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1. INTRODUCTION AND OVERVIEW 

 

This text provides a succinct treatment of the basic elements of microeconomic theory. It 

deliberately avoids the use of words and lengthy explanations wherever possible, and for 

most students should be used as accompaniment to a lecture-based course. It is designed 

for senior undergraduates with good mathematical skills, and entry-level graduate 

students. 

 

It begins with a basic treatment of consumer theory (Chapters 2 & 3), and then extends 

the analysis to consumer welfare measures (Chapter 4), choice under uncertainty 

(Chapter 5), and intertemporal choice (Chapter 6). An Appendix to Chapter 2 provides a 

review of optimization techniques.  

 

It then moves to production and the theory of the competitive firm (Chapters 7 – 9). 

Competitive equilibrium is then examined, first in partial equilibrium (Chapter 10) and 

then in a simple two-sector general equilibrium model, with an informal presentation of 

the first welfare theorem (Chapter 11). 

 

It then moves on to sources of market failure, starting with monopoly (Chapter 12) and a 

game-theoretic treatment of oligopoly (Chapter 13). This is followed by a game-theoretic 

treatment of externalities and public goods (Chapter 14), and asymmetric information 

(Chapter 15). 

 

An Appendix contains four problem sets covering the main material. Fully worked 

solutions are included. 
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2. FOUNDATIONS OF CONSUMER THEORY 

 

2.1 Preferences  

The consumption set, X.  Preferences over bundles in X: 

 yx ~  means x is weakly preferred to (at least as good as) y 

 if  yx ~  and ]~[~ xy   then yx  ; that is,  x is strictly preferred to y 

 if  yx ~  and xy ~  then yx ~ ; that is, the agent is indifferent between x and y 

 

Assumptions on Preferences 

1. completeness:  Xx  and Xy ,  either yx ~  or  xy ~ ;  that is, all bundles 

can be compared. 

2. reflexivity: Xx ,  xx ~  

3. transitivity: Xzyx  },,{ , if yx ~  and zy ~  then zx ~ .  This ensures no 

ambiguity in ranking. 

4. continuity: Xx , the sets   yxxB ~:  and  xyxA ~:  are closed; that 

is, these sets contain their boundaries. This allows for the existence of indifference 

curves, along which points belong to both A and B. 

5. strong monotonicity: if x y  then yx  ;  that is, more is strictly better. 

6. strict convexity: Xzyx  },,{  and x y , if  zx ~   and zy ~ ,  then  

zyttx )1(   )1,0(t ; that is, indifference curves are bowed towards the origin.  

See Figure 2.1.  Strict convexity implies a preference for variety. 

 

Representation Theorem (without proof) 

If preferences satisfy assumptions (1) – (5) then there exists a utility function )(xu  that 

represents those preferences, such that 

 yx ~    )()( yuxu   

 yx     )()( yuxu   

 yx ~     )()( yuxu   
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The utility function representing a particular preference ordering is not unique.  If )(xu  

represents a preference ordering, then any monotonic transformation of that function also 

represents those preferences. 

 

In particular, the marginal rate of substitution (MRS) is invariant to a monotonic 

transformation of the utility function.  To obtain the MRS between two goods ix  and jx , 

totally differentiate the utility function to obtain 

 j
j

i
i

dx
x

u
dx

x

u
du







  

By definition, along an indifference curve, 0du . Thus, the slope of the indifference 

curve (in absolute value) is 

 ij

i

j

j

i MRS

x
u

x

u

dx

dx








    

Now let )(uv  be a monotonic transformation of u.  Then 

 j
j

i
i

dx
x

u
uvdx

x

u
uvdv





 )()(     

Setting 0dv : 

 

i

j

i

j

j

i

x

u
x

u

x

u
uv

x

u
uv

dx

dx



















)(

)(

 

Why must )(uv  be monotonic?  This ensures that v u( )  does not change sign; otherwise 

rankings could be reversed. 

