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ABSTRACT 

The theoretical literature on environmental regulation has proposed a variety of 
innovative and elegant schemes for dealing with asymmetric information, yet these 
schemes are rarely used in practice.  This is likely due to their complexity.  In contrast, 
relatively simple pricing schemes based on uniform increasing marginal price (UIMP) 
schedules are common. These schemes often take the form of a uniform discrete block 
pricing (DBP) schedule. We show that such schemes can be motivated as a relatively 
simple – albeit second-best – solution to the asymmetric information problem. We 
characterize the optimal linear UIMP scheme and the optimal DBP scheme, and 
characterize their relationship to the Pigouvian tax.  We show that the optimal linear 
UIMP schedule is a limiting case of the optimal DBP scheme.  We argue that such 
schemes are likely to have much greater practical appeal to regulators than more 
sophisticated but complex pricing schemes proposed in the existing theoretical literature. 
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1. INTRODUCTION 

The literature on pollution pricing under asymmetric information has proposed a variety 

of innovative regulatory schemes derived from mechanism design theory, but these 

schemes are rarely used in practice.1 A key obstacle to the implementation of these 

policies is their complexity, as perceived by the regulators tasked with drafting actual 

statutes, and by regulated firms who demand regulatory simplicity. In particular, these 

schemes typically require the implementation of firm-specific pricing whereby each 

regulated entity faces a pricing scheme tailored to fit its own individual characteristics. 

This requirement is not easily reconciled with the practical realities of real-world 

regulation. 

 Many regulators have nonetheless shown a willingness to use pricing schemes 

that go beyond a single unit price for pollution. A number of jurisdictions within the U.S. 

and in other parts of the world use “stepped rates” – or discrete block pricing (DBP) 

schemes – whereby a given unit price for pollution is applied up to a firm-specific level 

for each polluter, and a higher unit price is applied to any pollution from that polluter 

above the specified level. Similar pricing schemes are often used by water and electricity 

utilities.2 These schemes typically apply the same price schedule to all firms and so retain 

a degree of simplicity sufficient to allow manageable implementation. The most common 

rationale for such schemes is to create strong abatement incentives for large polluters 

while not imposing a high unit price on all polluters.  

 In this paper we show that a DBP-type scheme can also provide an imperfect but 

relatively simple approach to regulation under asymmetric information, one that does not 

require a dramatic departure from actual regulatory practice. The pricing schemes we 

develop allow the regulator to apply the same price schedule to all firms – a property we 

will call uniform treatment – and hence possess a simplicity of structure that might 

facilitate actual adoption. The obvious downside with these schemes is that different 

sized polluters pay different prices on their marginal unit of pollution. Consequently, 

marginal abatement costs (MACs) are not equated across pollution sources, and marginal 

                                                                                                                                                 
1 See Lewis (1996) for a comprehensive discussion of these regulatory schemes. 
2 Kaplow and Shavell (2002) point out that such schemes are also familiar to regulators in the context of 
progressive income tax systems. 
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damage may be higher or lower than those MACs. The policy design problem is to 

balance the costs of this shortcoming with the information-related benefits of a price 

schedule in which the marginal price of pollution rises with each firm’s level of pollution. 

This policy design problem is the focus of our paper. 

 We address this problem in the context of an admittedly restrictive model in 

which MACs and marginal damage are linear, and in which the information asymmetry is 

limited to the intercept of the MAC schedule (rather than the slope). These limitations 

necessarily restrict the generality of our specific results, but they allow the derivation of 

sharp analytical solutions which in turn shed light on the key elements of the policy 

design problem.  

 We study two types of pricing schemes. The first is a true DBP scheme with a 

finite number of price steps. We derive an analytical solution for the optimal DBP 

scheme for any given number of price steps, and then show that under particular 

conditions, the optimal number of price steps is infinite; that is, the optimal scheme is a 

continuous, and linear, increasing marginal price (LIMP) schedule. We then examine this 

LIMP scheme and show that its optimal structure strikes a  balance between the 

information-related benefits of increasing marginal prices on one hand, and an increase in 

aggregate abatement cost on the other, due to the non-equalization of MACs across firms. 

 We then relate our price schemes to those proposed by Weitzman (1978) and 

Roberts and Spence (1976). Weitzman examines a hybrid price-quantity scheme in which 

a traditional Pigouvian tax is combined with a penalty for deviating from a prescribed 

firm-specific quantity target. The hybrid scheme effectively provides a “safety valve” for 

a quantity target that is too restrictive ex post, and at the same time limits the 

overshooting that would arise from a tax that is too lax ex post. We show that the 

Weitzman scheme is equivalent to a LIMP scheme in which each regulated firm faces a 

different LIMP schedule, with an intercept tailored to its individual expected abatement 

cost.  This discrimination across firms means that expected MACs are equated across 

sources, and hence that expected abatement cost is minimized. This is a key advantage 

over a LIMP scheme with uniform treatment like the one we examine, but it comes at the 

cost of increased regulatory complexity; the regulator cannot simply specify a price 

schedule that applies to all firms.  
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 Roberts and Spence (1976) propose a different sort of hybrid price-quantity 

scheme, using a combination of charges and tradable licenses. Their scheme can be 

interpreted as a DBP scheme in which firms are entitled to trade unused portions of the 

price blocks. Adding the possibility of trade improves the performance of a DBP scheme 

because trade ensures that MACs are equated across firms in equilibrium, and this 

equality holds ex post, not just in expectation. On the other hand, trade adds an element 

of administrative complexity to the pricing scheme that regulators may find unattractive 

relative to a DBP scheme without trade. Moreover, the optimal policy parameters in the 

Roberts and Spence scheme can be calculated analytically only under very special 

conditions. 

 The rest of our paper proceeds as follows. In section 2 we present the model in 

which we examine the regulatory problem.  In Section 3 we characterize the Pigouvian 

tax in the context of that model as a useful benchmark for the analysis of the DBP-type 

schemes. In section 4 we derive the optimal DBP scheme and its limiting form as a LIMP 

schedule.  In section 5 we derive the optimal LIMP schedule under more general 

conditions. In Section 6 we relate our pricing schemes to those proposed by Roberts and 

Spence (1976) and Weitzman (1978), and in section 7 we examine the relative 

performance of these schemes. Section 8 provides some concluding remarks. All reported 

proofs are contained in the Appendix. 

 

2. THE MODEL 

Our model has  N regulated firms. The MAC for firm i is given by  

(1)  
a

exeMAC ii
ii

−
=)(  

where ie  is emissions by firm i, ix  is the unregulated (or no-abatement) level of 

emissions for that firm, and a  is a positive parameter.  Thus, ii ex −  measures abatement.  

