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PART 1: THEORY 
 

1.1 THE CONSTRAINED OPTIMIZATION PROBLEM 

We begin with a constrained optimization problem of the type 

  
x

max  ),...,( 1 nxxf   subject to   bxxg n =),...,( 1  

The function ),...,( 1 nxxf  is called the objective function or maximand; the equation 

bxxg n =),...,( 1  is called the constraint. 

 

Remarks 

1. We are restricting attention here to equality-constrained problems. An inequality-

constrained problem would arise where the constraint is bxxg n ≤),...,( 1 . The 

techniques we develop here can be extended easily to that case. 

2. A minimization problem with objective function )(xf  can be set up as a 

maximization problem with objective function )(xf− . 

 

An Example 

Utility maximization subject to a budget constraint. 

(1.1)  
x

max  ),...,( 1 nxxu   subject to   mxp
n

i
ii =∑

=1
 

Suppose 2=n  and ba xxxxu 2121 ),( =  (Cobb-Douglas utility).  

 

 

1.2 CHARACTERISTICS OF THE OPTIMUM 

At the maximum of the objective function subject to the constraint, infinitesimal changes 

in the variables nxxx ,...,, 21  which satisfy the constraint must have no effect on the value 

of the objective function. Otherwise, we could not be at a maximum.  

 

Thus, a necessary condition for the maximum is that 0=df  whenever 0=dg . That is, 

we require 
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(1.2)  0...2
2

1
1

=
∂
∂

++
∂
∂

+
∂
∂

n
n

dx
x
fdx

x
fdx

x
f  

for all 1dx , 2dx , …, ndx  satisfying 

(1.3)  0...2
2

1
1

=
∂
∂

++
∂
∂

+
∂
∂

n
n

dx
x
gdx

x
gdx

x
g  

where ixf ∂∂ /  is the partial derivative of f with respect to ix , and ixg ∂∂ /  is the partial 

derivative of g with respect to ix . 

 

These conditions tells us that at the optimum there must be no way in which we can 

change the ix ’s such that we can change the value of the function (and in particular, 

increase the value of the function) and still satisfy the constraint. 

 

 

1.3 THE UNCONSTRAINED OPTIMUM 

Note that in the absence of the constraint we would be seeking conditions under which 

(1.2) holds for all 1dx , 2dx , …, ndx , rather than only those changes in x that satisfy (1.3). 

That is, we would require that the idx  have zero coefficients in (1.2): 

(1.4)  0=
∂
∂

ix
f   i∀  

Note that this is a set of n  equations in n unknowns.  

 

An Example 

Profit maximization for a “competitive” firm with Cobb-Douglas technology, given by 

(1.5)  ba xxxh 21)( =  

The profit maximization problem is 

(1.6)  max
x

a bpx x w x w x1 2 1 1 2 2− −  

with first-order conditions 

(1.7)           apx x wa b
1

1
2 1

− =   

and  
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(1.8)  bpx x wa b
1 2

1
2

− =         

We can solve these equations by first taking the ratio of (1.7) and (1.7) to obtain 

(1.9)  
ax
bx

w
w

2

1

1

2
=         

Now rearrange (1.9) to obtain: 

(1.10)  x
bw x
aw2

1 1

2
=     

Substitute (1.10) into (1.7) or (1.8) and solve for 1x : 

(1.11)  
ba

b
ba

bw
aw

w
bpwpx

−−
−

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
1

1

2
1

1

2
1 ),(    

Then substitute (1.11) into (1.10) to obtain x p w2 ( , ) .  These are the factor demands or 

input demands.  We can then construct the supply function by substituting these factor 

demands into the production function: 

(1.12)  y p w x p w x p wa b( , ) ( , ) ( , )= 1 2  

 

 

1.4 THE CONSTRAINED OPTIMUM: SOLUTION BY SUBSTITUTION  

Rewrite (1.3) to isolate 1dx : 

(1.13)  
1

1
1 /

)/(

xg

dxxg
dx i

ii

∂∂

∂∂
−=
∑
≠  

Now substitute this expression for 1dx  into (1.2) to obtain 

 

(1.14)  0
/

)/(

11

1

1

=
∂
∂

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂∂

∂∂

∂
∂

− ∑
∑

≠

≠

i
i

i

i
ii

dx
x
f

xg

dxxg

x
f  

This can be written as 

(1.15)  0
/

)/)(/(
11 1

1 =
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂∂∂∂
− ∑∑

≠≠ i
i

ii

ii dx
x
f

xg
dxxgxf  

Then by collecting terms under the summation operator, we have 
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(1.16)  0
/

)/)(/(
1 1

1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂∂∂∂
−

∂
∂∑

≠
i

i

i

i

dx
xg

xgxf
x
f  

The only solution to this equation is to set all of the coefficients on the idx ’s equal to 

zero since the equation must hold for all possible values of the idx ’s. That is, 

(1.17)  
1

1

/
)/)(/(

xg
xgxf

x
f i

i ∂∂
∂∂∂∂

=
∂
∂  1≠∀i  

This can in turn be written as 

(1.18)  
1

1

/
/

/
/

xg
xf

xg
xf

i

i

∂∂
∂∂

=
∂∂
∂∂  1≠∀i  

Note that (1.18) comprises 1−n  equations. Together with the constraint itself we 

therefore have n equations which can be solved for the n unknowns (the ix ’s). 