 

The non-uniqueness of a utility representation of preferences means that )(xu  has no 

cardinality; that is, a cardinal value for utility, such as 25u , has no meaning. The 

utility function only has ordinal interpretation:  it orders (or ranks) consumption bundles 

as better or worse, but says nothing about how much better or worse. 
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We now wish to relate convexity of preferences to the utility function. To do so, we first 

need to define quasi-concavity. 

 

Technical Note. A function )(xf  is (strictly) quasi-concave iff 

  )(),(min)())1(( xfxfxtxtf   xx  ,  )1,0(t  

The critical feature of a quasi-concave function is that it has no local minima.  See Figure 

2.2 for an example of a quasi-concave function, and Figure 2.3 for an example of a 

function that is not quasi-concave.  

 

Theorem 

If preferences are (strictly) convex, then the utility function representing those 

preferences is (strictly) quasi-concave. 

Proof.  If preferences are strictly convex then zyttx )1(   for zx ~   and zy ~ .  If 

)(xu  represents those preferences then: 

 )()( zuxu  , )()( zuyu   and )())1(( zuyttxu   

Therefore 

  u tx t y u x u y( ( ) ) min ( ), ( )  1  

That is, )(xu  is quasi-concave.  

 

 

2.2 Utility Maximization 

The consumer’s problem is: 

 
x

max )(xu   subject to mpx   

Since )(xu  is strictly increasing – by assumption (5) on preferences – the income 

constraint will bind at the optimum, so we can write 

 
x

max )(xu   subject to mpx   

Let ),( mpx  be the solution vector.  The elements of that vector, x p mi ( , ) , are the 

Marshallian (or ordinary) demand functions. 

 



Kennedy: Microeconomic Theory 

Posting this material to any site other than web.uvic.ca/~pkennedy is a violation of copyright. 5

If )(xu  is differentiable (and it need not be), we can derive ),( mpx  using calculus.1 

Form the Lagrangean:  

 )()( pxmxuL    

and differentiate with respect to x and   to obtain the first order conditions: 

 0 i
i

px
u 
  i  

 m px  0     

To interpret these conditions, take the ratio of a pair of conditions i and j: 

 







u
x

u
x

p

p
i

j

i

j

  

That is, MRSij   price ratio.  Geometrically, this is a tangency condition: the slope of the 

indifference curve is equal to the slope of the budget constraint. The intercepts of the 

budget constraint tie down that tangency point – and the associated Marshallian demands 

– to the particular income level faced by the consumer. See Figure 2.4. 

 

Second-Order Conditions and Optimizing Behaviour 

Technical Note. It is straightforward to show that in any constrained optimization 

problem, if the constraint is linear (as the budget constraint is) and the objective function 

is quasi-concave and continuously differentiable then the first-order conditions are 

sufficient for a global maximum. 

 

Implication for consumer theory: quasi-concavity of )(xu  (convexity of preferences) is 

sufficient for a maximum.  Weak convexity allows the possibility of a non-unique 

maximum; strict convexity (strict quasi-concavity of )(xu ) ensures a unique maximum. 

 

It is essential to understand that the consumer always acts to maximize utility, by 

assumption.  If the consumer has convex preferences then the first-order conditions 

describe maximizing behavior. We can then make inferences about behaviour from these 

                                                           
1 See the Appendix to this Chapter for a brief review of optimization methods. 
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conditions by imposing the SOCs. That is, we use the SOC to inform us about what 

maximizing behaviour implies for consumer demand.  

