Transfers 

An equilibrium allocation is one in which there does not exist a deviation strategy for any 

coalition of agents that yields a higher payoff to all members of the coalition than the 

equilibrium payoff.  It is straightforward to show, and intuitively clear, that the network 

effect in this economy means that any coalition of agents will always do best by 

including as many agents as possible in the coalition. Thus, any coalition of young agents 

will include all young agents, and any coalition of old agents will include all old agents. 

Thus, all agents within a generation will make the same technology choice.8  The key  

issue of interest is whether or not the old and the young can agree to a joint coalition in 

which both generations make the same technology choice.  It will become clear that this 

is critical for the determination of equilibria. 

 It is useful to introduce some additional notation at this point.  Let it ∈{ , }0 1  

denote the technology choice for the young in period t, where it = 1 indicates choosing 

                                                 
8 We assume throughout that whenever agents are indifferent between new and old technologies, they 
choose the new technologies. It makes no difference if we assume the converse, except along the 
boundaries of the critical parameter regions. We rule out young agents committing to particular learning 
choices when old. 
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the new technology, and it = 0 indicates choosing the old technology.  Similarly, let 

jt ∈{ , }0 1  denote the technology choice for the old in period t. Thus, in stationary 

allocations, { , } { , }i j i jt t t t= + +1 1  ∀t , and in nonstationary ones, { , } { , }i j i jt t t t≠ + +1 1  for 

some t.  

 The following proposition, illustrated in Figure 1, summarizes the stationary 

equilibria.  

 

Proposition 1 

(a) Eternal Stagnation is an equilibrium without transfers if and only if  

γ β β< + +[ ( ) / ( )]2 1 1 2   and  )]1/(1[ k−<γ  

(the regions labeled “ES” in Figure 1). 

(b) Complete Learning is an equilibrium without transfers if and only if 

γ ≥ −[ / ( )]1 2 1 k  

(the regions labeled “CL” in Figure 1). 

(c) Partial Learning 1 is an equilibrium without transfers if and only if 

γ < −[ / ( )]1 2 1 k   and  γ β β≥ + +[( ) / ( )]2 1  

(the region labeled “PL1” in Figure 1). 

(d)  Partial Learning 2 is not an equilibrium anywhere in the parameter space. 

(e) There does not exist a stationary equilibrium without transfers if 

γ < −[ / ( )]1 2 1 k   and  [ ( ) / ( )] [( ) / ( )]2 1 1 2 2 1+ + ≤ < + +β β γ β β  

(the region labeled “PPL” in Figure 1). 

 

 In Figure 1, the horizontal axis measures k ∈[ , ]0 1 , the fraction of time that each 

old agent must spend learning if he is to adopt the new technology.  The vertical axis 

measures γ > 1 , the productivity increment associated with each new technology.  Given 

β , these two parameters represent the costs and benefits of economic progress.   

 It is clear from Figure 1 that stationary equilibria exist everywhere in the 

parameter space except for the region labeled “PPL”. Moreover, these stationary 

equilibria are unique everywhere except in the region labeled “CL or ES”. As expected, 

CL occurs as the unique stationary equilibrium when γ  is sufficiently high relative to k, 



 8

and ES occurs when the converse is true. PL2 is not an equilibrium anywhere in the 

parameter space: given that the young learn costlessly, and given the network effects, a 

coalition of all agents that deviates by having everyone learn will always be able to break 

the candidate equilibrium. However, PL1, where the young learn but the old do not, is an 

equilibrium outcome when the ratio of γ  to k is in the intermediate range. In this range, 

the new technology is sufficiently productive that it is worthwhile for the young to adopt 

it even though they work within a smaller network (because the old retain the old 

technology), but the cost of learning is too high for the old to warrant re-tooling even 

though they too thereby work within a smaller network.   

 No stationary equilibrium exists in the region of Figure 1 labeled “PPL”.  In this 

region, γ  is too high to support ES as an equilibrium because it is worthwhile for the 

current young to deviate from that candidate equilibrium and learn the new technology, if 

the next young are expected to learn that same technology, even if the current old do not 

re-tool. That is, it = 1 is the best response to it+ =1 0  and jt = 0. Thus, the current young 

are willing to sacrifice the benefits of working with a universal technology today if they 

expect the new technology they learn today will be used universally when they are old.  

However, this expectation cannot be fulfilled in a stationary equilibrium; the next young 

generation have exactly the same incentive to deviate from ES.  Similarly, PL1 is not an 

equilibrium in this region because if the young in period t expect the young in period t+1 

to learn the new technology in that period, then it is not worthwhile for the young in 

period t to learn the new technology, given that the old in period t do not re-tool. That is, 

in the “PPL” region, the best response to jt = 0 and it+ =1 1, is it = 0 ; the it = 1 

response can only be supported at a higher value of γ  (in which case PL1 is the 

equilibrium).  Thus, in the “PPL” region, neither ES nor PL1 are equilibria.  

 

Proposition 2 

Periodic Partial Learning is an equilibrium without transfers if and only if  

γ < −[ / ( )]1 2 1 k   and  [ ( ) / ( )] [( ) / ( )]2 1 1 2 2 1+ + ≤ < + +β β γ β β  
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(the region labeled “PPL” in Figure 1).9 

 

 The existence of an equilibrium with PPL relates directly to the non-existence of 

a stationary equilibrium in that region. Recall that in the “PPL” region, the optimal 

choice for the young in period t is to learn the new technology τ +1  when the old retain 

technology τ , only if the young in period t+1 also learn technology τ +1. The cost of 

working in a smaller network when young is only justified by the benefits of using a 

more advanced technology if that technology is used within a universal network when 

old.  So in order for the adoption of a new technology to be worthwhile, there must be a 

period of stagnation after its adoption in which that technology is used universally; 

otherwise those who adopt the new technology cannot reap a return high enough to 

warrant the initial opportunity cost.  

 In the intermediate region labeled “CL or ES” in Figure 1, two stationary 

equilibrium outcomes exist: CL or ES. In this region, coalition-proofness cannot 

eliminate the multiplicity of equilibria. However, this does not mean that young and old 

agents are necessarily in disagreement over which outcome is better.  To understand this 

point it is useful to characterize the conditions under which there is intergenerational 

conflict in this economy. The following proposition, illustrated in Figure 2, sets out those 

conditions.  