 

 

1.5 EXAMPLE: UTILITY MAXIMIZATION 

Recall the utility maximization problem for 2=n . For that example, equation (A1.18) – 

which is a single equation in the 2=n  case – becomes  

(1.19)  
1

1

2

2

/
/

/
/

xg
xf

xg
xf

∂∂
∂∂

=
∂∂
∂∂  

This in turn can be rearranged as 

(1.20)  
2

1

2

1

/
/

/
/

xg
xg

xf
xf

∂∂
∂∂

=
∂∂
∂∂  

In the utility maximization problem we have ii xuxf ∂∂≡∂∂ //  and ii pxg ≡∂∂ / . Thus, 

(1.20) becomes 

(1.21)  
2

1

2

1

/
/

p
p

xu
xu

=
∂∂
∂∂  

This is the familiar tangency condition, stating that the slope of the indifference curve 

(the marginal rate of substitution) is equal to the slope of the budget constraint at the 

optimum. 

 

In the specific case of Cobb-Douglas (CD) utility, (1.21) becomes 
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(1.22)  
2

1

1

2
1

21

2
1

1

p
p

bx
ax

xbx
xax
ba

ba

=≡−

−

 

Thus, in the case of CD utility, the consumption ratio is inversely proportional to the 

price ratio.  

 

Note that (1.22) is one equation in two unknowns. It tells us the relationship between 1x  

and 2x  at the optimum but cannot be solved for unique values of 1x  and 2x . In the 

geometric interpretation, it tells us that we must have a tangency but it does not tells us 

where that tangency must be. For that we need additional information: the position of the 

budget constraint (as opposed to its slope). That information is contained in the budget 

constraint itself, which in the 2=n  case is 

(1.23)  mxpxp =+ 2211  

 

Combining equations (1.22) and (1.23), we have two equations in two unknowns, which 

can be solved by simple substitution. In particular, express (1.22) as 

(1.24)  
b

xapxp 22
11 =  

and substitute into the budget constraint to obtain 

(1.25)  mxp
b

xap
=+ 22

22  

Solving for 2x  yields 

(1.26)  
2

2 )(
),(

pba
bmmpx
+

=  

Substituting this solution for 2x  into (1.24) then yields the solution for 1x : 

(1.27)  
1

1 )(
),(

pba
ammpx
+

=  

Equations (1.26) and (1.27) are the Marshallian demands; they relate the demand for 

each good to the prices, and to income.  
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1.6 THE LAGRANGE MULTIPLIER APPROACH 

The Lagrange multiplier approach to the constrained maximization problem is a useful 

mathematical algorithm that allows us to reconstruct the constrained problem as an 

unconstrained problem which yields (1.18) as its solution. 

 

Consider the problem  

(1.28)  
x

max  )(xf   subject to   0),( =bxg  

where },...,{ 1 nxxx =  and b  is a parameter in the constraint, identified explicitly here 

because we have some particular interest in it. 

 

To solve this problem, we define the Lagrangean by introducing a new variable λ  

called the Lagrange multiplier (LM): 

(1.29)  )()(),( xgxfxL λλ +=  

 

We then solve the unconstrained maximization problem 

(1.30)  
λ,

max
x

 ),( λxL  

The necessary (first-order) conditions for a maximum are 

(1.31)  0=
∂
∂

ix
L   i∀  

and 

(1.32)  0=
∂
∂
λ
L  

 

Note that (1.31) comprises n  equations, so together with (1.32) we have 1+n  equations 

in 1+n  unknowns (including λ ). Take these derivatives of ),( λxL  to yield 

(1.33)  0=
∂
∂

−
∂
∂

=
∂
∂

iii x
g

x
f

x
L λ   i∀  

and 

(1.34)  0),( ==
∂
∂ bxgL
λ
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Now take the ratio of any two equations from (1.33), say for 1=i  and ji = : 

(1.35)  
11 /

/
/
/

xg
xg

xf
xf jj

∂∂

∂∂
=

∂∂

∂∂
  1≠∀j  

Note that the LM has now been eliminated. This expression can be rearranged to yield 

(1.36)  
1

1

/
/

/
/

xg
xf

xg
xf

j

j

∂∂
∂∂

=
∂∂

∂∂
  1≠∀j  

 

These 1−n  equations are the same as conditions (1.18). Thus, the LM method yields the 

solution to the constrained optimization problem. The additional information we need to 

complete the solution is the constraint itself, and this is given by (1.34). Thus, conditions 

(1.34) and (1.36) describe a complete solution to the constrained problem. 

 

 

Example 1: Utility Maximization Revisited 

Recall the constrained optimization problem for CD utility: 

(1.37)  
x

max ba xx 21   subject to  mxpxp =+ 2211  

 

Construct the Lagrangean: 

(1.38)  )( 221121 xpxpmxxL ba −−+= λ  

Derive the first-order conditions: 

(1.39)  ax x pa b
1

1
2 1

− − λ =0 

(1.40)  bx x pa b
1 2

1
2

− − λ =0 

(1.41)  02211 =−− xpxpm  

 

Take the ratio of (1.39) and (1.40) to obtain 

(1.42)  
ax
bx

p
p

2

1

1

2
=  

and rearrange this to yield 
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(1.43)  
2

11
2 ap

xbpx =  

 

Now substitute (1.43) into the budget constraint (1.41): 

(1.44)  m p x p
bp x
ap

= +
⎛
⎝
⎜

⎞
⎠
⎟1 1 2

1 1

2
 

and solve for 1x : 

(1.45)  
1

1 )(
),(

pba
ammpx
+

=  

 