Note that firms differ with respect to their MAC intercepts ( ix ) but share the same slope 
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parameter.3  We assume that individual firms know their own ix  but the regulator faces 

uncertainty over this parameter.  In particular, from the perspective of the regulator, 

(2)  η++= iii vzx  

where iz  is observable, iν  is an unobserved idiosyncratic random variable, and η  is an 

unobserved industry-wide random variable.  We assume that η  is drawn from a 

distribution with 0][ =ηE  and 22 ][ ρη =E ; the iv ’s are drawn from independent and 

identical distributions with 0][ =ivE  i∀  and 22 ][ ω=ivE  i∀ ; and η  and iv  are 

independent. It is worth noting that these assumptions on the random variables together 

mean that ii zxE =][ . We let v  denote the mean of the realized iv ’s. Note that v  will 

generally not be equal to zero (if N is finite and 02 >ω ); it is a random variable from the 

perspective of the regulator.4 This has important implications for the policy design 

problem under the Roberts and Spence (1976) scheme in particular. 

 Firms differ according to the realized value of their iv  parameter (which we call 

unobservable heterogeneity) but they also potentially differ according to their observable 

parameter iz  (which we call observable heterogeneity).  We will see later that this 

distinction is important for the policy design problem. The mean and variance of the 

observed iz ’s are denoted 0>z  and 2σ  respectively.  

 We assume the following proportional marginal environmental damage schedule: 

(3)  ∑
=

=
N

i
ieMD

1
δ  

                                                                                                                                                 
3 This specification of marginal abatement cost is common in the literature; for example, see Adar and 
Griffin (1976), Blair (1985) and Stavins (1996). Our assumption that the slope of the MAC function is the 
same across firms and known by the regulator is clearly restrictive. We adopt it because it facilitates the 
derivation of analytical solutions. Relaxing this assumption means that our optimal pricing schemes must 
be derived numerically, as do the alternative schemes to which we compare our results in sections 6 and 7. 
This is not necessarily an obstacle to their implementation, but it does render comparative analysis less 
transparent. For treatments of optimal regulation under slope uncertainty (though not in the context of 
DBP-type schemes), see Watson and Ridker (1984) and Hoel and Karp (2001).  
4 One should think of v  as the mean of a sample of size N drawn from a population whose mean is zero 
and whose variance is 2ω . 
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where 0≥δ .  Emissions are assumed to be observable and verifiable.5 Throughout our 

analysis we assume that the first-best solution is always an interior one (with positive 

emissions for all firms).6 

 

3. THE PIGOUVIAN TAX 

The Pigouvian tax – levied on a per unit basis – is the textbook benchmark for pollution 

pricing, and it is useful to characterize the properties of the tax in this setting in order to 

later compare it to the other pricing schemes. It should be noted that the Pigouvian tax we 

derive here is the second-best Pigouvian tax, as distinct from the first-best tax that would 

be levied in the absence of uncertainty about abatement cost, because it is set ex ante 

(before the uncertainty is resolved). For the sake of brevity, we henceforth simply use the 

term “Pigouvian tax” to refer to this second-best per unit tax. Moreover, we restrict 

attention to a setting in which the regulator makes a once-and-for-all choice of the tax 

rate (rather than one in which the rate can be adjusted over time, a possibility discussed 

further below).  

 If the regulator imposes a per unit tax t on emissions, then the cost-minimizing 

response by firm i is 

(4)  atxte ii −=)(  

The regulator’s problem is to choose the tax rate that minimizes expected social cost 

(aggregate abatement cost plus environmental damage), given the response behaviour in 

equation (4):  

(5)  
t

min  )]()([E tDtC +    s.t   atxte ii −=)(  i∀  

where C(t) is aggregate abatement cost, given by 

                                                                                                                                                 
5 If emissions are observable, then it might seem reasonable to suppose that the “no abatement” emissions 
level should also be observable prior to the implementation of policy. In reality, most firms currently face 
some form of regulation that causes actual emissions to deviate from their no-abatement emissions. We 
envisage a setting where the regulator is moving to a new form of regulation based on emissions pricing, 
and where current emissions may not correspond to the no-abatement level, due to existing regulations. 
6 This is not an unrestrictive assumption. In particular, it must be violated when 02 >ω  or 02 >σ  and N is 
sufficiently large (because our MAC has a finite intercept). This means that one cannot infer anything from 
taking the limit as ∞→N  in any of our results. This limitation is not especially important from a practical 
perspective, but it does explain why the reader might arrive at puzzling results if tempted to examine this 
limiting case.  
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(6)  ∑
=

⎥
⎦

⎤
⎢
⎣

⎡ −
=

N

i

ii

a
tex

tC
1

2

2
)]([

)(  

and D(t) is environmental damage, given by 

(7)  
2

)(
)(

2

1
⎥
⎦

⎤
⎢
⎣

⎡

=
∑
=

N

i
i te

tD
δ

 

Given our assumptions on the random variables, the solution to this problem is 

(8)  
Na

Nzt
δ

δ
+

=
1

*  

In response to this tax, emissions from firm i are  

(9)  
Na

Nazxx
te ii

i δ
δ

+
−+

=
1

)(
)( *  

In comparison, first-best (full information) emissions from firm i are 

(10)  
Na

Naxxx
e ii

i δ
δ

+
−+

=
1

)(*  

where Nxx N

i i∑ =
=

1
. Thus, emissions from a given firm under the Pigouvian tax will 

differ from the first-best emissions level for that firm by an amount proportional to the 

difference between the average of the true no-abatement emission levels for the industry 

(x) and the regulator’s expectation of that industry average (z).  

 The potential for error under the Pigouvian tax is illustrated in Figure 1, where 

emissions are measured on the horizontal axis. It illustrates a simple case with only one 

regulated firm and just two possible states of the world. In state A the firm has AMAC  

and in state B the firm has BMAC . The Pigouvian tax is based on the expected MAC, 

labeled E[MAC]. The firm will respond to that tax with emissions )( *teA  if it has AMAC  

and with emissions )( *teB  if it has BMAC . In comparison, the first-best emission levels 

are *
Ae  and *

Be  respectively. Thus, the expected welfare loss under the Pigouvian tax – 

relative to first-best – is the probability-weighted sum of the two shaded areas. 

 Figure 1 illustrates the basic problem the regulator faces in attempting to price 

emissions under uncertainty, about abatement costs; it also serves to illustrate a potential 

solution. If the regulator abandons the per-unit Pigouvian tax approach and instead 
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simply presents the firm with a price schedule that corresponds to the MD function then it 

is clear from the figure that the firm will always choose the first-best level of emissions, 

regardless of whether its true MAC schedule is AMAC  or BMAC . 

 This well-known result – identified by Dasgupta et. al. (1980) and exposited more 

accessibly by Kaplow and Shavell (2002) – illustrates the information benefits of using a 

pricing scheme in which the marginal price on emissions rises with the level of 

emissions. If the firm in Figure 1 has AMAC  then a lower marginal price is needed to 

ensure the right balance between MAC and MD; conversely, if the firm has BMAC  then 

a higher price is required.  A price schedule in which the marginal price rises with the 

level of emissions allows this lower or higher price to arise endogenously without the 

regulator needing to know the true MAC schedule.  In the case of a single firm, this kind 

of pricing scheme achieves the first-best solution.  