 

 

2.3 Examples 

1. Cobb-Douglas 

 ba xxxu 21)(   

 )( 221121 xpxpmxxL ba    

First-order conditions: 

 ax x pa b
1

1
2 1

   =0 

 bx x pa b
1 2

1
2

   =0 

Take ratio: 

 
ax

bx

p

p
2

1

1

2

  

  x
bp x

ap2
1 1

2

 

Substitute into budget constraint:  

 m p x p
bp x

ap
 







1 1 2

1 1

2

 

  


x p m
am

a b p1
1

( , )
( )

 

  


x p m
bm

a b p2
2

( , )
( )

 

 

2. Log-Linear 

 21 loglog)( xbxaxu   

 )(loglog 221121 xpxpmxbxaL    

First-order conditions: 

 
a

x
p

1
1 0   
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b

x
p

2
2 0   

Take ratio: 

 
2

1

1

2

p

p

bx

ax
    

Same as C-D result above. Hence, 

 x p m
am

a b p1
1

( , )
( )




 

 x p m
bm

a b p2
2

( , )
( )




 

Why the same as C-D?  Case (2) is a logarithmic (and therefore monotonic) 

transformation of (1). 

 

3. Generalized Log-Linear      

 i

n

i
i xaxu log)(

1



   

or equivalently,  

 



n

i

a
i

ixxu
1

)(  

First-order conditions: 

 
a

x
pi

i
i  0  

(*)  a p xi i i  

Sum both sides over i: 

 a p xi
i

n

i
i

n

i
 
 

1 1

  

Substitute for m: 

 a mi
i

n


 

1

   

  m

a
n

i
i

 1  



Kennedy: Microeconomic Theory 

Posting this material to any site other than web.uvic.ca/~pkennedy is a violation of copyright. 8

Substitute into (*): 

 x p m
a m

p a
i

i

i i
i

n( , ) 




1

 

 

4. Quasi-Linear 

 21log)( xxxu   

 )(log 221121 xpxpmxxL    

First-order conditions: 

 
1

0
1

1x
p   

 1 02 p  

   
1

2p
 

  x p m
p

p1
2

1

( , )   if  p
p

p
m1

2

1







   

Then from the budget constraint: 

If mp 2 : 

 
1

2
1 ),(

p

p
mpx   

 x p m
m p x

p2
1 1

2

( , ) 



m p

p
2

2

   

If mp 2 : 

 x p m2 0( , )   

 x p m
m

p1
1

( , )   

That is, if mp 2  we have a corner solution. See Figure 2-5. 
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5. Leontief (Fixed Proportions) 

This is a non-differentiable example: 

  21,min)( bxaxxu   

If  ax bx1 2   then any increase in either 1x  or 2x  (but not both) has no effect on )(xu .  

Thus, the consumer will never choose any bundle },{ 21 xx  such that ax bx1 2 .  So the 

“tangency condition” is: 

 ax bx1 2  

See Figure 2.6. Then using the budget constraint: 

 m p x p
ax

b
 





1 1 2

1   

  


x p m
bm

bp ap1
1 2

( , )  

  


x p m
am

bp ap2
1 2

( , )     

 

 

2.4 The Indirect Utility Function 

The maximum value function for the consumer problem is the indirect utility function: 

  v p m u x p m( , ) ( , )  

 

Example: Cobb-Douglas 

 ba xxxu 21)(   

 x p m
am

a b p1
1

( , )
( )




 

 x p m
bm

a b p2
2

( , )
( )




 

Upon substitution: 

 v p m
am

a b p

bm

a b p

a b

( , )
( ) ( )





















1 2

 























m

a b

a

p

b

p

a b a b

1 2

 

 



Kennedy: Microeconomic Theory 

Posting this material to any site other than web.uvic.ca/~pkennedy is a violation of copyright. 10

Technical Note: The Envelope Theorem 

Consider the following general optimization problem: 

  
x

max  ),( axf  subject to 0),( axg  

where  x and a are vectors.  Utility maximization is a special case where )(),( xuaxf   

(and hence 0)(  af ) and pxmaxg ),(  (and hence },{ pma  ).  Let  

  ),(),( axgaxfL   

be the associated Lagrangean, and let )(* ax  denote the solution.  Furthermore, let 

)),(()( * aaxfav   denote the associated maximum value function.  Then the envelope 

theorem states that  

  
a

g

a

f
av








 )(  

That is, in calculating the effect of a change in a parameter on the maximum value 

function, we need only consider the direct effect through f and g; the indirect effect, 

through )(* ax , can be ignored.  