Then substitute (1.45) into (1.43) to yield 

(1.46)  
2

2 )(
),(

pba
bmmpx
+

=  

 

 

Example 2: Generalized Log-Linear Utility 

(1.47)  
x

max   i

n

i
i xa log

1
∑
=

  subject to   mxp
n

i
i =∑

=1
1  

 

Construct the Lagrangean: 

(1.48)  )(log
11

i

n

i
ii

n

i
i xpmxaL ∑∑

==

−+= λ  

Derive the first-order conditions: 

(1.49)  
a
x

pi

i
i− =λ 0   i∀  

 

(1.50)  0
1

=−∑
=

i

n

i
i xpm  

 

In this example, taking the ratio of any pair of equations from (1.49) will yield the usual 

tangency condition, but it is not the most efficient way to solve the problem. Instead we 
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will use an alternative solution method that usually performs better when we have 2>n  

variables.  

 

Rearrange (1.49) to yield 

(1.51)  iii xpa λ=  i∀  

Now take the sum over i on both sides of (1.51) to yield 

(1.52)  a p xi
i

n

i
i

n

i
= =
∑ ∑=

1 1
λ  

Substitute m for expenditure in the RHS term to yield: 

(1.53)  a mi
i

n

=
∑ =

1
λ   

and rearrange to solve for λ : 

(1.54)  
m

a
n

i
i∑

== 1λ  

Now substitute (1.54) for λ  in (1.51) and solve for ix : 

(1.55)  
∑
=

= n

i
ii

i
i

ap

mampx

1

),(  

 

Note that in the special case where 2=n , these solutions become 

(1.56)  
121

1
1 )(

),(
paa

mampx
+

=  

(1.57)  
221

2
2 )(

),(
paa

mampx
+

=  

 

Compare these with the CD Marshallian demands from (1.45) and (1.46). They are the 

same solutions (with aa =1  and ba =2 ). Why? The CD utility function and the log-

linear utility function represent exactly the same preferences; one function is a monotonic 

transform of the other. A monotonic transform does not change the underlying 
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preferences because preferences have no cardinal interpretation; they are an ordinal 

notion only. 

 

 

1.7 THE VALUE FUNCTION AND THE ENVELOPE THEOREM 

Consider again the generalized utility-maximization problem from Section 1.6. Substitute 

the Marshallian demands back into the utility function to obtain utility as a function of 

prices and income: 

(1.58)  ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

n

i i

i
i Ap

maampxumpv
1

log)),((),(  

where ∑=
=

n

i iaA
1

. This function tells us the maximized value of utility at any given 

prices and income. It is called the indirect utility function, and is a special case of a 

value function. In general, the value function associated with a constrained optimization 

problem tells us the maximized value of the objective function as a function of the 

constraint parameters. 

 

The value function has a special relationship to the Lagrange multiplier. To see this, 

expand the expression from (1.58) above to obtain 

(1.59)  ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

n

i i

i
i Ap

aamAmpv
1

log)log(),(  

and take the derivate with respect to m to obtain 

(1.60)  
m
A

m
mpv

=
∂

∂ ),(  

This derivate tells us the amount by which utility rises with a marginal increase in 

income. The derivate is called the marginal utility of income. Note from (A1.54) above 

that this derivative is equal to the value of the Lagrange multiplier at the optimum. This 

link between the Lagrange multiplier and the value function is an implication of the 

following important theorem.. 
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The Envelope Theorem 

Consider a slightly generalized form of our optimization problem from section A1.1: 

(1.61)  
x

max  ),( bxf  subject to 0),( =bxg  

This generalizes our earlier problem by allowing the constraint parameter to enter the 

objective function itself. 

 

Now define the associated Lagrangean, 

(1.62)  ),(),( bxgbxfL λ+=  

and let )(* bx  denote the solution.  Furthermore, let )),(()( * bbxfbv ≡  denote the 

associated value function. Then the envelope theorem states that  

(1.63)  
b
g

b
fbv

∂
∂

+
∂
∂

=′ λ)(  

 

Proof. By differentiation of )(bv : 

(1.64)  
b

bbxf
b
x

x
bbxfbv

n

i

i

i ∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=′ ∑

=

)),(()),(()(
*

1

**

 

But since )(* bx  is optimal for b, it must satisfy the FOCs and the constraint. Thus, 

(1.65)  
ii x

bbxg
x

bbxf
∂

∂
−=

∂
∂ )),(()),(( **

λ  i∀  

and 

(1.66)  0)),(( * =bbxg  

Differentiating equation (1.66) yields 

(1.67)  0)),(()),(( *

1

**

=
∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂∑
= b

bbxg
b
x

x
bbxgn

i

i

i

 

Substituting (1.65) and (1.67) into (1.64) yields 

(1.68)  
b
g

b
fbv

∂
∂

+
∂
∂

=′ λ)(  

which proves the result.♣ 
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Interpretation. A change in the parameter does cause a change in the value of )(* bx  but at 

the margin that change in *x  has no effect on L since *x  is a turning point of L.  

 

In our utility-maximization problem, the constraint is ∑=
−=

n

i ii xpmmxg
1

),( , where m  

takes the role of b. This is linear in m , so 1/ =∂∂ bg  for our problem. Moreover, m  does 

not enter the utility function directly in our problem, so 0/ =∂∂ bg  for our problem. 