 

Proposition 3 

(a) Old agents in any period weakly prefer ES to any other technology adoption pattern if 

)1/(1 k−<γ  and strictly prefer CL to any other adoption pattern if )1/(1 k−≥γ . 

(b) Young agents in any period weakly prefer ES to any other technology adoption 

pattern if  

2

2 )1(
βγ

βγβγ +−+
>k  

and strictly prefer CL to any other adoption pattern if  

                                                 
9  Although PPL is cyclical, it is a Markov perfect equilibrium. In this framework, the state variable is the 
vintage of the technology that the old agents carry into the current period (i.e., either one period old or two 
periods old). Given this state, the equilibrium strategies of the young and old agents are uniquely defined.   
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2

2 )1(
βγ

βγβγ +−+
≤k  

 

 Figure 2 partitions the parameter space into three regions based on the threshold  

conditions in Proposition 3.  For high values of γ  relative to k, young and old agents are 

in agreement that CL is the best outcome.  That is, if living agents could impose a pattern 

of technology adoption that would be binding on future agents, they would unanimously 

choose CL.  Conversely, for relatively low values of γ , young and old agents agree that 

ES is the best outcome.  For intermediate values of γ  there is intergenerational conflict: 

young agents prefer CL while old agents prefer ES. 10   

 Now consider the interplay of intergenerational conflict and coalition-proof 

equilibria.  Figure 3 overlays Figure 2 on Figure 1 to illustrate two key points. First, in 

the lower shaded region of Figure 3, young and old agents agree that ES is preferred to 

CL yet both outcomes can arise as equilibria. This multiplicity reflects a coordination 

problem, but not of the usual form; the lack of coordination is between agents currently 

alive and the not-yet-living next generation. In particular, if young agents in period t 

expect young agents in period t+1 to adopt the new technology in period t+1, then their 

anticipated best response when they old in period t+1 is to re-tool with the new 

technology. The payoff from doing so will be higher if they have adopted the latest 

technology when they are young in period t, because technologies progress only if the 

young adopt the latest technology, and for the parameter values corresponding to the 

region of multiple equilibria, this is a dominant strategy for the young. In turn, the best 

response from the old agents in period t is to learn the new technology. Thus, CL is 

supported as an equilibrium. Conversely, if young agents in period t expect young agents 

in period t+1 to learn the old technology, then ES is the equilibrium outcome. Since 

coalitions cannot be formed between the living and the not-yet-living (and because young 

agents cannot commit when young to a particular action when old), coalition-proofness 

                                                 
10 Note that young agents would always prefer {1,1} to {0,0} in the period in which they are young, but 
Proposition 3 and Figure 2 relate to a preference over technology adoption patterns, for which both periods 
of life are relevant unless 0=β , in which case young and old agents never agree (unless k = 0). 
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on its own cannot eliminate this multiplicity of equilibria, despite the fact that there is no 

disagreement among living agents as to which outcome is preferred. 

 The second key point to note from Figure 3 is that for potentially large regions of 

the parameter space, the equilibrium outcome involves progress even though all living 

agents would prefer no progress. That is, there can arise “rat race” equilibria in this 

economy.  In the upper shaded region of Figure 3, young agents learn the new technology 

either in every period (PL1) or in every second period (PPL), and old agents are left 

behind. Yet both young and old agents in any given period would prefer to retain the old 

technology. Similarly, in the lower shaded region of Figure 3, progress occurs in every 

period if CL arises as the equilibrium, even though young and old agents in any given 

period would prefer no progress.11 Note that the converse never arises; young and old 

agents in any given period never agree that there is too little progress, in any region of 

the parameter space. 

 It is important to recognize that the potential for a “rat race” in this economy does 

not necessarily indicate inefficiency. Any “rat race” that does arise is viewed as such by 

all living agents but an assessment of efficiency must also take account of future agents. 

The following proposition describes the efficiency properties of the equilibria. 

 

Proposition 4 

All the equilibria are Pareto efficient.  

 

 This is perhaps a surprising result, in view of the presence of multiple equilibria, 

and the potential for a “rat race”. However, as the proof makes clear, any deviation from 

equilibrium anywhere in the parameter space causes either the current old to be made 

worse off (if the deviation involves more progress) or future agents to be made worse off 

(if the deviation involves less progress). Thus, all equilibria are Pareto efficient.  

However, this does not mean that there are no potential Pareto improvements in this 

                                                 
11 The range of the parameter space over which this type of “rat race” can occur depends on the size of β .  
The shaded regions in Figure 3 shrink as β  falls, and while the lower region persists to some degree for 
any positive β , the upper region vanishes for any 2/1<β .  
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economy.12 Introducing the possibility of transfers in this economy means that potential 

Pareto improvements can be exploited by coalitions to the mutual benefit of the agents 

involved, giving rise to very different equilibrium outcomes. In the next section we 

examine equilibria when contemporaneous transfers are possible. 

 

3.2 Equilibria with Contemporaneous Transfers 

The following proposition, illustrated in Figure 4, characterizes the equilibria that can be 

supported with contemporaneous transfers.  

 

Proposition 5 

(a) Eternal Stagnation is an equilibrium with contemporaneous transfers if and only if  

γ β β< + + −[( ) / ( )]2 2 k  

(the region labeled “ES” in Figure 4). 

(b) Complete Learning is an equilibrium with contemporaneous transfers if and only if  

2)]1)(1(1[)1(2 ≥−−++− βγβγ kk  

(the region labeled “CL” in Figure 4). 

(c) Periodic Complete Learning is an equilibrium13 with contemporaneous transfers if and 

only if  

)]2/()2[( k−++≥ ββγ   and  2)]1)(1(1[)1(2 <−−++− βγβγ kk  

(the region labeled “PCL” in Figure 4). 

(d)  No other equilibria exist when contemporaneous transfers are possible. 