 The pricing problem becomes more complicated when the setting involves two or 

more firms, because MACs will generally not be equated across firms – and so aggregate 

abatement cost will not be minimized – unless all firms face the same price on their 

marginal unit of emissions. This condition cannot be satisfied if different firms face the 

same increasing marginal price scheme. One potential solution to this problem is to use a 

hybrid tax-quantity scheme that effectively confronts different polluters with a single 

price [Roberts and Spence (1976) and Weitzman (1978)]. These schemes add a layer of 

regulatory complexity beyond simple pricing schedules with uniform treatment. An 

alternative solution is to set a single Pigouvian tax rate for all firms but to adjust that tax 

rate over time towards its optimal level in response to the observed behaviour of firms 

[Karp and Livernois (1994) and Kaplow and Shavell (2002)]. This approach is vulnerable 

to strategic gaming by the regulated firms and requires continual regulatory revisions. 

Our goal in the following sections is to design a once-and-for-all pricing scheme that 

retains the regulatory simplicity of a policy in which all firms in the industry face the 

same fixed price schedule but which optimally balances the information benefits of a 

rising marginal price with the costs associated with forcing MACs to differ across firms 

in equilibrium. 
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4. DISCRETE BLOCK PRICING  

We begin with a DBP scheme with a finite number of blocks (or steps) and associated 

unit prices. (Most such schemes in practice have just two blocks). Critically, the same 

price schedule is applied to all firms in the regulated industry or region. We will refer to 

such a scheme as exhibiting uniform treatment (a UDBP scheme).  

 To enable the derivation of an explicit analytical solution for the optimal UDBP 

scheme, we initially restrict attention to a simplified case in which 02 >ω , but 02 =σ  

and 02 =ρ . This implies unobservable heterogeneity across firms ( 02 >ω ), where all 

firms are the same in expectation ( 02 =σ ), and  no industry-wide uncertainty ( 02 =ρ ).  

This is the simplest possible setting in which to capture both uncertainty and 

heterogeneity across firms, and thus create a meaningful trade-off in the policy design 

problem. These assumptions are retained for the remainder of section 4. 

 Consider a UDBP scheme with m discrete price blocks and m associated unit 

prices, of the form:  

(11)  1p  for ],0[ 1bei ∈    and   jp  for ],( 1 jji bbe −∈  for mj ,...,2=  

That is, firm i pays a price 1p  per unit on its emissions up to 1b , a higher unit price 2p  on 

its emissions greater than 1b  but not exceeding 2b , a still higher unit price 3p  on its 

emissions greater than 2b  but not exceeding 3b , and so on.  Such a scheme is illustrated 

as the step function labeled *UDBP in Figure 2, for the case of 3=m ; ignore the line 

labeled )(* ep  for now. Facing such a price scheme, firm i will respond in the following 

way: 

(12)  ⎢
⎣

⎡ −
=

j

ji
i b

apx
bpe ),(      if     ⎢

⎣

⎡
+≤≤+
+<<+

+

−

1

1

jjijj

jjijj

apbxapb
apbxapb

 

 The regulator’s problem is to choose },{ jj bp  to minimize the sum of )],([E bpD  

and )],([E bpC . The first-order conditions for this problem are given by equations (A2) – 

(A6) in the Appendix. It is generally not possible to solve these conditions for a closed 

form solution, even for a specified distribution for iv . An exception is where iv  has a 

uniform distribution, and the following proposition describes the optimal UDBP scheme 

in that case. 
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PROPOSITION 1. If 02 =σ  and 02 =ρ , and iv  is distributed uniformly with support  

],[ ξξ− , then the optimal UDBP scheme is given by },{ **
jj bp , where 

(13)  )]()12(1[ ** mmjtp j γ−−+=  

(14)  )]()2(1[ ˆ* mmjNeb j γ−+=  

(15)  
])1([

)1()(
δ

ξδγ
ammzN

Nam
−+

+
=  

and where 

(16)  
Na

ze
δ+

=
1

ˆ  

is the emissions level for the average firm under the Pigouvian tax, *t .  

 

COROLLARY. The optimal UDBP scheme described in Proposition 1  

(a) reduces to the Pigouvian tax when 1=m . 

(b) is symmetric around the Pigouvian tax; that is, 

 (i) for m odd: *

2
1 tp m =+  

 (ii) for m even: *1

2
22 t

pp mm

=
+

+
 

This property is illustrated in Figure 2, where *t  passes through the “center” of the 

UDBP schedule.  

(c) is symmetric around the linear function ceep += δ)(* , where 

Na
Nzc
δ

δ
+

−
=

1
)1(  

That is,  

cb
pp

j
jj +=

+ + δ
2

1   ]1,1[ −∈∀ mj  

and 

e
ee jmj ˆ
2

~~
1 =

+ +−   ],1[ mj∈∀    where  ll pce =+~δ  

This property is also illustrated by the line labeled )(* ep  in Figure 2. 
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(d) has uniform price steps (above 1p ) and uniform price blocks (above )1b ; that is,  

(i) jmjmjj pppp −−++ −=− 11  j∀  

(ii) 11 −+ −=− jjjj bbbb  j∀  

(e) approaches the Pigouvian tax as uncertainty vanishes; that is, ** tp j →  j∀   as 0→ω . 

  

It is important to note that these specific properties of the optimal UDBP scheme are 

based on the assumption that iv  is distributed uniformly. Departures from this 

assumption will typically yield different results. To provide a sense of this sensitivity we 

next present two examples that we have solved numerically, in which iv  is assumed to 

have a beta distribution with parameters 1η  and 2η , normalized to have support ]1,1[−  

and zero mean.7 In each example the following parameter values are assumed: 25.0=a , 

25.0=δ , 2=z  and 2=N . The benchmark for comparison is a uniform distribution with 

support ]1,1[− . 

 First consider a symmetric beta distribution with 321 ==ηη . The corresponding 

optimal UDBP scheme (for 3=m ) is illustrated by the dashed line in Figure 3, alongside 

the optimal scheme associated with the benchmark uniform distribution (the solid line).  

Note that the greater central tendency of the beta distribution means that the UDBP 

scheme under that distribution is flatter and has a narrower central price block than the 

scheme under a uniform distribution. Both schemes are nonetheless symmetric around the 

Pigouvian tax (labeled PT in the figure) and around the )(* ep  function identified in the 

Corollary to Proposition 1.  

 Next consider a skewed beta distribution with 21 =η  and 32 =η . The median of 

this distribution is below the mean. The corresponding optimal UDBP scheme (for 

3=m ) is illustrated in Figure 4 (dashed line), alongside the optimal scheme associated 

with the benchmark uniform distribution (solid line). The key feature of the UDBP 

scheme in this case is that it is not symmetric around the Pigouvian tax nor around the 

                                                                                                                                                 
7 The uniform distribution is a special case of the beta distribution where 121 ==ηη . Higher values of 1η  
and 2η  yield a distribution with more central tendency than the uniform distribution. 
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)(* ep  schedule. The UDBP schedule under the skewed distribution is skewed to the right 

relative to the symmetric case, reflecting the fact that more than half the firms have an 

abatement cost below the mean.  