Thus, for our problem, the envelope theorem tells us that λ=′ )(bv ; the marginal utility 

of income is equal to the Lagrange multiplier.  
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PART 2:  OTHER ECONOMIC EXAMPLES 
 

This section presents a number of examples from microeconomics, primarily related to 

consumer theory and industrial organization. They are presented in the form of a question 

and a solution. 

 

 

2.1 UTILITY MAXIMIZATION WITH ADDITIVELY SEPARABLE UTILITY 

A consumer has the following utility function: 

  u x x x( ) / /= +1
1 2

2
1 2  

Consider the associated utility maximization problem: 

  
x

max  2/1
2

2/1
1 xx +   subject to  mxpxp =+ 2211  

Find the solution to this problem. 

Solution 

This is a constrained optimization problem. Set up the Lagrangean: 

 )]([),( 2211
2/1

2
2/1

1 xpxpmxxxL +−++= λλ  

 

The first-order conditions are 

(1)  0
2 1

2/1
1

1

=−=
∂
∂ −

px
x
L λ  

(2)  0
2 2

2/1
2

2

=−=
∂
∂ −

px
x
L λ  

(3)  0)( 2211 =+−=
∂
∂ xpxpmL
λ

 

 

Take the ratio of (1) and (2) so as to eliminate the LM, and square both sides: 

(4)  
x
x

p
p

2

1

1

2

2

=
⎛
⎝
⎜

⎞
⎠
⎟  

Rearrange (4) to express 2x  as the subject: 
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(5)  
2

2

1
12 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

p
pxx  

Substitute (5) into (3) – the constraint – to yield 

(6)  m
p
pxpxp =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

2

2

1
1211  

Collect terms in 1x and rearrange to yield  

(7)  
21

2
1

2
1 ),(

ppp
mpmpx
+

=  

Substitute (7) into (5) to yield 

(8)  
21

2
2

1
2 ),(

ppp
mpmpx
+

=  

 

Economic Interpretation 

Equations (7) and (8) are Marshallian demands. Some properties of these particular 

Marshallian demands: 

(9)  0),(

21
2
1

21 >
+

=
∂

∂
ppp

p
m

mpx  

(10)  0
)(

)2(),(
2

21
2
1

212

1

1 <
+
+

−=
∂

∂
ppp

ppmp
p

mpx  

(11)  0
)(

),(
2

212

1 >
+

=
∂

∂
pp

m
p

mpx  

 

 

2.2 EXPENDITURE MINIMIZATION AND THE HICKSIAN DEMAND CURVES 

A consumer has the following utility function: 

  u x x x( ) / /= +1
1 2

2
1 2  

Consider the associated expenditure minimization problem: 

  
x

min  2211 xpxp +   subject to  uxx =+ 2/1
2

2/1
1  

Find the solution to this problem. 
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Solution 

This is a constrained optimization problem. Set up the Lagrangean: 

  )]([),( 2/1
2

2/1
12211 xxuxpxpxL +−++= λλ  

The first-order conditions are 

(1)  0
2

2/1
1

1
1

=−=
∂
∂ −xp
x
L λ  

(2)  0
2

2/1
2

2
2

=−=
∂
∂ −xp
x
L λ  

(3)  0)( 2/1
2

2/1
1 =+−=

∂
∂ xxuL
λ

 

 

Take the ratio of (1) and (2) so as to eliminate the LM, and square both sides: 

(4)  
x
x

p
p

2

1

1

2

2

=
⎛
⎝
⎜

⎞
⎠
⎟  

Rearrange (4) to express 2x  as the subject: 

(5)  
2

2

1
12 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

p
pxx  

Substitute (5) into (3) – the constraint – to yield 

(6)  

2/12

2

1
1

2/1
1 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

p
pxxu  

Collect terms in 1x and rearrange to yield  

(7)   

 

Substitute (7) into (5) to yield 

(8)  
2

21

12
2 ),( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
pp

puupx  
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Economic Interpretation 

Equations (7) and (8) are Hicksian demands (or compensated demands). They measure 

only the substitution effect associated with a price change (as opposed to the Marshallian 

demands, which measure both the substitution effect and the income effect). 

 

 

2.3 PROFIT MAXIMIZATION WITH ADDITIVELY SEPARABLE 

PRODUCTION 

A firm has the following production function 

  y x x= +( )/ /
1
1 2

2
1 2  

It faces a product price p , and input prices 1w  and 2w  for inputs 1x  and 2x  respectively. 

Solve its profit maximization problem: 

21,
max

xx
 )()( 2211

2/1
2

2/1
1 xwxwxxp +−+   

 

Solution 

This is an unconstrained optimization problem. The first-order conditions with respect to 

1x  and 2x  are  

(1)   0
2 1

2/1
1 =−
−

wpx  

(2)   0
2 2

2/1
2 =−
−

wpx  

These two equations solve independently of each other. Simply rearrange (1) to obtain: 

(3)   
2

1
1 2

),( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

w
pwpx  

and rearrange (2) to obtain 

(4)   
2

2
2 2

),( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

w
pwpx  
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Economic Interpretation 

Equations (3) and (4) and the input demands. The fact that ),(1 wpx  is independent of 

2p , and ),(2 wpx  is independent of 1p  is a special property reflective of the additively 

separable production function in this example. 