 

Proof. By differentiation of )(av : 

(1) 
a

aaxf

a

x

x

aaxf
av

n

i

i

i 
























 



)),(()),((
)(

*

1

**

 

But since )(* ax  is optimal for a, it must satisfy the FOCs. Thus, 

(2) 
ii x

aaxg

x

aaxf







 )),(()),(( **

  i  

(3) 0)),(( * aaxg  

Differentiating equation (3) – the constraint – yields 

(4) 0
)),(()),(( *

1

**




























 a

aaxg

a

x

x

aaxgn

i

i

i

 

Substituting (2) and (4) into (1) yields 

  
a

g

a

f
av








 )(  

which proves the result. 
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Interpretation. A change in the parameter does cause a change in the value of )(* ax  but 

at the margin that change in *x  has no effect on L since *x  is a turning point of L.  

 

The Marginal Utility of Income  

The envelope theorem implies an important relationship between the indirect utility 

function and the Lagrange multiplier. In the utility-maximization problem, the constraint 

is 


n

i ii xpmmxg
1

),( , where m  takes the role of a. This is linear in m , so 

1/  ag  for this problem. Moreover, m  does not enter the utility function directly in 

this problem, so 0/  af . Thus, the envelope theorem tells us that  )(mv ; the 

marginal utility of income is equal to the Lagrange multiplier. That is, the value of the 

Lagrange multiplier at the optimum measures the amount by which utility rises if income 

rises by one dollar. It is for this reason that the Lagrange multiplier is called the shadow 

price of the constraint. 

 

 

2.5 Expenditure Minimization and the Hicksian Demands 

An equivalent mathematical representation of utility maximization is expenditure 

minimization: 

 
x

min  px  subject to uxu )(  

Construct the Lagrangean: 

  )(xuupxL    

First-order conditions: 

 
i

i x

u
p


  i  

 uxu )(  

Take ratio of a pair i and j: 

 
p

p

u

x
u

x

i

j

i

j








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That is, price ratio  MRSij . Thus, utility maximization  expenditure minimization. In 

Section 2.7 below we will see more clearly how the expenditure minimization problem 

and the utility maximization problem are related.  

 

Solution of the FOCs to the expenditure minimization problem yields the Hicksian (or 

compensated) demand functions: h p ui ( , ) . 

 

Example: Cobb-Douglas 

 )( 212211
ba xxuxpxpL    

First-order conditions: 

(1) 02
1

11   ba xaxp        

(2) 01
212  ba xbxp        

(3) u x xa b 1 2 0        

From (1) and (2) we obtain the tangency condition: 

(4) 
1

2

2

1

bx

ax

p

p
    

Substitute (4) into (3) and solve for x2 : 

 h p u u
bp

ap

a a b

2
1

2

1

( , ) 




















  

Then use (4) to solve for x1 : 

 h p u u
ap

bp

b a b

1
2

1

1

( , ) 






















 

 

Relationship between the Hicksian and Marshallian Demands 

Consider the demand response to 111 : ppp o  , as illustrated in Figure 2.7 for 0
11 pp  .  

The demand response comprises a substitution effect (SE) and an income effect (IE).  
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SE measures the demand response associated with the price change given that the 

individual is compensated with just enough income to restore her utility to its initial level 

(at the new prices), at the point labeled x~  in the upper frame of Figure 2.7.  

 

IE measures the demand response due to the change in real income associated with the 

price change.  (Figure 2.7 is drawn for the case of a normal good: the income effect and 

substitution effect work in the same direction.  For an inferior good the income effect for 

a price fall is negative. We will return to this issue in Topic 3). 