 These numerical examples point to important limitations of the UDBP scheme: its 

optimal structure is sensitive to distributional assumptions; and the solution is not 

straightforward to derive analytically except where iv  has a uniform distribution. These 

shortcomings can be traced to the sharply discontinuous nature of the pricing scheme 

associated with the finite number of price blocks. It is therefore natural to ask whether we 

can do better under a scheme with more continuity. Proposition 2 provides a partial 

answer. 

 

PROPOSITION 2. If iv  is distributed uniformly with support  ],[ ξξ− , then the optimal 

UDBP scheme has an infinite number of price blocks.  

 

 This is an intuitive result, and our conjecture is that it generalizes to any 

distribution – and numerical simulations support that conjecture – but we have not been 

able to construct a complete proof of the result beyond the case of the uniform 

distribution. We can however demonstrate the following result. 

 

PROPOSITION 3. The optimal UDBP scheme for any given number of blocks m 

converges to the continuous price schedule ceep += δ)(*  (as defined in the Corollary to 

Proposition 1) in the limit as ∞→m , for any distribution of iv  for which the cumulative 

density is differentiable.  

 
 This result tells us that the optimal continuous price schedule is linear. This too is 

an intuitive result in view of the assumed linearity of MACs and marginal damage in our 

model. The result – coupled with Proposition 2 and our conjecture regarding its 

generality – suggest that a continuous linear pricing scheme is superior to a UDBP 

scheme with a finite number of price blocks. Moreover, such a scheme is easier to derive 
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than the UDBP scheme under fairly general conditions. We investigate the optimal linear 

pricing scheme in the next section. 

 

5. THE OPTIMAL ULIMP SCHEME 

Recall that our results in section 4 were based on a simplified setting in which 02 =σ  

and 02 =ρ . In this section we relax those assumptions and allow 02 >σ  and 02 >ρ , 

together with 02 >ω . We do not impose any other distributional assumptions on the 

random variables. 

 Suppose all firms face an emissions price schedule of the form 

(17)  kseep ii +=)(  

where s and k are parameters set by the regulator.  That is, the unit price on a firms’ 

emissions comprises a constant term k, plus a component that rises with the level of the 

firm’s emissions. In response to this price schedule, firm i chooses emissions 

(18)  
as
akx

kse i
i +

−
=

1
),(   

and aggregate emissions are 

(19)  
as

NakxksE
+
−

=
1

)(),(  

The induced values of expected environmental damage and expected aggregate 

abatement cost are, respectively, 

(20)  2

22222

)1(2
])2()([)],([E

as
zNzakakNNNksD

+
+−++

=
ρωδ  

(21)  2

2222222

)1(2
]2)()([)],([E

as
kszzsksNaksC

+
+++++

=
σρω  

The planning problem is to choose s and k to minimize )],([E)],([E ksCksD + .  The 

solution to this problem is straightforward to derive, and is described in the following 

proposition. 
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PROPOSITION 4. The optimal ULIMP schedule is given by **)( kesep ii += , where 

(22)  222

22
* )(

σρω
ωρδ
++
+

=
Ns  

and 

(23)  
))(1(

])1[(
222

22
*

σρωδ
σωδ
+++

+−
=

aN
NNzk  

 

 This optimal ULIMP schedule is illustrated in Figure 5. It has a number of 

noteworthy properties. First, in the special case where 02 =σ  and 02 =ρ , we have 

δ=*s  and ck =* ; the optimal ULIMP schedule coincides with the optimal UDBP 

scheme as ∞→m  (recall Proposition 3). Second, in the case with no uncertainty (that is, 

if 022 ==ωρ ), 0* =s  and ** tk = ; the optimal schedule reduces to the Pigouvian tax. 

Third, if 1=N  then δ=*s  and 0* =k ; the optimal schedule coincides with the marginal 

damage function. Fourth, in the most general case where 1>N , 02 >ρ , 02 >σ  and 

02 >ω , we have 0* >s  and  ** tk <  (as illustrated in Figure 5), and the following sets of 

comparative static results obtain: 

(i)  02

*

<
∂
∂
ρ
k , 02

*

>
∂
∂
ρ
s    and   02

*

>
∂
∂
σ
k , 02

*

<
∂
∂
σ
s  

(ii)  0)(2

*

><
∂
∂
ω
k  and 0)(2

*

<>
∂
∂
ω
s   if and only if  2

2

)(
1

ρσ
<>

−N
 

 The first set of results capture the essence of the tradeoff underlying the optimal 

ULIMP schedule: an increasing marginal price schedule has informational advantages but 

comes with the cost of unequalized MACs when firms are heterogeneous. Accordingly, 

the optimal price schedule is steeper for higher degrees of aggregate uncertainty (as 

measured by 2ρ ) and flatter for higher degrees of (observable) heterogeneity across firms 

(as measured by 2σ ). The second set of results state that an increase in unobservable 

heterogeneity across firms (as measured by 2ω ) has an ambiguous effect on the optimal 

price schedule. The reason for that ambiguity is that an increase in 2ω  raises the degree 

of uncertainty faced by the regulator but also raises the degree of heterogeneity across 
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firms, thereby creating conflicting forces on the optimal schedule. The net effect depends 

on the relative size of 2σ  and 2ρ : if the degree of observable heterogeneity ( 2σ ) is 

large, then the additional heterogeneity introduced by a larger value of 2ω  is unimportant 

relative to the additional uncertainty it introduces, and hence the optimal schedule should 

be steeper. The converse is true if 2σ  is relatively small.  

 One additional property of the optimal ULIMP schedule is worth noting here: 

emissions for firm i under the optimal ULIMP schedule are less than its emissions under 

the per unit Pigouvian tax if and only if zxi < ; otherwise its emissions are greater under 

the ULIMP schedule.  That is, below-average polluters pollute less under the ULIMP 

scheme than under the Pigouvian tax, while the converse is true for above-average 

polluters. This property is evident in Figure 5, where the optimal ULIMP schedule, 

labeled )(* ep , is equal to the Pigouvian tax at the intersection with the average MAC 

curve, labeled ][E MAC . 

 

6. RELATIONSHIP TO OTHER PRICING SCHEMES 

An extensive existing literature studies pollution pricing under asymmetric information.8 

Here we confine consideration to the two papers most closely related to ours: Weitzman 

(1978) and Roberts and Spence (1976).  