 

Substituting these input demands back into the production function yields the supply 

function: 

(5)  2/1
2

2/1
1 ),(),(),( wpxwpxwpy +=  

That is, 

(6)  
21

21

2/12

2

2/12

1 2
)(

22
),(

ww
wwp

w
p

w
pwpy +

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=   

 

 

2.4 COST MINIMIZATION WITH ADDITIVELY SEPARABLE PRODUCTION 

A firm has the following production function 

  y x x= +( )/ /
1
1 2

2
1 2  

It faces input prices 1w  and 2w  for inputs 1x  and 2x  respectively. Solve its cost 

minimization problem: 

min
,x x1 2

 2211 xwxw +   subject to  )( 2/1
2

2/1
1 xxy +=  

 

Solution 

This is a constrained optimization problem. Set up the Lagrangean: 

   )]([),( 2/1
2

2/1
12211 xxyxwxwxL +−++= λλ  

 

The first-order conditions are 

(1)   0
2

2/1
1

1
1

=−=
∂
∂ −xw
x
L λ  

(2)  0
2

2/1
2

2
2

=−=
∂
∂ −xw
x
L λ  
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(3)  0)( 2/1
2

2/1
1 =+−=

∂
∂ xxyL
λ

 

 

Take the ratio of (1) and (2) to obtain 

(4)  
w
w

x
x

1

2

2

1

1 2

=
⎡

⎣
⎢

⎤

⎦
⎥

/

 

Express x2  in terms of x1 , substitute into (3) – the constraint – and solve for x1 : 

 

(5)  
2

21

22
1 ),( ⎥

⎦

⎤
⎢
⎣

⎡
+

=
ww

wyywx  

Substitute (5) into (4) and solve for x2 : 

(6)  
2

21

12
2 ),( ⎥

⎦

⎤
⎢
⎣

⎡
+

=
ww

wyywx  

 

Economic Interpretation 

Equations (5) and (6) are the conditional input demands. They tell us how much of each 

input the firm will demand in order to produce a given level of output y . Equation (4) is 

a tangency condition: it tells us that the slope of the isocost line (the LHS) is equal to the 

slope of the isoquant (the RHS), also called the marginal rate of technical substitution.  

 

We can construct the cost function from the conditional input demands. In particular, 

substitute the conditional input demands into the expression for cost to obtain 

(7)  ),(),(),( 2211 ywxwywxwywc +=    

The cost function tells us the minimum cost of producing a given level of output y  for 

any given input prices 1w  and 2w . In our example, substituting for ),(1 ywx  and ),(2 ywx  

yields 

(8)  ⎥
⎦

⎤
⎢
⎣

⎡
+

+
=⎥

⎦

⎤
⎢
⎣

⎡
+
+

= 2
21

21212
2

21

2
12

2
212

)(
)(

)(
),(

ww
wwwwy

ww
wwwwyywc  

Simplifying yields 
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(9)  ⎥
⎦

⎤
⎢
⎣

⎡
+

=
21

212),(
ww

wwyywc     

 

Note that this function is strictly convex in y . That is, marginal cost is upward-sloping. 

This reflects the fact that the production function exhibits decreasing returns to scale (ie., 

it is homogeneous of degree less than one).  

 

 

2.5 PROFIT MAXIMIZATION USING THE COST FUNCTION 

Reconsider the firm from Example 4. We know from Example 5 that it’s cost function is 

given by 

(1)  ⎥
⎦

⎤
⎢
⎣

⎡
+

=
21

212),(
ww

wwyywc  

for any given level of output y . Find the profit-maximizing level of output for this firm, 

using the cost function: 

  
y

max  ),( ywcpy −  

 

Solution 

This is an unconstrained optimization problem in a single variable, y.  The problem is  

  
y

max  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
21

212

ww
wwypy  

This first-condition is 

(2)  02
21

21 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
ww

wwyp  

Solving (2) for y yields 

(3)  
21

21

2
)(),(

ww
wwpwpy +

=  
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Economic Interpretation 

Note that (3) is exactly the same supply function we obtained in Example 2.3; see 

equation (6) from that example. Examples 2.4 and 2.5 correspond to the two stages of a 

two-stage approach to the profit-maximization problem for a competitive firm that must 

yield the same result obtained from the single-stage direct profit maximization problem in 

Example 2.3. 

 

 

2.6 MONOPOLY PROFIT MAXIMIZATION 

Suppose a monopolist has the production function from Example 2.5 above, and faces 

input prices 1w  and 2w  for inputs 1x  and 2x  respectively. Then its cost function is given 

by (9) from Example 2.5. For simplicity of notation, define 

⎥
⎦

⎤
⎢
⎣

⎡
+

≡
21

21

ww
wwc  

Then the cost function is given by 

(1)  2)( cyyc =  

for any given level of output y. Now suppose this monopolist faces an inverse market 

demand curve given by 

(2)  byayp −=)(  

Solve the profit-maximization problem for this monopolist: 

  
y

max  )()( ycyyp −  

and verify that your does indeed yield a maximum. 

 

Solution 

This is an unconstrained maximization problem in a single variable. The problem is  

  
y

max  2)( cyybya −−  

The first-order condition is  

(3)  022 =−− cybya  

Solving (3) for y yields 
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(4)  
)(2 cb

ay M

+
=  

To verify that we have found a maximum, we need to check second-order conditions. We 

know that the first-order conditions are necessary and sufficient if the objective function 

is strictly concave. Take the second derivative of profit with respect to y to yield 

(5)  0)(2 <+− cb   for  0>b  and 0>c   

 

That is, the objective function is strictly concave in y if the inverse demand curve is 

down-ward sloping and the cost function is upward-sloping. 