 

 These equilibria have a number of noteworthy properties. First, there is a unique 

equilibrium outcome in every region of the parameter space; the multiplicity of equilibria 

is eliminated when contemporaneous transfers are possible. Transfers allow either the 

young to compensate the old for agreeing to re-tool (for relatively high values of γ ), or 

                                                 
12 A potential Pareto improvement can be made whenever an action can be taken which makes no agent 
worse off but makes at least one agent better off once appropriate redistributions have been made. See 
Boadway and Bruce (1984), chapter 4, for further details.  
13 Although PCL is cyclical, it is a Markov perfect equilibrium, for the same reason that PPL is (see 
footnote 9 above).    
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the old to compensate the young for agreeing to learn the old technology (for relatively 

low values of γ ).  The co-existence of CL and ES is thereby eliminated. 

 Second, there exists a nonstationary equilibrium, with an endogenous cycle. This 

cycle involves PCL: all agents learn the new technology in one period, and no agents 

learn the new technology in the next. In the region of Figure 4 labeled “PCL”, re-tooling 

by the old is to their advantage only if they are partly compensated by the young for the 

costs of that re-tooling. It is in the interests of the young to make the compensating 

transfer to the old only if they do not have to incur re-tooling costs when they are old 

themselves. That is, investing in the new technology, and paying off the old to do the 

same, is worthwhile for the young only if a period of stagnation follows in which the 

rewards of that investment can be reaped when they are old. 

 This cycle is importantly distinct from the cycle that can occur in an economy 

without transfers. In that case the old never re-tool; the learning of the new technology 

alternates only between one young generation and the next. This means that in every 

second period the young and the old use different technologies. This splitting of the 

economy into two competing networks never occurs in equilibria with contemporaneous 

transfers: all agents alive in any given period always use the same technology. The 

transfer opportunity between young and old ensures that the productivity benefits of a 

universal network are fully exploited.  

 Third, in contrast to the case without transfers, CL is never an equilibrium in the 

region where the current young and the current old both prefer ES to CL.14  However, 

there still exists the potential for a “rat race” in this economy: PCL can exist as an 

equilibrium even when all living agents prefer ES to any other outcome.15 In contrast, 

neither ES nor PCL are equilibria in the region where the current young and the current 

old both prefer CL to ES; that is, there is never too little progress from the perspective of 

all living agents.  

 

                                                 
14 It is straightforward to show that the lower threshold in Figure 2 lies everywhere below the upper 
threshold in Figure 4 except when 1=β , in which case the two thresholds coincide.  Thus, CL is never an 
equilibrium with contemporaneous transfers if the current young and current old both agree that ES is a 
better outcome. 
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 It is straightforward to show, and intuitively clear, that the equilibria with 

contemporaneous transfers are Pareto efficient. (Recall from Proposition 4 that the 

equilibria without transfers are efficient; the introduction of transfers to exploit potential 

Pareto improvements cannot induce inefficiency). Nonetheless, in some regions of the 

parameter space, equilibrium outcomes that involve progress are strictly inferior to 

eternal stagnation from the perspective of living agents. This reflects the fact that the 

equilibrium choice of the current young in any period depends on their expectation of the 

choice of the next generation, with whom they are unable to make agreements or 

exchange transfers. In the next section we introduce the possibility of such transfers 

across time. 

 

3.3 Equilibria with Intertemporal Transfers 

We now allow for intertemporal transfers, where future generations can make transfers to 

current ones through chains of intermediate generations. Since the young in any period 

have contact with both the current old and the next young generation, they are able to 

make transfers to the current old on behalf of the next generation, and may be willing to 

do so if they are assured that next generation will honor the promise of a transfer to them 

when they are old. Since all future generations prefer more learning now, these transfer 

payments would always be made in return for the current old choosing to adopt the new 

technology. Of course, the potential size of these transfer payments is constrained by the 

aggregate product of the young in all periods of any such chain, and this limits the degree 

to which such transfers can foster progress. 

 The primary obstacle to intertemporal transfers is that young agents in any given 

period may find it in their interests to not honor the promise made on their behalf by the 

current old in the prior period.  We assume that a commitment mechanism exists to 

ensure that the future young always pay when these promises are made.  In particular,  

these transfer payments resemble debt commitments for future generations, and their 

enforceability can be viewed as a form of social capital in this economy which is absent 

from the economy examined in the previous section, where intertemporal transfers are 

                                                                                                                                                 
15 This “rat race” will occur if and only if 12 >+ ββ . 
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not possible.  The following proposition, along with Figure 5, summarizes the equilibria 

in this economy.  

 

Proposition 6 

(a) Eternal Stagnation is an equilibrium with intertemporal transfers if and only if  

γ β β< + + −[( ) / ( )]2 2 k  

(the region labeled “ES” in Figure 5). 

(b) Complete Learning is an equilibrium with intertemporal transfers if and only if  

)]2/()2[( k−++≥ ββγ  

(the region labeled “CL” in Figure 5). 

(c) No other equilibria exist when intertemporal transfers are possible. 

 

It is clear from a comparison of Figures 4 and 5 that the equilibrium outcomes in this 

economy are identical to those in an economy in which only contemporaneous transfers 

are possible, except in the region denoted “PCL” in Figure 4. When only 

contemporaneous transfers are allowed, PCL is an equilibrium outcome for intermediate 

combinations of γ  and k, but this outcome never arises in equilibrium when 

intertemporal transfers are allowed. In that region of the parameter space, CL is the only 

equilibrium outcome in this case. This leaves only two possible equilibrium outcomes: 

CL and ES. 

 

 The elimination of the cyclical equilibrium requires that in each period, transfers 

be made from future generations to the current old generation (see the proof of 

Proposition 6).  As mentioned above, this type of transfer necessarily involves debt 

obligations being passed on to future generations. Thus, in the region of the parameter 

space labeled “PCL”, the introduction of such a debt mechanism allows  the economy to 

move from a cyclical equilibrium to one with constant growth and double the long run 

growth rate.  

 The introduction of intertemporal transfers also eliminates the potential for a “rat 

race” in this economy.  It is straightforward to show that there exists a feasible transfer 
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from the young to the old in every period that ensures indifference between ES and CL 

on the part of the old in every period, and a strict preference for CL over ES on the part 

of the young in every period, if and only if CL is the equilibrium outcome.16  Conversely, 

there exists a feasible transfer from the old to the young in every period that ensures 

indifference between ES and CL on the part of the young in every period, and a strict 

preference for ES over CL on the part of the old in every period, if and only if ES is the 

equilibrium outcome.  That is, there exist feasible transfers that ensure that all living 

agents, in every period, can agree that the equilibrium outcome is the preferred outcome. 