 

The Hicksian (or compensated) demand function measures only the SE associated with a 

price change; see the lower frame of Figure 2.7. That is, it represents the relationship 

between price and quantity demanded when utility is held constant via an income 

compensation.  The Marshallian (or ordinary) demand function measures the combined 

SE and IE. 

 

In the case of a normal good (as illustrated in Figure 2.7), the Marshallian demand is 

flatter than the Hicksian demand because the SE and IE act in the same direction. For an 

inferior good, the Marshallian demand is steeper than the Hicksian demand. 

 

 

2.6 The Expenditure Function 

The minimum value function for the expenditure minimization problem is the 

expenditure function: 

 ),(),( uphpupe   

It measures the minimum expenditure that is necessary to achieve u at given p. 

 

Example: Cobb-Douglas 

 e p u p h p u p h p u( , ) ( , ) ( , ) 1 1 2 2  

  
baabab

ap

bp
up

bp

ap
up

















































1

2

1
2

1

1

2
1  
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Properties of the Expenditure Function 

The following properties are implied directly by the definition of ),( upe  as a minimum 

value function; they do not rely on convexity of preferences. 

1. ),( upe  is non-decreasing in p and increasing in u. 

2. ),( upe  is homogeneous of degree 1 in p. 

3. ),( upe  is concave in p. 

 

Technical Note. A function )(xf  is homogeneous of degree   iff  

 )()( xfxf       

 

Technical Note. A function )(xf  is (strictly) concave iff 

 )()1()()())1(( xftxtfxtxtf   xx  ,  )1,0(t  

See Figure 2.8 for an example of a strictly concave function, and Figure 2.9 for an 

example of a function that is not concave (though it is quasi-concave).  Note that all 

concave functions are quasi-concave but not all quasi-concave functions are concave. 

 
 
Proof of Property 3 

Let     p tp t po ( )1 . Then 

 

 e p u p h p u( , ) ( , )      

    ),(])1([ uphpttpo   

         tp h p u t p h p uo ( , ) ( ) ( , )1  

By definition of ),( upe  as the minimum value function: 

 
p h p u e p u

p h p u e p u

o o( , ) ( , )

( , ) ( , )

 
   




  

Therefore 

 tp h p u t p h p u te p u t e p uo o( , ) ( ) ( , ) ( , ) ( ) ( , )        1 1  

which in turn implies 
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 ),()1(),(),( upetupteupe o   

That is, ),( upe  is concave in p. 

 

In Topic 3 we will use the concavity of ),( upe  to derive the properties of the Hicksian 

demands, and by extension, of the Marshallian demands.  Thus, the concavity of ),( upe  

is a key result in consumer theory. 

 

 

2.7 Some Important Identities 

1. The minimum expenditure needed to achieve utility ),( mpv  is m: 

 mmpvpe )),(,(  

 

2. The maximum utility attainable from income ),( upe  is u: 

 uupepv )),(,(  

 

3. Identities (1) and (2) together imply that ),( mpv  and ),( upe are inverses of each 

other: 

 ),(),( 1 upvupe   

 ),(),( 1 mpempv   

    

4. The value of the Marshallian demand at income m is the same as the value of the 

Hicksian demand at utility ),( mpv : 

 )),(,(),( mpvphmpx   

 

5. The value of the Hicksian demand at utility u is the same as the value of the 

Marshallian demand at income ),( upe : 

 )),(,(),( upepxuph   
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6. Roy’s Identity 

  







v

p
v

m

x p mi
i ( , )  

if 0m , pi  0 and the LHS derivative exists. 

Proof. By the envelope theorem: 

 ),( mpx
p

v
i

i





    and    




m

v
 

Take the ratio to obtain the result. 

 

7. Shephard’s Lemma 

 



e p u

p
h p u

i
i

( , )
( , )  

if pi  0 and the LHS derivative exists. 

Proof.  By the envelope theorem. 