 

6.1 Weitzman (1978) 

Weitzman (1978) addresses a very general problem: the design of optimal rewards for 

economic agents when the benefit function is non-separable in the agents’ actions, and 

                                                                                                                                                 
8 Formal analysis of environmental regulation under asymmetric information arguably began with 
Weitzman (1974) where he analyzes the relative merits of price-based regulation and quantity-based 
regulation under uncertainty about abatement costs.  (See Adar and Griffin (1976) for a graphical 
treatment).  The subsequent literature has followed several different directions.  One branch has extended 
the Weitzman (1974) comparative analysis to stock pollutants (for example, Hoel and Karp (2001) and 
Newell and Pizer (2003)) and to uncertainty about the marginal damage function (for example, Stavins 
(1996)).  A second branch has focused on the design of  revelation mechanisms for polluting firms (see for 
example, Spulber (1988) and Lewis (1996)).  A third branch has examined regulatory mechanisms for 
multiple firms where fees are based on aggregate emissions (for example, Segerson (1988) and McKitrick 
(1999)).  A fourth branch has analyzed dynamic tax adjustment (see Karp and Livernois (1994)).  A fifth 
branch has focused on second-best non-linear pricing schemes and hybrid price-quantity schemes; Roberts 
and Spence (1976), Weitzman (1978), Yohe (1981) fall into this last category. 
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both the benefit function and the agents’ cost functions are uncertain.  He shows that the 

optimal reward function in this setting comprises a traditional price signal combined with 

a penalty for deviating from a prescribed quantity target.9  In the context of the model in 

this paper, Weitzman’s optimal reward function can be interpreted as a penalty function: 

(24)  2* )~(
2

)( iiiii eeeteP −+=
δ  

where *t  is the per unit Pigouvian tax (which minimizes expected social cost), and ie~  is 

the expected first-best emission level for firm i.  This hybrid penalty function has the 

following rationale.  If the regulator uses only the Pigouvian tax, based on expected 

abatement costs, then emissions will be too low relative to first-best if the MAC is lower 

than expected, and vice versa.  Conversely, if the regulator uses only a quantity 

instrument, specifying ie~ , then emissions will be too high if the MAC is lower than 

expected, and vice versa.10  The hybrid scheme in (24) combines elements of both 

instruments, and is therefore superior to either one alone.  It effectively provides a “safety 

valve” for a quantity target that turns out to be too restrictive ex post, and at the same 

time limits the overshooting that would arise from a tax that turns out to be too lax ex 

post.  

 Note that the  penalty function in (24) corresponds to a marginal price schedule 

given by 

(25)  )~()( *
iii

W
i eetep −+= δ  

where the “W” superscript denotes the Weitzman scheme.  Thus, Weitzman’s penalty 

function is equivalent to a LIMP scheme with δ=Ws  and i
W
i etk ~* δ−= , but it is 

crucially different from the ULIMP scheme described in section 5 above.  In particular, 

the Weitzman price schedule does not involve uniform treatment across firms; each firm 

faces a different LIMP schedule, with an intercept tailored to its individual expected 

abatement cost.  This is a crucial distinction because it means that expected MACs are 

                                                                                                                                                 
9 Yohe (1981) addresses the same basic problem. 
10 This comparison between prices and quantities is the essence of Weitzman (1974).  In that paper he 
shows that the ranking of the associated expected losses under the two instruments depends on the relative 
slopes of the MAC and MD functions. 
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equated across sources under Weitzman’s scheme.  To see this, note from (18) that 

emissions from firm i in response to the price schedule in (25) are 

(26)  
δ
δ

a
etax

e iiW
i +

−−
=

1
)~( *

 

Making substitutions for *t  from (8) and for ie~  from (10), noting that ][E~ *
ii ee = , and 

calculating the MAC yields 

(27)  )(
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),;( *
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a
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⎡
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+= η
δ
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Thus, *)],;([E tveMAC i
W
ii =η  i∀  since 0][E =η  and 0][E =iv  i∀ .  This solution is 

illustrated in Figure 6 for the case of 2=N  and 02 >σ .  The two firms face different 

price schedules tailored to the known component of their MAC schedules, and expected 

MACs are equated.  Thus, we face no tradeoff between information benefits and expected 

abatement costs. (Note however that MACs may not be equated ex post, so the Weitzman 

scheme generally does not achieve first-best). 

  Now compare the Weitzman scheme with the optimal ULIMP scheme.  For 

simplicity, consider the case where 02 =ρ .  In this case it is straightforward to show that 

(28)  Wktk ⎥
⎦

⎤
⎢
⎣
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where Wk  is the average of the Weitzman intercepts across firms; that is,  

(29)  
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Thus, *k  is a weighted average of the per-unit Pigouvian tax and the average of the 

Weitzman intercepts, where the weights reflect the degree of uncertainty ( 02 >ω ) and the 

degree of observable heterogeneity across firms ( )02 >σ  respectively.  Since Wkt >* , it 

follows that Wkk >* .  Note too that δ<*s .  Thus, the optimal ULIMP schedule is 

flatter and has a higher intercept than the average of the Weitzman schedules.11  This 

                                                                                                                                                 
11 It is not possible to draw such sharp conclusions when 02 >ρ .  The optimal ULIMP is steeper and 
higher in that case, and cannot be compared unambiguously with the average Weitzman schedule. 
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reflects the fact that the optimal ULIMP scheme drives a wedge between MACs across 

firms while the Weitzman scheme does not (in expected terms).  The optimal ULIMP 

scheme must therefore be flatter than the average of the Weitzman schedules.  This 

difference diminishes as 2ω  rises relative to 2σ  because information-related benefits 

increasingly outweigh the inflation of abatement costs associated with heterogeneity 

across firms.  

 The optimal ULIMP schedule and the Weitzman scheme coincide in three special 

cases.  First, if 02 =ω  and 02 =ρ  then both mechanisms reduce to the Pigouvian tax. 

Second, if 02 =σ  then all firms face the same price schedule under the Weitzman 

scheme, and that schedule coincides with the optimal ULIMP schedule.  The same 

outcome arises when 1=N . 

 

6.2 Roberts And Spence (1976) 

Roberts and Spence (1976) – henceforth RS – propose a different sort of hybrid price-

quantity scheme, using charges and tradable licenses, where “each [instrument] can 

protect against the failings of the other.  Licenses can be used to guard against extremely 

high levels of pollution while, simultaneously, effluent charges can provide a residual 

incentive to clean up more than the licenses required, should costs be low”. (p.194) 

 The simplest version of the RS mixed scheme works as follows.  The regulator 

issues a total of L licenses.  A firm holding il  licenses pays a penalty equal to )(2 ii lep −  

if ii le > , and receives a subsidy equal to )(1 ii elp −  if ii le < , where 21 pp ≤ .12  Thus, in 

terms of opportunity cost, firm i effectively faces a two-step marginal price function, 

much like the UDBP scheme illustrated in Figure 2 (but with 2=m ).  However, the RS 

scheme is importantly different from a simple UDBP scheme because the licenses in their 

scheme are tradable at an endogenous equilibrium price.  Thus, the RS scheme functions 

like a UDBP scheme in which firms are entitled to trade unused portions of the price 

blocks. Adding this possibility of trade adds an element of administrative complexity to a 

UDBP pricing scheme, but it also improves its performance. In particular, trade ensures 

                                                                                                                                                 
12 The original notation used in RS is s and p for our 1p  and 2p  respectively. 
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that MACs are equated across firms in equilibrium, and this equality holds ex post, not 

just in expectation.  Thus, the tradeoff between information benefits and an increase in 

aggregate abatement cost that arises with a simple UDBP scheme does not arise with the 

RS scheme. 

 In an appendix to their paper, RS extend their two-step scheme to one with j types 

of tradable licenses.  Allowing trade in all license types means that the regulated firms 

effectively act as if they were a single firm facing a marginal price schedule with j steps 

that approximates the marginal damage schedule.  In the limit as ∞→j , the effective 

marginal price schedule, in terms of aggregate industry emissions, is a LIMP scheme 

with δ=s  and 0=k .13 This limiting scheme achieves first-best results.   