 

Economic Interpretation 

The general form of the first-order condition is 

(5)  0)()()( =′−+′ ycypyyp  

which we usually write as MCMR = : 

(6)  )()()( ycypyyp ′=+′  

In the case of the specific functional forms we have used, byaMR 2−=  and cyMC 2= .  

 

Note that solution in (4) is not a supply function; in particular, it does not specify a level 

of output as a profit-maximizing response to a particular market price. The monopolist is 

not a price-taker, and hence, it does not have a supply curve. It chooses price and quantity 

to maximize profit. 

 

 

2.7 MONOPOLY PROFIT MAXIMIZATION WITH TWO MARKETS 

Suppose the monopolist from Example 2.6 sells its output in two distinct markets. Inverse 

demand in market 1 is given by 

(1)  1111 )( byayp −=  

and inverse demand in market 2 is given by 

(2)  2222 )( byayp −=  



Kennedy: Constrained Optimization   © Peter Kennedy 2019 

Posting this material to any site other than kennedy-economics.ca is a violation of copyright 23

Assume that consumers cannot trade with other each across these markets. Thus, the firm 

can set different prices in these two markets. The firm produces all of its output in a 

single plant – with the cost function specified in (1) from Example 2.6; that is, 
2)( cyyc = . How much will the monopolist sell in each market? 

 

Solution 

This is a constrained optimization problem in three variables: 

  
yyy ,, 21

max  )()()( 222111 ycyypyyp −+   subject to  yyy =+ 21  

 

This can be solved easily as an unconstrained problem by substituting 12 yyy −= , but for 

illustrative purposes we will use the LM method instead. 

 

The Lagrangean is 

  )]([
2

)()(),,,( 21

2

2222111121 yyyyyybayybayyyL +−+−−+−= λλ  

 

The first-order conditions are 

(3)  02 11
1

=−−=
∂
∂ λbya
y
L  

(4)  02 22
2

=−−=
∂
∂ λbya
y
L  

(5)  0=+−=
∂
∂ λy

y
L  

(6)  0)( 21 =+−=
∂
∂ yyyL
λ

 

 

Use (5) to substitute for λ  in (3) and (4) to obtain, respectively, 

(7)  ybya =− 11 2  

(8)  ybya =− 22 2  

Rearrange these expressions to obtain 
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(9)  
b

yay
2

1
1

−
=  

(10)  
b

yay
2

2
2

−
=  

respectively. Then substitute (9) and (10) into (6) – the constraint – to obtain 

(11)  
b

ya
b

yay
22

21 −
+

−
=  

Solve (11) for y: 

(12)  
)1(2

21

+
+

=
b

aay  

 

Substitute (12) back into (9) and (10) to solve for 1y  and 2y  respectively: 

(13)  
)1(4

)12( 21
1 +

−+
=

bb
abay  

(14)  
)1(4

)12( 12
2 +

−+
=

bb
abay  

 

Economic Interpretation 

The essential relationships are equations (7) and (8). These state that MCMR =1  and 

MCMR =2 , respectively. The logic is as follows. First, marginal revenue must be 

equated in the two markets. If not, then total revenue could be increased by reallocating 

output from one market to the other. Second, marginal revenue (in both markets) must be 

equated to marginal cost, or else profit could be increased by raising or reducing total 

output. 

 

 

2.8 MONOPOLY PROFIT MAXIMIZATION WITH TWO PRODUCTION 

PLANTS 

Consider a monopolist that sells to a single market but draws output from two different 

plants. The cost function for plant number 1 is 

(1)  2
1111 )( ycyc =  
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and the cost function for plant number 2 is  

(2)  2
2222 )( ycyc =  

where 1c  and 2c  are positive constants. Inverse demand is given by byayp −=)( . How 

much will the monopolist produce in each plant? 

 

Solution 

This is a constrained optimization problem in three variables: 

  
yyy ,, 21

max  )]()([)( 2211 ycycyyp +−   subject to  yyy =+ 21  

 

This can be solved easily as an unconstrained problem by substituting 12 yyy −= , but for 

illustrative purposes we will use the LM method instead. 

 

The Lagrangean is 

  )]([)(),,,( 21
2
22

2
1121 yyyycycybyayyyL +−+−−−= λλ  

 

The first-order conditions are 

(3)  02 11
1

=−−=
∂
∂ λyc
y
L  

(4)  02 22
2

=−−=
∂
∂ λyc
y
L  

(5)  02 =+−=
∂
∂ λbya

y
L  

(6)  0)( 21 =+−=
∂
∂ yyyL
λ

 

 

Use (5) to substitute for λ  in (3) and (4) to obtain, respectively, 

(7)  byayc 22 11 −=  

(8)  byayc 22 22 −=  

Rearrange these expressions to obtain 
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(9)  
1

1 2
2
c

byay −
=  

(10)  
2

2 2
2
c

byay −
=  

respectively. Then substitute (9) and (10) into (6) – the constraint – to obtain 

(11)  
21 2

2
2

2
c

bya
c

byay −
+

−
=  

Solve (11) for y: 

(12)  
)]([2

)(

2121

21

ccbcc
ccay M

++
+

=  

Substitute (12) back into (9) and (10) to solve for 1y  and 2y  respectively: 

(13)  
)]([2 2121

2
1 ccbcc

acy M

++
=  

 

(14)  
)]([2 2121

1
2 ccbcc

acy M

++
=  

 

Economic Interpretation 

The essential relationships are equations (7) and (8). These state that MRMC =1  and 

MRMC =2 , respectively. The logic is as follows. First, marginal cost must be equated in 

the two plants. If not, then total cost could be reduced by reallocating production from 

one plant to the other. Second, marginal cost (in both plants) must be equated to marginal 

revenue, or else profit could be increased by raising or reducing total output. 