 

For a graphical summary of these results, see Figure 2.10 

 

 

2.8 Example: Cobb-Douglas Utility 

Identity 1 

 
baabab

ap

bp
mpvp

bp

ap
mpvpmpvpe

















































1

2

1
2

1

1

2
1 ),(),()),(,(  

Substituting for  

 v p m
m

a b

a

p

b

p

a b a b

( , ) 

























1 2

  

yields e p v p m m( , ( , ))  . 
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Identity 2 

 v p e p u
e p u

a b

a

p

b

p

a b a b

( , ( , ))
( , )



























1 2

 

Substituting for  

 
baabab

ap

bp
up

bp

ap
upupe

















































1

2

1
2

1

1

2
1),(  

yields v p e p u u( , ( , ))  .  

 

Identity 3 

Set v p m u( , )  : 

 u
m

a b

a

p

b

p

a b a b



























1 2

    

Solve for m and set e p u m( , )   to obtain 

 
baabab

ap

bp
up

bp

ap
upupe

















































1

2

1
2

1

1

2
1),(  

Similarly, set e p u m( , )  : 

 
baabab

ap

bp
up

bp

ap
upm

















































1

2

1
2

1

1

2
1  

Solve for u and set v p m u( , )   to obtain 

 v p m
m

a b

a

p

b

p

a b a b

( , ) 

























1 2

 

  

Identity 4 

Substitute 

 v p m
m

a b

a

p

b

p

a b a b

( , ) 

























1 2

 

for u in  
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 h p u u
ap

bp

b a b

1
2

1

1

( , ) 






















 

to obtain 

 x p m
am

a b p1
1

( , )
( )




  

 

Identity 5 

Substitute 

 
baabab

ap

bp
up

bp

ap
upupe

















































1

2

1
2

1

1

2
1),(  

for m in  

 x p m
am

a b p1
1

( , )
( )




 

to obtain 

 h p u u
ap

bp

b a b

1
2

1

1

( , ) 






















 

 

Roy’s Identity 

Differentiate  

 v p m
m

a b

a

p

b

p

a b a b

( , ) 

























1 2

   

with respect to p1  to obtain 

 



v

p1

 

































 

a
m

a b

a

p

b

p

a

p

a b a b

1

1

2 1
2  

and with respect to m to obtain 

 



v

m


m

a b

a

p

b

p

a b a b























 1

1 2

 

Then take the (negative of) the ratio to obtain 
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 x p m
am

a b p1
1

( , )
( )




   

 

Shephard’s Lemma 

Differentiate 

 
baabab

ap

bp
up

bp

ap
upupe

















































1

2

1
2

1

1

2
1),(  

with respect to p1  to obtain 

 h p u u
ap

bp

b a b

1
2

1

1

( , ) 





















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APPENDIX A2: CONSTRAINED OPTIMIZATION 

 

A2.1 The Constrained Optimization Problem 

We begin with a constrained optimization problem of the type 

  
x

max  ),...,( 1 nxxf   subject to   bxxg n ),...,( 1  

The function ),...,( 1 nxxf  is called the objective function or maximand; the equation 

bxxg n ),...,( 1  is called the constraint. 

 

Remarks 

1. We are restricting attention here to equality-constrained problems. An inequality-

constrained problem would arise where the constraint is bxxg n ),...,( 1 . The 

techniques we develop here can be extended easily to that case. 

2. A minimization problem with objective function )(xf  can be set up as a 

maximization problem with objective function )(xf . 

 

 

A2.2 Characteristics of the Optimum 

At the maximum of the objective function subject to the constraint, infinitesimal changes 

in the variables nxxx ,...,, 21  which satisfy the constraint must have no effect on the value 

of the objective function. Otherwise, we could not be at a maximum.  