 It is worth noting that if 1=N , then the limit of the generalized RS scheme 

coincides with the Weitzman (1978) scheme, which in turn coincides with the optimal 

ULIMP scheme.  To see this, recall from (25) that the Weitzman scheme corresponds to a 

LIMP scheme with δ=s  and ii etk ~* δ−= .  In the case of a single firm, iet ~* δ= , so 

0=ik .  Thus, the Weitzman marginal price function coincides with the marginal damage 

function, as does the limiting RS price function.  Both schemes achieve first-best results 

in that case. 

 When 1>N  the Weitzman scheme and the RS scheme take different approaches 

to the information asymmetry problem.  The Weitzman scheme fixes individualized 

quantity targets and allows the marginal price of deviations from those targets to differ 

across firms (recall Figure 6).  In contrast, the RS scheme fixes only an aggregate 

quantity target and allows firms to trade in quantities; deviations from those individual 

(endogenous) quantity targets are then priced at the same rate for all firms.  This means 

that MACs are equated across firms ex post.  In contrast, MACs under the Weitzman 

scheme are equated only in expectation.   

 The primary drawback with the RS scheme is that it is generally not possible to 

derive exact solutions for the optimal subsidy and penalty prices ( 1p  and 2p ) unless the 

                                                                                                                                                 
13 Collinge and Oates (1982) propose essentially the same scheme – a sequence of numbered tradeable 
permits with differing rental prices – to ensure correct incentives for entry and exit in the polluting 
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distribution of the actual MACs – as opposed to the population distribution from which 

they are drawn – is known. The problem is the following. Even the simplest form of the 

RS scheme (with just two steps) has three possible equilibria in the license market, 

corresponding to where the equilibrium license price is equal to 1p  or 2p  or some value 

strictly between 1p  and 2p .  The conditional distribution of the MACs in each of these 

three possible equilibria must be known in order for the optimal values of 1p , 2p  and L 

to be calculated, and this in turn generally requires that the sample distribution of the 

MACs be known. This is a significant information requirement for the regulator. 

 In the following section we compare the performance of the RS scheme using two 

steps with the Weitzman scheme and our ULIMP scheme in a simplified setting in which 

an approximate analytical solution can be found for the optimal RS scheme. However, 

even in this simplified setting we will see that an exact analytical solution for the optimal 

RS scheme can be derived only under very special conditions.  

 

7. COMPARATIVE PERFORMANCE 

We focus on the special case where 02 >ω  but 02 =σ  and 02 =ρ , and where the iv ’s 

are drawn from a uniform distribution with support  ],[ ξξ− . Recall that this is the same 

setting examined in section 4, where we derived the optimal UDBP scheme. This setting 

implies unobservable heterogeneity across firms ( 02 >ω ), but all firms are the same in 

expectation ( 02 =σ ), with no industry-wide uncertainty ( 02 =ρ ). We have already 

learned two things about this special case: the optimal UDBP scheme has an infinite 

number of steps and converges to the ULIMP scheme; and the Weitzman scheme and the 

ULIMP scheme coincide.14 Thus, the comparison of interest is between two second-best 

schemes: the ULIMP/Weitzman scheme and the RS scheme. We begin by deriving the 

optimal two-step RS scheme (denoted RS2) in this setting. 

 

                                                                                                                                                 
industry.  The outcome is a pricing scheme in terms of aggregate industry emissions that approximates the 
actual marginal damage schedule. 
14 They may result in unequal MAC’s, however, so they do not coincide with the first-best performance of 
an RS scheme with an infinite number of steps. 
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7.1 The Optimal RS2 Scheme 

The details of the derivation are relegated to the Appendix, but some key elements of the 

derivation warrant discussion. First, three types of equilibrium can arise under the RS2 

scheme, as characterized by the equilibrium price of licenses. In particular, the 

equilibrium license price can be equal to 1p , or 2p , or some value strictly between 1p  

and 2p . The linear functional forms we have specified for MAC and MD mean that the 

type of equilibrium that arises depends only on the mean of the realized iv ’s, denoted v , 

and not on the higher moments of the sample distribution. This simplifies the derivation 

significantly. Nonetheless, v  is a random variable from the perspective of the regulator, 

and its distribution must be known in order for the optimal scheme to be calculated. In 

the special case where the population distribution of the iv ’s is uniform on  ],[ ξξ− , and 

2=N  (two regulated firms) , it can be shown that the distribution of v  is a symmetric 

triangular distribution with zero mean and variance equal to .6/2ξ  In this special case, it 

is possible to derive an exact analytical solution for the optimal RS2 scheme. 

 When 2>N  the distribution of v  cannot be found analytically, but the central 

limit theorem can be invoked to approximate that distribution as a normal distribution. 

(This of course is true for any population distribution of the iv ’s).  This approximation is 

useful for finding a numerical solution for the optimal scheme, but it is still not possible 

to find a closed-form analytical solution. However, any normal distribution can be 

approximated by a symmetric triangular distribution. We use this approach to derive an 

approximate analytical solution for the RS2 scheme when 2>N  (when 2=N  our 

analytical solution is exact). The approximate (or if N=2, exact) solution is as follows. 

 

PROPOSITION 5. If 02 =σ  and 02 =ρ , and iv  is distributed uniformly with support  

],[ ξξ− , then the approximately optimal RS2 scheme is given by },,{ 21
RSRSRS Lpp , where 
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(32)  NeLRS ˆ=  

and where 

(33)  
Na

ze
δ+

=
1

ˆ  

is the emissions level for the average firm under the Pigouvian tax, *t . These solutions 

are exact when 2=N . 

 

 This optimal RS2 scheme has a number of key properties. First, it is symmetric 

around the Pigouvian tax (just like the UDBP scheme).  Second, it is symmetric around 

the linear function Neep δ=)( . Recall that this is the limiting case of the RS scheme as 

the number of steps approaches infinity. In contrast, the UDBP scheme is symmetric 

around the optimal ULIMP. Third, in the case where 2=N , the optimal RS2 scheme is 

steeper than the UDBP schedule in the sense that *
11 pp RS <  and *

22 pp RS > . These 

properties of the RS2 scheme are illustrated in Figure 7.  

 The steeper profile of the RS2 price schedule relative to the UDBP scheme 

reflects the fact that the RS scheme does not have to trade off the information benefits of 

the rising marginal price profile against higher abatement costs, because trade in licenses 

ensures that MACs are equated in equilibrium. In contrast, the UDBP scheme does have 

to make this tradeoff, and the price profile is flatter as a consequence (so as to reduce the 

risk of markedly different MACs across firms in equilibrium). It is not possible to prove 

an unambiguous analytical relationship between the price profiles of the two schemes 

when 2>N , but we suspect that this reflects the approximate nature of our RS2 solution 

in that case, rather than some breakdown in the logic of the comparison. 