 

It is interesting to consider a special case where ccc == 21 ; that is, the two plants are 

identical. Making this substitution into (12), (13) and (14) yields 

(15)  
bc

ay M

2+
=  

(16)  
2)2(21
y

bc
ay M =
+

=  
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(17)  
2)2(22
y

bc
ay M =
+

=  

That is, total production is split equally between the two plants. Note also that total 

production is greater than if the firm has only one of the plants; compare (15) with (4) 

from Example 2.6, where we assumed the same inverse demand function and the same 

cost function. Why? Overall costs are lower if production is split between two plants – 

due to the decreasing returns to scale – and so is profitable to produce more. 

 

 

2.9 A SIMPLE DUOPOLY MODEL 

Consider a setting with two identical firms selling into a single market. Firm 1 has a cost 

function given by 

(1)  2
11)( cyyc =  

and firm 2 has a cost function given by 

(2)  2
22 )( cyyc =  

 

where c is a positive constant. Inverse demand in the market is given by 

(3)  byayp −=)(  

where y  is the sum of output from the two firms; that is, 21 yyy += . 

 

The firms choose their output at the same time (simultaneous moves). Thus, each firm 

chooses its own output, taking as given the output produced by the other firm. Let 1
~y  be 

expected output by firm 1 from the perspective of firm 2, and let 2
~y  be expected output 

by firm 2 from the perspective of firm 1. 

 

Solve the profit maximization problem for firm 1. Verify that your solution is indeed a 

maximum. 
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Solution 

This is solved most easily as an unconstrained optimization problem. The problem for 

firm 1 is   

  
1

max
y

 2
1121 )]~([ cyyyyba −+−  

 

The first-order condition is 

(4)  02)~( 1121 =−−+− cybyyyba  

Note that firm 1 treats 2
~y  as a constant because it has no power to choose this. Taking the 

second derivative of the objective function with respect to 1y  yields  

(5)  022 <−− cb  

Thus, the objective function is strictly concave in 1y and so the first-order condition is 

necessary and sufficient for a maximum.  

 

Solving (4) for 1y  yields 

(6)  
)(2

~
)~( 2

21 cb
ybayy
+

−
=  

 

Economic Interpretation 

Equation (6) is a best-response function. It specifies the optimal output for firm 1 as a 

response to its expectation of what firm 2 will produce. Note that it is not a response to 

what firm 2 actually produces, since they both produce at the same time; there is no 

sequentiality to the actions of these players.  

 

Firm 2 solves an equivalent problem, and its best response function is 

(7)  
)(2

~
)~( 1

12 cb
ybayy

+
−

=  

 

In a Nash equilibrium each firm expects the other firm to act in a profit-maximizing 

way, and their expectations are correct. Thus, the Nash equilibrium values of 2
~y  and  1

~y  

are 
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(8)  
)(2

~~ 1
2 cb

ybay
+

−
=  

(9)  
)(2

~~ 2
1 cb

ybay
+

−
=  

respectively. Solving (8) and (9) – substitute (8) for 2
~y  in (9) and solve – yields the Nash 

equilibrium outputs: 

(10)  
cb

ay
23

ˆ1 +
=  

(11)  
cb

ay
23

ˆ2 +
=  

Note that both firms chose the same output because they have the same cost function.  

 

It is interesting to compare the total output in this equilibrium with the multi-plant 

monopoly case from Example 2.8. In particular, total output in the duopoly is 

(12)  
cb

ayyy
23

2ˆˆˆ 21 +
=+=  

 

In comparison, if a monopoly firm operates both plants (rather than operation by two 

competing firms) then we have the solution from Example 2.8 with ccc == 21 , given by 

(15) in that example: 

(13)  
bc

ay M

2+
=  

Note that 

(14)  0
)23)(2(

ˆ >
++

=−
cbcb

abyy M  

That is, Myy >ˆ ; more is produced under duopoly than would be produced by a 

monopolist operating both plants. Why? The duopoly firms are in competition with each 

other and this drives price down – and total sales up – relative to the monopoly outcome. 
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2.10 PUBLIC GOODS AND FREE-RIDING 

Consider an economy in which n identical agents each have the following utility function 

(1)  u y G y G( , ) log= +  

where y is a private good and G is a continuous public good. Each agent has income m (in 

terms of the private good) which she divides between consumption of the private good 

and a contribution g to the provision of the public good, such that 

(2)  G gii

n
=

=∑ 1
 

Part 1: Find the Nash Equilibrium in voluntary contributions. 

 

Solution to Part 1 

Agent i solves 

  max
gi

 ( ) log( )m g g Gi i i− + + −  

where G i−  is the total contribution from agents other than agent i. The first-order 

condition is 

(3)  − +
+

=
−

1
1

0
g Gi i

 

Simplifying yields 

(4)  g Gi i= − −1  

This represents the best response function for agent i. Note that it is downward-sloping; 

the more agent i expects others to provide, the less she will provide herself. This reflects 

the free-rider problem. 

 

In a symmetric Nash equilibrium, g gi =  ∀i  and so G n gi− = −( )1 . Thus, in equilibrium 

(5)  $g
n

=
1

 

The aggregate contribution is 

(6)  $ $G ng= = 1 
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Part 2: Compare the Nash equilibrium with the efficient solution.  