 

4. CONCLUSION 

Our analysis has examined the interplay of intergenerational conflict and the richness of 

social capital in the determination of economic progress in an economy with network 

effects in worker skills. We find that equilibrium patterns of progress depend critically on 

the extent to which transfers are available. In the absence of transfers, the economy can 

exhibit endogenous cyclical equilibria, multiple stationary equilibria, and “rat race” 

equilibria in which all living agents prefer a slower rate of progress than occurs in 

equilibrium. If contemporaneous transfers are available then all equilibria are unique, but 

a cyclical equilibrium still exists, and a “rate race” can still arise. In contrast, if 

intertemporal transfers are available, equilibria are unique and stationary, and no “rat 

race” can arise.  

 Our analysis highlights that technological change has benefits and costs, that tend 

to be distributed asymmetrically between the young and the old, giving rise to 

intergenerational conflict over the value of progress. Moreover, the fear of being left 

behind technologically when agents expect progress to occur, can lead to a technological 

“rat race” from the perspective of those currently alive. However, future generations are 

often the main beneficiary of progress today, as technological innovations tend to build 

on previous ones. Allowing some of those benefits to accrue to current generations 

                                                 
16 The transfer required in period t is )1(22)( 1 kNNtR tt −−= +γγ .  This is feasible if and only if 

)2/(1 k−≥γ , which holds everywhere in the parameter space.  Young agents in period t are better off in 
the CL outcome, after making a transfer of )(tR  in period t and receiving  a transfer of )1( +tR  in period 
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through intertemporal transfers can eliminate the technological “rat race” in which living 

agents may feel trapped, and at the same time foster faster economic growth. 

                                                                                                                                                 
t+1, than in the ES outcome, if and only if )2/()2( ββγ +−+≥ k , in which case CL is the equilibrium 
outcome. 
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APPENDIX 

Proof of Proposition 1 

We begin by presenting the payoffs for young and old agents alive in period t, for 

different technology choices },{ tt ji  and },{ 11 ++ tt ji  in table form. Table 1 presents the 

payoffs for the old agents, which are independent of },{ 11 ++ tt ji  but do depend on },{ tt ji . 

The first row of the table shows the possible combinations of },{ tt ji , and the second row 

shows the corresponding payoffs to the old, divided by N.  

 

 

{0,0} {0,1} {1,0} {1,1} 
τγ2  )1(1 k−+τγ  τγ  )1(2 1 k−+τγ  

 

Table 1: Payoffs to the Old Agents 

 

Table 2 shows the payoffs to the young agents (also divided by N). These are functions of 

both },{ tt ji  and },{ 11 ++ tt ji . As in Table 1, the first row of the table shows the different 

possible combinations of },{ tt ji ; the first column shows the possible combinations of 

},{ 11 ++ tt ji . The payoffs are then shown for different combinations of },{ tt ji  and 

},{ 11 ++ tt ji .  

 

 

 {0,0} {0,1} {1,0} {1,1} 

{0,0} )1(2 βγ τ +  )21( βγ τ +  )21(1 βγ τ ++  )1(2 1 βγ τ ++  

{0,1} ))1(2( k−+ βγγ τ  ))1(1( k−+ βγγ τ  ))1(1(1 k−++ βγγ τ  ))1(2(1 k−++ βγγ τ  

{1,0} )2( βγ τ +  )1( βγ τ +  )1(1 βγ τ ++  )2(1 βγ τ ++  

{1,1} ))1(1(2 k−+ βγγ τ  ))1(21( k−+ βγγ τ  ))1(21(1 k−++ βγγ τ  ))1(1(2 1 k−++ βγγ τ  

 

Table 2: Payoffs for the Young Agents 
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We now prove the five parts of Proposition 1.   

 

(a) Recall that ES is characterized by { , } { , }i jt t = 0 0 t∀ .  We will first show that ES is an 

equilibrium in the specified region.  By Table 1, { , } { , }i jt t = 0 0  is strictly preferred to 

}0,1{},{ =tt ji  by all old agents in period t.  Thus, no coalition of old agents will defect 

unilaterally from the proposed equilibrium.  If γ β β< + +[ ( ) / ( )]2 1 1 2   then by Table 2, 

{ , } { , }i jt t = 0 0  is strictly preferred to }0,1{},{ =tt ji  by all young agents in period t.  

Thus, no coalition of young agents will defect unilaterally from the proposed equilibrium.  

Finally, if )1/(1 k−<γ  then by Table 1, old agents will not be willing to join a coalition 

with young agents and switch from { , } { , }i jt t = 0 0  to { , } { , }i jt t = 11 .  Thus, ES is an 

equilibrium in the specified region.  We will next show that ES is not an equilibrium in 

any other region.  First, if )]21/()1(2[ ββγ ++≥  then by Table 2, }0,1{},{ =tt ji  is 

preferred to { , } { , }i jt t = 0 0  ) by young agents in period t when { , } { , }i jt t+ + =1 1 0 0 ; thus, ES 

can be broken by a coalition of all young agents, given the candidate equilibrium choice 

by the old.  Second, if )1/(1 k−≥γ  then by Table 1 and Table 2, ES can be broken by a 

joint coalition of all young and old agents alive in period t.  This proves part (a) of the 

Proposition.  

 

(b) Recall that CL is characterized by }1,1{},{ =tt ji t∀ .  We will first show that CL is an 

equilibrium in the specified region.  If )]1(2/[1 k−≥γ  then by Table 1, }1,1{},{ =tt ji  is 

weakly preferred to }0,1{},{ =tt ji  by all old agents in period t.  Thus, no coalition of old 

agents will defect unilaterally from the proposed equilibrium.  By Table 2, }1,1{},{ =tt ji  

is strictly preferred to }1,0{},{ =tt ji  by all young agents in period t.  Thus, no coalition 

of young agents will defect unilaterally from the proposed equilibrium.  Finally, by Table 

2, young agents will not be willing to join a coalition with old agents and switch from 

{ , } { , }i jt t = 11  to { , } { , }i jt t = 0 0 .  Thus, CL is an equilibrium in the specified region.  We 

will next show that CL is not an equilibrium in any other region.  If )]1(2/[1 k−<γ  then 

by Table 1, }0,1{},{ =tt ji  is preferred to }1,1{},{ =tt ji  by old agents in period t; thus, CL 
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can be broken by a coalition of all old agents, given the candidate equilibrium choice by 

the young.  This proves part (b) of the Proposition.  