 We now examine the relative performance of the RS2 and ULIMP schemes. We 

focus on the ULIMP scheme because we know it is superior to a UDBP scheme with 

finite steps, both in terms of performance and ease of derivation for the regulator. Our 

performance comparison has two parts. We first consider an analytical comparison of the 

minimized expected social cost under the two schemes. We then construct a Monte Carlo 

simulation to compare their performance in terms of the distribution of actual social cost 

outcomes. 
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7.2 Expected Social Cost 

We present the comparison between the two schemes in terms of their percentage 

deviations from the expected first-best social cost. This allows us to conduct comparative 

statics on the relative performance measure while controlling for the impact of parameter 

changes on absolute costs. Let FBSC  denote the expected value of social cost when 

emissions are chosen optimally for any realization of the iv ’s. Let 2RSSC  denote 

expected social cost under the RS2 scheme, and let ULIMPSC  denote expected social cost 

under the ULIMP scheme. Then we obtain the following results on comparative 

performance. 

 

PROPOSITION 6. If 02 =σ  and 02 =ρ , and iv  is distributed uniformly with support  

],[ ξξ− , then  
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(c) 02 >− RSULIMP RR  for all 0>ξ  and 2≥N ; and when 2=N , this difference is 

increasing in a, δ  and ξ , and decreasing in z. 

 

 The primary message from Proposition 6 is that the RS2 scheme always 

outperforms the ULIMP/Weitzman scheme. This superior performance of the RS2 

scheme stems from the fact that it makes use of increasing marginal prices without 

sacrificing the equality of MACs in the way that the ULIMP scheme does. It should be 

noted too that it achieves this superior performance even in its simplest form, with just 

two steps in the price function. The comparative static results in part (c) indicate that the 

superiority of the RS scheme is greatest when uncertainty and damage are relatively high 

(since the ULIMP scheme is steep in that case, which creates greater differences in 

MACs across firms), and when firms are highly responsive to price differences (as when 

a is high and/or z is low). While these comparative static results can be proven only when 
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2=N  (in which case our RS2 solution is exact), it seems reasonable to suppose that they 

would also hold for larger values of N under the true optimal RS2 scheme.  

 

7.3 Monte Carlo Simulation 

In this section we present the results a Monte Carlo simulation in which we compare the 

realized performance of the two schemes for each of 30,000 draws of the iv ’s from a 

uniform distribution with support  ],[ ξξ− . Our parameter values for the simulation are 

the same as those used for the numerical examples of the UDBP scheme in section 4: 

25.0=a , 2=z , 25.0=δ , 1=ξ , and 2=N  (so our solutions for the RS2 scheme are 

exact). Our qualitative results do not seem to be especially sensitive to changes in these 

parameters. 

 Our results are summarized in Figure 8 and Table 1(a). Figure 8 plots relative 

frequencies of percentage deviations from minimum social cost, for the RS2 scheme, the 

ULIMP scheme, and the per unit Pigouvian tax (labeled “PT”). These results are broadly 

consistent with the analytical results on expected cost; the RS2 scheme has a lower 

frequency of large deviations than either of the other policies. Table 1(a) reports the 

summary statistics for each policy. Note that while the RS2 scheme performs slightly 

better on average than the ULIMP scheme, the latter has a somewhat lower variance and 

a lower maximum deviation. The simple ex ante Pigouvian tax is unambiguously the 

worst performer.  

 It is noteworthy that the magnitude of the percentage deviations from minimum 

social cost is generally very small for all three policies. Even the Pigouvian tax has an 

average deviation of less than 1%, and among 30,000 samples, the maximum deviation is 

less than 13%. It is tempting to conclude from these numbers that more complicated 

schemes like the RS2 scheme and even the ULIMP scheme may simply not be worth the 

administrative trouble relative to the Pigouvian tax. However, the picture looks somewhat 

different when we examine the components of social cost: abatement cost and damage. 

Figures 9 and 10 present the relative frequencies of percentage errors in abatement costs 

and damage (and hence, emissions), respectively. Tables 1(b) and 1(c) report the 

corresponding summary statistics. A positive deviation in damage means that damage is 

higher than in the first-best solution; a negative deviation means that damage is lower 
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than in the first-best solution. Similarly for abatement cost. All three policies have the 

potential to perform quite badly on these measures, especially with respect to abatement 

costs. While the assumed policy objective focuses only on total social cost, the political 

implications of drastically sub-optimal outcomes for emissions and abatement costs are 

likely to be an issue of concern to regulators. The RS2 scheme still outperforms the 

ULIMP scheme on these measures in terms of averages, but it finishes second behind the 

ULIMP in terms of variability. The Pigouvian tax finishes last on both fronts. 

 On balance, our results suggest that the ULIMP scheme does not perform 

significantly worse on average than the RS2 scheme, and produces less variability in 

performance outcomes. The optimal ULIMP scheme can also be derived analytically 

under much weaker distributional assumptions than are required for an exact analytical 

solution for the RS2 scheme.  Coupled with the fact that the RS2 scheme requires an 

additional administrative layer associated with license trading, these considerations may 

make the ULIMP scheme a more appealing choice to regulators tasked with 

implementing a simple but reasonably effective policy.  

 

8. CONCLUSION 

Most policies for pricing pollution under asymmetric information proposed in the 

literature to date are rarely – if ever – used in practice. This is likely due to their 

complexity. We have investigated the scope for using somewhat simpler policies that are 

more closely related to pricing schemes already used by regulators in many jurisdictions. 

These schemes involve a schedule of increasing marginal prices applied uniformly across 

firms. Under fairly restrictive assumptions, we have derived the optimal form of the 

uniform discrete block pricing (UDBP) scheme. We have also derived the optimal 

limiting case of the UDBP schedule (with an infinite number of price blocks) as a linear 

increasing marginal price schedule with uniform treatment across firms (ULIMP). The 

latter can be derived directly under less restrictive assumptions and is arguably no more 

complicated to implement in practice than the UDBP with a finite number of steps.  

 The optimal ULIMP scheme strikes a balance between the information-related 

benefits of increasing marginal prices on one hand, and an increase in aggregate 

abatement cost on the other, due to the non-equalization of MACs across firms. In 
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particular, the optimal schedule is steeper for larger aggregate uncertainty about MACs, 

and flatter for more observable heterogeneity across firms.   

 We have also compared our pricing schemes with the more sophisticated schemes 

proposed by Weitzman (1978) and Roberts and Spence (1976), which can achieve 

information-related benefits without sacrificing cost-effectiveness (at least in expected 

terms).  While clearly superior in theoretical terms, these schemes are more complex 

from a practical perspective, requiring different firms in the same regulated industry to 

face different price schedules (as in Weitzman) or a mix of discrete block pricing and 

license trading (as in Roberts and Spence). Moreover, the informational requirements for 

the optimal Roberts and Spence scheme – with respect to the distribution of the actual 

MACs – are significant. Our comparative performance results confirm the superiority of 

the Roberts and Spence scheme in terms of expected cost, even in its simplest two-step 

form, but the ULIMP scheme does not perform significantly worse, and produces less 

variable results. 