 

Solution to Part 2 

There is a continuum of efficient solutions, each one corresponding to a different 

distribution of utility. We will focus on a symmetric solution in which each agent derives 

the same utility. 

 

The most straightforward way to solve for a symmetric efficient solution when agents are 

identical is to maximize the utility of a representative agent: 

(7)  
yG ,

max  y G+ log    subject to  ny G nm+ =  

where nm is the total amount of the private good available in the economy for allocation 

between direct consumption and transformation into the public good; thus, the constraint 

is the resource constraint for this economy. To solve the problem it is easiest to 

substitute the resource constraint directly into the objective function and solve the 

unconstrained problem for G: 

(8)  
G

max  G
n

Gnm log+
−    

 

The first-order condition is 

(9)  011
=+−

Gn
 

which solves for 

(10)  G n* =  

 

Comparing this with $G  reveals that the Nash equilibrium level of G is inefficiently low. 

Note too that in this example, 

(11)  0
ˆ

*

>
⎟
⎠
⎞⎜

⎝
⎛

n
G

G

∂

∂
 

The inefficiency associated with free-riding is worse for larger populations. 
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2.11 A COURNOT OLIGOPOLY MODEL WITH IDENTICAL FIRMS 

Recall the duopoly model from Example 2.9. Here we extend that model to n firms. 

Suppose there are n identical firms each with marginal cost c, and suppose inverse 

demand is given by p Y a bY( ) = − . Find the Nash equilibrium outputs. 

 

Solution 

The problem for representative firm i is 

(1)  iiy
cyybYa

i

−− ][max   subject to ii YyY −+= ~  

where 

(2)  ∑
≠

− =
n

ij
ji yY ~~  

is the expected total output from all firms other than firm i. Substitute the constraint 

directly for Y in the revenue function and derive the first-order condition (the best 

response function): 

(3)  
b

Ybcay i
i 2

~
−−−

=    ∀i  

 

The Nash Equilibrium 

Each firm rationally expects all other firms to choose their outputs based on a best-

response function like (3). Since firms are identical, it is natural to look for a symmetric 

Nash equilibrium in which each firm chooses the same equilibrium output. Let ŷ  denote 

that equilibrium output. Then in the symmetric equilibrium, 

(4)  $ $y yi =   ∀i    and   ynY i ˆ)1(~ −=−  ∀i  

Making these substitutions into (3) and solving yields 

(5)  $
( )

y
a c

b n
=

−
+1

 

Note that setting 2=n  in (4) yields the duopoly result from Example 2.9.  
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The Nash equilibrium price is 

(6) $ $p a bny
a nc
n

= − =
+
+1

 

 

Special Cases 

1. Perfect competition. Take the limit as ∞→n : 

  lim $
n

p c
→∞

=  

2. Monopoly. Set 1=n : 

  $p
a c

n=
=

+
1 2

 

 

 

2.12 A COURNOT OLIGOPOLY MODEL WITH HETEROGENEOUS FIRMS 

Consider a generalization of Example 2.11 in which we allow all firms to be different 

with respect to their marginal cost. In particular, the cost function for firm is i is 

iiii ycyc =)( .  

 

Solution 

The problem for firm i is 

(1)  iiiy
ycybYa

i

−− ][max   subject to ii YyY −+= ~  

where 

(2)  ∑
≠

− =
n

ij
ji yY ~~  

is the expected total output from all firms other than firm i. Substitute the constraint 

directly for Y in the revenue function and derive the first-order condition (the best 

response function): 

(3)  
b

Ybcay ii
i 2

~
−−−

=    ∀i  
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So far this is a simple generalization Example 2.9 (with c replaced by ic  in the best-

response function). Things become more complicated when we solve for the Nash 

equilibrium.  

 

The Nash Equilibrium 

Each firm rationally expects all other firms to choose their outputs based on a best-

response function like (3) but we can no longer impose a symmetry condition, since firms 

are not identical. To find the NE, first let iŷ  denote the equilibrium output from firm i 

and let Ŷ denote the total equilibrium output. Then the rational expectation for firm i with 

respect to iY−  is 

(4)  ii yYY ˆˆ~ −=−  

Making this substitution in (3) yields 

(5)  
b

yYbcay ii
i 2

)ˆˆ(ˆ −−−
=   ∀i  

Solve (5) for iŷ : 

(6)   Y
b

cay i
i

ˆˆ −
−

=   ∀i  

Now sum both sides across i to obtain  

(7)  Yn
b

cna
y

n

i i
n

i
i

ˆˆ 1

1

−
−

= ∑∑ =

=

 

But Yyn

i i
ˆˆ

1
=∑ =

, so (7) can be rewritten as 

(8)  Yn
b

cna
Y

n

i i ˆˆ 1 −
−

= ∑ =  

We can now solve (8) for Ŷ : 

(9)  
)1(

ˆ 1

+

−
= ∑ =

nb
cna

Y
n

i i   

Equilibrium outputs for each firm can then be found by substituting (9) into (6): 

(10)  
)1(

ˆ
+
+−

= −

nb
Cncay ii

i  
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where  

(11)  ∑
≠

− =
n

ij
ji cC  

We can recover the identical firm case from Example 2.11 by setting cci =  i∀ . In that 

case, cnC i )1( −=− . Making this substitution in (10) yields 

(12)  
)1(

ˆ
+
−

=
nb

cayi   i∀  

 

 

 

 

 

 

 

 

 

 

 

 

 

 