 

(c) Recall that PL1 is characterized by }0,1{},{ =tt ji t∀ .  We will first show that PL1 is 

an equilibrium in the specified region.  If )]1(2/[1 k−<γ  then by Table 1, }0,1{},{ =tt ji  

is weakly preferred to }1,1{},{ =tt ji  by all old agents in period t.  Thus, no coalition of 

old agents will defect unilaterally from the proposed equilibrium, or be willing to join a 

coalition with young agents and switch from }0,1{},{ =tt ji  to }1,1{},{ =tt ji .  If 

)]1/()2[( ββγ ++≥  then by Table 2, }0,1{},{ =tt ji  is weakly preferred to 

}0,0{},{ =tt ji  by all young agents in period t.  Thus, no coalition of young agents will 

defect unilaterally from the proposed equilibrium or be willing to join a coalition with old 

agents and switch from }0,1{},{ =tt ji  to }0,0{},{ =tt ji .  Thus, PL1 is an equilibrium in 

the specified region.  We will next show that PL1 is not an equilibrium in any other 

region.  If )]1(2/[1 k−≥γ  then by Table 1, }1,1{},{ =tt ji  is preferred to }0,1{},{ =tt ji  

by all old agents in period t; thus, PL1 can be broken by a coalition of all old agents, 

given the candidate equilibrium choice by the young.  If )]1/()2[( ββγ ++<  then by 

Table 2, }0,0{},{ =tt ji  is preferred to }0,1{},{ =tt ji  by young agents in period t; thus, 

PL1 can be broken by a coalition of all young agents, given the candidate equilibrium 

choice by the old.  This proves part (c) of the Proposition.  

 

(d) Recall that PL2 is characterized by }1,0{},{ =tt ji t∀ .  By Table 2, }1,1{},{ =tt ji  is 

strictly preferred to }1,0{},{ =tt ji  by all young agents in period t when }1,0{},{ 11 =++ tt ji .  

Thus, PL2 can always be broken by a coalition of all young agents, given the candidate 

equilibrium choice by the old.  This proves part (d) of the Proposition. 

 

(e) This follows directly from parts (a) – (d) of the Proposition.g 
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Proof of Proposition 2 

The candidate equilibrium comprises the sequence { , } { , } { , } { , }1 0 0 0 1 0 0 0→ → →  etc.  To 

fix period notation, let { , } { , }i jt t = 1 0 . We will first show that PPL is an equilibrium in the 

specified region.  First consider the choices by old agents.  If )]1(2/[1 k−<γ  then by 

Table 1, }0,1{},{ =tt ji  is weakly preferred to }1,1{},{ =tt ji  by all old agents in period t.  

Thus, no coalition of old agents will defect unilaterally from the proposed equilibrium in 

period t.  Moreover, by Table 1, }0,0{},{ 11 =++ tt ji  is strictly preferred to }1,0{},{ 11 =++ tt ji  

by all old agents in period t+1, since )]1/[(1 k−<γ  when )]1(2/[1 k−<γ .  Thus, no 

coalition of old agents will defect unilaterally from the proposed equilibrium in period 

t+1.  Finally, by Table 1, }0,0{},{ 11 =++ tt ji  is strictly preferred to }1,1{},{ 11 =++ tt ji  by all 

old agents in period t+1, since )]1/[(1 k−<γ  when )]1(2/[1 k−<γ .  Thus, old agents in 

period t+1 will not be willing to join a coalition with the young in period t+1 and switch 

from }0,0{},{ 11 =++ tt ji  to }1,1{},{ 11 =++ tt ji .   

 

Next consider the choices by young agents.  If }0,0{},{ 11 =++ tt ji  and  

)]21/()1(2[ ββγ ++≥  then by Table 2, }0,1{},{ =tt ji  is weakly preferred to 

}0,0{},{ =tt ji  by all young agents in period t.  Thus, no coalition of young agents will 

defect unilaterally from the proposed equilibrium in period t.  Moreover, if 

}0,1{},{ 22 =++ tt ji  and )]1/()2[( ββγ ++<  then by Table 2, }0,0{},{ 11 =++ tt ji  is strictly 

preferred to }0,1{},{ 11 =++ tt ji  by all young agents in period t+1.  Thus, no coalition of 

young agents will defect unilaterally from the proposed equilibrium in period t+1.  Thus, 

since no coalition of the young nor coalition of the old nor joint coalition of the young 

and old will defect from the candidate equilibrium in either period t or period t+1, PPL is 

an equilibrium in the specified region. 

 

Next we will show that PPL is not an equilibrium in any other region.  If )]1(2/1[ k−≥γ  

then by Table 1, }1,1{},{ =tt ji is weakly preferred to }0,1{},{ =tt ji  by old agents in 

period t, and thus they will defect unilaterally from the candidate equilibrium.  Similarly, 
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if )]21/()1(2[ ββγ ++<  then by Table 2, }0,0{},{ =tt ji  is strictly preferred to 

}0,1{},{ =tt ji  by young agents in period t when they expect }0,0{},{ 11 =++ tt ji , and thus 

they will defect unilaterally from the candidate equilibrium.  Finally, if 

)]1/()2[( ββγ ++≥  then by Table 2, }0,1{},{ 11 =++ tt ji  is strictly preferred to 

}0,0{},{ 11 =++ tt ji  by young agents in period t+1 when they expect }0,1{},{ 22 =++ tt ji .  