 While the relative simplicity and familiarity of the price schemes we have 

proposed here may have some appeal to regulators, it must be noted that even these 

schemes are complicated to design in practice. The regulator needs information about the 

mean and variance of the unknown parameters, and must make some conjecture about the 

shape of MACs. The linear functional forms we have assumed here may be a reasonable 

approximation to reality in many circumstances, but not in others. In such cases the 

policy design problem is considerably more complicated, and any actual pricing scheme 

is likely to be only a rough approximation to an optimal scheme, derived not from pure 

analytics but from numerical simulations. We view the analytical results we have derived 

here as a potentially useful point of departure. 
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APPENDIX 

Note on Proposition 1.  

We solved equations (A2) to (A6) below for m=2, m=3, m=4 and m=5 (using Maple 

Version 8) and from those solutions derived by induction the general solution reported in 

Proposition 1. The Maple code is available from the authors. 

 

Proof of Proposition 2. 

It is straightforward to show that total social cost under the optimal UDBP scheme is 

given by 
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This is decreasing in m. Thus, total social cost is minimized by setting m as large as 

possible.15  

 

Proof of Proposition 3. 

It is instructive to first prove this result in the context of the special case where )(vf  is a 

uniform distribution. Recall that equations (13) – (16) describe the optimal UDBP 

scheme in that case. In the limit as ∞→m , a different price is set for every level of 

emissions. So from (14) set ebj =
*  and solve for )(ej . Then substitute )(ej  for j in *

jp  

from (13) to yield )(* ep . 

 Now consider the general proof. Let )(vf  denote the distribution of v on support 

],[ HL vv  and let )(vF  denote the associated cumulative density. We assume that )(vF  is 

twice continuously differentiable. Then the first-order conditions for a minimum are 

given by equations (A2) to (A5): 
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For 2=j  to 1−m : 
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In equation (A4), divide throughout by )( 1−− jj bb  and take the limit as jj bb →−1  to 

obtain 
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Similarly, in equation (A5), divide throughout by )( 1+− jj ppa  and take the limit as 

jj pp →+1  to obtain 
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It then follows from (A7) and (A8) that 

                                                                                                                                                 
15 It is worth noting that setting m=1 in (A1) yields the total SC under the Pigouvian tax. 



 
28 
 
 
 

(A9) ][E)1)(1(][E)1( eNazbeNazp jj −−++=−−+ δδδδδ  

which reduces to 

(A10) ][E)1( eNbp jj −+= δδ  

Now in (A6) take the limits as jj bb →−1  and jj pp →+1  and substitute for jp  from (A10) 

to obtain 

(A11) ∫ −−−+=
H

L

v

v
j dvvfeNabavze )(])[E)1((][E δδ  

Now set ebj = , note that 0][E =v , and then solve (A11) to obtain 

(A12) 
Na

ze
δ+

=
1

][E  

Then substituting (A12) into (A10) we obtain 

(A13) 
Na

Nzeep
δ

δδ
+

−
+=

1
)1()( . 

 

Sketch Proof of Proposition 5. 

Let q denote the equilibrium price of licenses. Without loss of generality, suppose the 

regulator issues an equal number of licenses, NLl = , to each firm. There are three 

equilibrium types: (1) 1pq = ; (2) 2pq = ; and (3) 21 pqp << .  First consider 

equilibrium type (3). Faced with license price ),( 21 ppq∈ , firm i emits 

aqvzqe ii −+=)( . Firms for whom lqei <)(  are license suppliers, and sell 

)()( aqvzlqs ii −+−=  licenses. Firms for whom lqei >)(  are license buyers, and 

demand laqvzqd ii −−+=)( . Equilibrium occurs where 

(A14) ∑ ∑
= +=

=
K

i

N

Ki
ii qdqs

1 1

)()(  

where K is the number of seller firms. Solution of (A14) yields 

(A15) 
a

lvzq −+
=~  

where ∑=
=

N

i i Nvv
1

/ . The associated level of aggregate emissions is L. This outcome 

can be an equilibrium only if 21
~ pqp << . If 1

~ pq <  then no firm will be willing to sell 
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licenses at qq ~=  since it can instead receive a per unit payment of qp ~
1 >  from the 

regulator for reducing emissions below its license holdings. In that case we have 

equilibrium type (1), where 1pq = . The equilibrium level of emissions in that case is  

(A16) LapvzNpeE
N

i
i <−+== ∑

=

)()( 1
1

11  

Conversely, if 2
~ pq >  then no firm will be willing to buy licenses at qq ~=  since it can 

instead pay the regulator qp ~
2 <  per unit to emit beyond its license holdings. In that case 

we have equilibrium type (2), where 2pq = . The equilibrium level of emissions in that 

case is 

(A17) LapvzNpeE
N

i
i >−+== ∑

=

)()( 2
1

22  

We can now characterize the complete equilibrium in terms of a partition of the interval 

],[ ξξ−∈v , since the sample mean v  can lie anywhere within this interval. In particular, 

we have equilibrium type (1) if and only if zaplv −+< 1 ; equilibrium type (2) if and 

only if zaplv −+> 2 ; and equilibrium type (3) if and only if 

zaplvzapl −+<<−+ 21 . 

 To make further progress it is necessary to specify the distribution of v . If the 

population distribution of the iv ’s is uniform on  ],[ ξξ− , then it can be shown that the 

mean ( v ) of a sample of size 2=N  has a symmetric triangular distribution with support 

],[ ξξ− , zero mean and a variance equal to .6/2ξ  If 2>N  then we must invoke the 

central limit theorem. In particular, the distribution of v  is approximately normal, with 

zero mean and a variance equal to .3/2 Nξ  This distribution can in turn be approximated 

by a symmetric triangular distribution with support ],[ θθ− , zero mean and a variance 

equal to 6/2θ , where N2ξθ = . It is then possible to construct a conditional 

density for iv  for each equilibrium type, conditional on v  satisfying the restriction 

corresponding to that particular equilibrium type. In each case that conditional density is 

a truncated triangular distribution whose distribution can be derived exactly. It is then 

straightforward to calculate expected social cost as a function of },,{ 21 Lpp . Choosing 
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these policy parameters to minimize expected social cost yields the solution reported in 

Proposition 5. 
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(a) % Difference from First-Best Value of Total Social Cost 

 PT ULIMP RS2 

maximum 12.2388 2.7103 4.9831 

minimum 0 0 0 

mean 0.7137 0.2955 0.2065 

std deviation 1.3322 0.3005 0.4185 

(b) % Difference from First-Best Value of Total Abatement Cost 

 PT ULIMP RS2 

maximum 295.8095 114.8117 166.1423 

minimum -55.4686 -28.8602 -37.9945 

mean 14.7937 6.7765 4.3125 

std deviation 55.0174 23.8841 27.7239 

(c) % Difference from First-Best Value of Damage   

 PT ULIMP RS2 

maximum 8.4900 3.9522 5.3847 

minimum -23.2076 -11.3023 -15.1618 

mean -1.0463 -0.5146 -0.3068 

std deviation 5.7476 2.7339 3.1645 

 
TABLE 1 

 