Thus, they will defect unilaterally from the candidate equilibrium.  Thus, PPL cannot be 

an equilibrium outside the specified region. g 

 

Proof of Proposition 3 

Part (a) follows directly from Table 1.  Consider part (b).  The lifetime payoff to a young 

agent under CL is  )1(22 21 kNN −+ ++ ττ βγγ , under PL1 is NN 11 ++ + ττ βγγ , under ES is 

NN ττ βγγ + , and under PPL is either NN 11 ++ + ττ βγγ  or NN ττ βγγ + .  The payoff to 

CL is greater than the payoff to PL1 if )]1(2/[)1( k−−≥ ββγ , which holds everywhere 

in the parameter space.  Thus, CL is always strictly preferred to PL1.  The payoff to CL is 

greater than the payoff to ES if 22 /)]1([ βγβγβγ +−+≤k , which is the condition in the 

proposition.  If  this condition holds then CL is strictly preferred to ES, and to PPL, since 

the payoff to PPL is never greater than the payoff to either PL1 or ES. g 

 

Proof of Proposition 4 

(a) Consider the ES equilibrium, in which }0,0{},{ =tt ji .  There are three alternative 

outcomes in period t: }0,1{},{ =tt ji , }1,0{},{ =tt ji  and }1,1{},{ =tt ji .  If }0,1{},{ =tt ji , 

then by Table 1, old agents in period t are worse off than in the equilibrium outcome 

∀ >γ 1 and k ≤ 1, regardless of the outcome in any future period.  Thus, no alternative 

outcome involving }0,1{},{ =tt ji  for any t can Pareto dominate the equilibrium.  If 

}1,0{},{ =tt ji , then by Table 1, old agents in period t are worse off than in the 

equilibrium outcome, regardless of the outcome in any future period, unless 

)1/(2 k−≥γ , but by Proposition 1(a), ES is not an equilibrium in that region of the 

parameter space.  Thus, no alternative outcome involving }1,0{},{ =tt ji  for any t can 
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Pareto dominate the equilibrium.  Finally, if }1,1{},{ =tt ji , then by Lemma 1(d), old 

agents in period t are worse off than in the equilibrium outcome, regardless of the 

outcome in any future period, unless )1/(1 k−≥γ , but by Proposition 1(a), ES is not an 

equilibrium in that region of the parameter space.  Thus, no alternative outcome 

involving }1,1{},{ =tt ji  for any t can Pareto dominate the equilibrium.  

 

(b) Consider the CL equilibrium, in which }1,1{},{ =tt ji . There are three alternative 

outcomes in period t: }0,1{},{ =tt ji , }1,0{},{ =tt ji  and }0,0{},{ =tt ji .  If }0,1{},{ =tt ji , 

then by Table 1, old agents in period t are worse off than in the equilibrium outcome, 

regardless of the outcome in any future period, unless )1/(2 k−<γ , but by Proposition 

1(b), CL is not an equilibrium in that region of the parameter space.  Thus, no alternative 

outcome involving }0,1{},{ =tt ji  for any t can Pareto dominate the equilibrium.  If 

}1,0{},{ =tt ji  or }0,0{},{ =tt ji , then no new technology arrives in period t+1, because 

the young agents in period t do not learn the new technology in that period, so young 

agents in period t+1 are worse off than in the equilibrium outcome.  This cost to young 

agents in period t+1 cannot be offset by any deviation from the equilibrium outcome in 

period t+1 since that would require either that the old agents in period t+1 are made 

worse off (if the deviation involves }0,1{},{ 11 =++ tt ji ) or that young agents in period t+2 

are made worse off (if the deviation involves }1,0{},{ 11 =++ tt ji  or }0,0{},{ 11 =++ tt ji ). 

Thus, no alternative outcome involving { , } { , }i jt t = 0 1  or }0,0{},{ =tt ji for any t can 

Pareto dominate the equilibrium.  

 

(c) Consider the PL1 equilibrium, in which }0,1{},{ =tt ji .  There are three alternative 

outcomes in period t: }1,1{},{ =tt ji , }1,0{},{ =tt ji  and }0,0{},{ =tt ji .  If }1,1{},{ =tt ji , 

then by Table 1, old agents in period t are worse off than in the equilibrium outcome, 

regardless of the outcome in any future period, unless )1/(2 k−≥γ , but by Proposition 

1(c), PL1 is not an equilibrium in that region of the parameter space.  Thus, no alternative 

outcome involving }1,1{},{ =tt ji  for any t can Pareto dominate the equilibrium.  Using 
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the same reasoning as for part (b) above, no alternative outcome involving { , } { , }i jt t = 0 1  

or }0,0{},{ =tt ji for any t can Pareto dominate the equilibrium.  

 

(d) Consider the PPL equilibrium, in which { , } { , } { , } { , }1 0 0 0 1 0 0 0→ → →  etc.  To fix 

period notation, let { , } { , }i jt t = 1 0 . There are three alternative outcomes in period t: 

}1,1{},{ =tt ji , }1,0{},{ =tt ji  and }0,0{},{ =tt ji .  If }1,1{},{ =tt ji  then by Table 1, old 

agents in period t are worse off than in the equilibrium outcome, regardless of the 

outcome in any future period, unless )1/(2 k−≥γ , but by Proposition 2, PPL is not an 

equilibrium in that region of the parameter space.  Thus, no alternative outcome 

involving }1,1{},{ =tt ji  in place of { , } { , }i jt t = 1 0  for any t can Pareto dominate the 

equilibrium. Using the same reasoning as for part (b) above, no alternative outcome 

involving { , } { , }i jt t = 0 1  or }0,0{},{ =tt ji  in place of { , } { , }i jt t = 1 0  for any t can Pareto 

dominate the equilibrium.  There are also three alternative outcomes in period t+1: 

}0,1{},{ 11 =++ tt ji , }1,0{},{ 11 =++ tt ji  and }1,1{},{ 11 =++ tt ji .  Using the same reasoning as 

for part (a) above, no alternative outcome involving any of these three alternatives in 

place of }0,0{},{ 11 =++ tt ji  for any t can Pareto dominate the equilibrium. g 

 

Proof of Proposition 5 

We begin by deriving the best technology choices for agents alive in period t in response 

to each of the possible expected choices of agents alive in period t+1.  These are 

described in the following four lemmas. 

 

Lemma 1.  If agents alive in period t expect { , } { , }i jt t+ + =1 1 0 0 , then the best choice for 

agents in period t is 

(i) { , } { , }i jt t = 0 0  if and only if γ β β< + + −[( ) / ( )]2 2 k  

(ii) { , } { , }i jt t = 11  if and only if γ β β≥ + + −[( ) / ( )]2 2 k  

Proof.  We begin by showing that under { , } { , }i jt t = 11 , old agents in period t can be at 

least as well-off, and young agents in period t can be strictly better-off, than under 

{ , } { , }i jt t = 1 0  or { , } { , }i jt t = 01 , ∀ >γ 1 and k ≤ 1 . 



 25

 

First, consider the choice between { , } { , }i jt t = 11  and { , } { , }i jt t = 1 0 .  The payoff to an old 

agent in period t under { , } { , }i jt t = 1 0  is γ τ N .  To receive this same payoff under 

{ , } { , }i jt t = 11 , old agents would have to receive a transfer T from the young: 

T N N k= − −+γ γτ τ 12 1( )  

(Note that T could be negative). The lifetime payoff to a young agent in period t under 

{ , } { , }i jt t = 1 0  when { , } { , }i jt t+ + =1 1 0 0 , is 

v N Nt ({ , } { , })1 0 0 0 21 1→ = ++ +γ βγτ τ  

The lifetime payoff to a young agent in period t under { , } { , }i jt t = 11  is 

v N Nt ({ , } { , })11 0 0 2 21 1→ = ++ +γ βγτ τ  

It is feasible for the young to transfer T to the old, since γ τ+ ≥12N T  ∀ >γ 1 and k ≤ 1 .  

So old agents can be at least as well-off, and young agents strictly better-off under 

{ , } { , }i jt t = 11  relative to { , } { , }i jt t = 1 0  if and only if  

v T vt t({ , } { , }) ({ , } { , })11 0 0 1 0 0 0→ − ≥ →  

This condition is satisfied ∀ >γ 1 and k ≤ 1 . 

 

Next consider the choice between { , } { , }i jt t = 11  and { , } { , }i jt t = 0 1 .  The payoff to an old 

agent in period t under { , } { , }i jt t = 0 1  is γ τ+ −1 1N k( ) .  The payoff to an old agent under 

{ , } { , }i jt t = 11  is γ τ+ −12 1N k( ) .  Therefore, old agents are better-off under { , } { , }i jt t = 11  

∀ >γ 1 and k ≤ 1 . The lifetime payoff to a young agent in period t under { , } { , }i jt t = 0 1  

when { , } { , }i jt t+ + =1 1 0 0 , is 

v N Nt ({ , } { , })0 1 0 0 2→ = +γ βγτ τ  

The lifetime payoff to a young agent in period t under { , } { , }i jt t = 11  is 

v N Nt ({ , } { , })11 0 0 2 21 1→ = ++ +γ βγτ τ  

Therefore, young agents are also better-off under { , } { , }i jt t = 11  ∀ >γ 1 and k ≤ 1. 
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Since { , } { , }i jt t = 0 1  and { , } { , }i jt t = 1 0  are both dominated { , } { , }i jt t = 11 , we can focus 

on the choice between { , } { , }i jt t = 11  and { , } { , }i jt t = 0 0 .  The payoff to an old agent in 

period t under { , } { , }i jt t = 0 0  is γ τ 2N .  To receive this same payoff under { , } { , }i jt t = 11 , 

old agents would have to receive a transfer ′T  from the young: 

′ = − −+T N N kγ γτ τ2 2 11 ( )  

(Note that ′T  could be negative). The lifetime payoff to a young agent under 

{ , } { , }i jt t = 0 0  when { , } { , }i jt t+ + =1 1 0 0  is 

v N Nt ({ , } { , })0 0 0 0 2 2→ = +γ βγτ τ  

The lifetime payoff to a young agent under { , } { , }i jt t = 11  is 

v N Nt ({ , } { , })11 0 0 2 21 1→ = ++ +γ βγτ τ  

It is feasible for young agents to transfer ′T  to the old, since γ τ+ ≥ ′12N T  ∀ >γ 1 and 

k ≤ 1.  So old agents can be at least as well-off, and young agents better-off, under 

{ , } { , }i jt t = 11  if and only if  

v T vt t({ , } { , }) ({ , } { , })11 0 0 0 0 0 0→ − ′ ≥ →  

This is the condition in Lemma 1. g 

 

Lemma 2.  If agents alive in period t expect { , } { , }i jt t+ + =1 1 11 , then the best choice for 

agents in period t is 

(i) { , } { , }i jt t = 0 0  if and only if βγ γ β β2 1 2 2( ) ( )− + + − − <k k k  

(ii) { , } { , }i jt t = 11  if and only if βγ γ β β2 1 2 2( ) ( )− + + − − ≥k k k  

Proof.  Using the same approach as for the first part of lemma 1, it is straightforward to 

show that under { , } { , }i jt t = 11 , old agents in period t can be at least as well-off, and 

young agents strictly better-off, than under { , } { , }i jt t = 0 1  or { , } { , }i jt t = 1 0  ∀ >γ 1 and 

k ≤ 1.  We therefore focus on the choice between { , } { , }i jt t = 11  and { , } { , }i jt t = 0 0 . 

 

Note that the expected choices of agents in period t+1 have no direct effect on the old in 

period t.  Their payoffs under { , } { , }i jt t = 11  and { , } { , }i jt t = 0 0  when { , } { , }i jt t+ + =1 1 11  are 

the same as when { , } { , }i jt t+ + =1 1 0 0 .  So from the proof of lemma 1, we know that old 
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agents are indifferent between { , } { , }i jt t = 11  and { , } { , }i jt t = 0 0  if under { , } { , }i jt t = 11  

they receive a transfer ′T  from the young: 

′ = − −+T N N kγ γτ τ2 2 11 ( )  

(Again note that ′T  could be negative). The lifetime payoff to a young agent under 

{ , } { , }i jt t = 0 0  when { , } { , }i jt t+ + =1 1 11  is 

v N N kt ({ , } { , }) ( )0 0 11 2 2 11→ = + −+γ βγτ τ  

The lifetime payoff to a young agent under { , } { , }i jt t = 11  is 

v N N kt ({ , } { , }) ( )11 11 2 2 11 2→ = + −+ +γ βγτ τ  

Therefore, old agents can be at least as well-off, and young agents strictly better-off, 

under { , } { , }i jt t = 11  if and only if 

v T vt t({ , } { , }) ({ , } { , })11 11 0 0 11→ − ′ ≥ →  

This is the condition in lemma 2. g 

 

Lemma 3.  If agents alive in period t expect { , } { , }i jt t+ + =1 1 1 0 , then the best choice for 

agents in period t is either { , } { , }i jt t = 11  or { , } { , }i jt t = 0 0 . 

Proof.  Using the same approach as for the first part of lemma 1, it is straightforward to 

show that under { , } { , }i jt t = 11 , old agents in period t can be at least as well-off, and 

young agents strictly better-off, as under { , } { , }i jt t = 0 1  or { , } { , }i jt t = 1 0  ∀ >γ 1 and 

k ≤ 1 .  So the choice for agents in period t reduces to that between { , } { , }i jt t = 11  and 

{ , } { , }i jt t = 0 0 . g 

 

Lemma 4.  If agents alive in period t expect { , } { , }i jt t+ + =1 1 0 1 , then the best choice for 

agents in period t is either { , } { , }i jt t = 11  or { , } { , }i jt t = 0 0 . 

Proof.  As for Lemma 3.  

 

We can now prove the four parts of Proposition 5. 

(a) This follows directly from part (i) of Lemma 1. 

(b) This follows directly from part (ii) of Lemma 2. 

(c) This follows directly from part (ii) of Lemma 1 and part (i) of Lemma 2. 
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(d) From Lemmas 1 to 4 together, we know that neither { , } { , }i jt t = 0 1  nor { , } { , }i jt t = 1 0  

are best choices in period t for any given expected choices in period t+1.  Therefore, 

neither choice will be observed in equilibrium in any period.  The only possible 

equilibrium choices are { , } { , }i jt t = 11  or { , } { , }i jt t = 0 0 , and these are characterized fully 

in parts (a) to (c). g 

 

Proof of Proposition 6 

Consider the payoffs in the CL outcome when an old agent in period t receives from a 

young agent in period t, a debt transfer equal to a fraction αt ∈[ , ]0 1  of the production by 

that young agent in that period.  Under this scheme, the payoff to an old agent in period 1 

is 

  γ α γ2 1 21N k N( )− +  

and the lifetime payoff to a representative young agent in period t is  

  γ α β γ α γt
t

t
t

tN N k N2 1 2 1 21
1

1( ) [ ( ) ]− + − ++
+

+  

In comparison, the payoff to an old agent in period 1 in the PCL equilibrium is 

γ 2 1N k( )−  

and the lifetime payoff to a representative young agent in period t in that equilibrium is 

  γ βγ
t t

N N
+ +

+
1

2
1

22 2  

for  t ≥ 1 odd, and 

γ βγ
t t

N N k2
2

22 2 1+ −
+

( )  

for t ≥ 2  even.  Thus, the CL outcome, with debt transfers, Pareto dominates the PCL 

equilibrium if and only if the following conditions hold: 

(A14)  γ α γ γ2 1 2 2 11N k N N k( ) ( )− + ≥ −  

and 

(A15)  γ α β γ α γ γ βγt
t

t
t

t
t t

N N k N N N2 1 2 1 2 2 21
1

1
1

2
1

2( ) [ ( ) ]− + − + ≥ ++
+

+
+ +

 

for  t ≥ 1 odd; and 

(A16)  γ α β γ α γ γ βγt
t

t
t

t
t t

N N k N N N k2 1 2 1 2 2 2 11
1

1 2
2

2( ) [ ( ) ] ( )− + − + ≥ + −+
+

+
+
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for t ≥ 2  even.  First consider condition (A14).  This is clearly satisfied for any α1 0≥ .  

So without loss of generality, set α1 0= .  Then evaluating (A15) at t = 1, we have 

(A17)  α α
γ2

1
1≥ ≡ + −k  

This is feasible (α ≤ 1) if and only if γ ≥ −[ / ( )]1 2 k , which holds everywhere in the 

parameter space.  So without loss of generality, set α α2 = .  Next consider (A15) for 

t ≥ 3 .  Evaluating (A15) at α α αt t= =+1 , we have 

(A18)  γ β
γ

β
t

k
−

+ − − ≥ +
1

2 2
1

1[ ]    for t ≥ 3  odd 

The LHS of (A18) is increasing in t, so a necessary and sufficient condition for (A18) is 

that it hold at t = 3.  Setting t = 3, and rearranging yields 

(A19)  γ β β≥ + + −[( ) / ( )]2 2 k  

which is the lower boundary of the PCL equilibrium. (See proposition 5).  Finally, 

consider (A16).  Evaluating (A16) at α α αt t= =+1 , we have 

(A20)  γ β
γ

βγ
t

k k2 2
1

1 1[ ] ( )+ − − ≥ + −    for t ≥ 2  even 

Since the LHS of (A20) is increasing in t, a necessary and sufficient condition for (A20) 

is that it hold at t = 2 .  Setting t = 2 , and rearranging, yields γ β≥ − −( / [2 ( )])2 1k .  

This must hold if (A19) holds.  Thus, there exists a feasible set of transfers to implement 

CL from the PCL equilibrium. 

 

Next consider the ES equilibrium. The payoff to an old agent in period 1 in this 

equilibrium is 2N , and the lifetime payoff to a representative young agent is 2 1N ( )+ β . 

Thus, the CL outcome with debt transfers Pareto dominates the ES equilibrium if and 

only if the following hold: 

(A21)  γ α γ2 1 2 21N k N N( )− + ≥  

and 

(A22)  γ α β γ α γ βt
t

t
t

tN N k N N2 1 2 1 2 2 11
1

1( ) [ ( ) ] ( )− + − + ≥ ++
+

+    ∀ ≥t 1 

Rearranging (A21) yields 
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α α
γ1

1
1≥ ≡ + −k  

Evaluating (A22) at α α αt t= =+1 , we have 

(A23)  γ β
γ

βt k[ ]2
1

1+ − − ≥ +    ∀ ≥t 1 

A necessary and sufficient condition for (A23) is that it hold at t = 1.  Setting t = 1, and 

rearranging yields 

  γ β β≥ + + −[( ) / ( )]2 2 k  

ES is not an equilibrium with transfers for this range of γ .  (See Proposition 5). g 
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Figure 1 
Equilibria without Transfers 
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Figure 2 
Intergenerational Conflict without Transfers 
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Figure 3 
“Rat Race” Equilibria without Transfers 
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Figure 4 
Equilibria with Contemporaneous Transfers 
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Figure 5 
Equilibria with Intertemporal Transfers 

 