 

Thus, a necessary condition for the maximum is that 0df  whenever 0dg . That is, 

we require 

(A2.1)  0...2
2

1
1













n
n

dx
x

f
dx

x

f
dx

x

f
 

for all 1dx , 2dx , …, ndx  satisfying 

(A2.2)  0...2
2

1
1













n
n

dx
x

g
dx

x

g
dx

x

g
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where ixf  /  is the partial derivative of f with respect to ix , and ixg  /  is the partial 

derivative of g with respect to ix . 

 

These conditions tells us that at the optimum there must be no way in which we can 

change the ix ’s such that we can change the value of the function (and in particular, 

increase the value of the function) and still satisfy the constraint. 

 

 

A2.3 The Unconstrained Optimum 

Note that in the absence of the constraint we would be seeking conditions under which 

(A2.1) holds for all 1dx , 2dx , …, ndx , rather than only those changes in x that satisfy 

(A2.2). That is, we would require that the idx  have zero coefficients in (A2.1): 

(A2.3)  0



ix

f
  i  

Note that this is a set of n  equations in n unknowns.  

 

Example 

Profit maximization for a “competitive” firm with Cobb-Douglas technology, given by 

(A2.4)  ba xxxh 21)(   

The profit maximization problem is 

(A2.5)  max
x

a bpx x w x w x1 2 1 1 2 2   

with first-order conditions 

(A2.6)           apx x wa b
1

1
2 1

    

and  

(A2.7)  bpx x wa b
1 2

1
2

          

We can solve these equations by first taking the ratio of (A2.6) and (A2.7) to obtain 

(A2.8)  
ax

bx

w

w
2

1

1

2
         



Kennedy: Microeconomic Theory 

Posting this material to any site other than web.uvic.ca/~pkennedy is a violation of copyright. 22

Now rearrange (A2.8) to obtain: 

(A2.9)  x
bw x

aw2
1 1

2
     

Substitute (A2.9) into (A2.6) or (A2.7) and solve for 1x : 

(A2.10) 
ba

b

ba

bw

aw

w

bp
wpx
























1

1

1

2
1

1

2
1 ),(    

Then substitute (A2.10) into (A2.9) to obtain x p w2 ( , ) .  These are the factor demands or 

input demands.  We can then construct the supply function by substituting these factor 

demands into the production function: 

(A2.11) y p w x p w x p wa b( , ) ( , ) ( , ) 1 2  

 

 

A2.4 The Constrained Optimum: Solution by Substitution  

Rewrite (A2.2) to isolate 1dx : 

(A2.12) 
1

1
1 /

)/(

xg

dxxg
dx i

ii






  

Now substitute this expression for 1dx  into (A2.1) to obtain 

(A2.13) 0
/

)/(

11

1

1





























 






i
i

i

i
ii

dx
x

f

xg

dxxg

x

f
 

This can be written as 

(A2.14) 0
/

)/)(/(

11 1

1 














 

 i
i

ii

ii dx
x

f

xg

dxxgxf
 

Then by collecting terms under the summation operator, we have 

(A2.16) 0
/

)/)(/(

1 1

1 
















i

i

i

i

dx
xg

xgxf

x

f
 

The only solution to this equation is to set all of the coefficients on the idx ’s equal to 

zero since the equation must hold for all possible values of the idx ’s. That is, 
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(A2.16) 
1

1

/

)/)(/(

xg

xgxf

x

f i

i 






 1i  

This can in turn be written as 

(A2.17) 
1

1

/

/

/

/

xg

xf

xg

xf

i

i








 1i  

Note that (A2.17) comprises 1n  equations. Together with the constraint itself we 

therefore have n equations which can be solved for the n unknowns (the ix ’s). 

 

 

A2.5 Example: Utility Maximization 

Recall the utility maximization problem for 2n . For that example, equation (A2.17) – 

which is a single equation in the 2n  case – becomes  

(A2.18) 
1

1

2

2

/

/

/

/

xg

xf

xg

xf








 

This in turn can be rearranged as 

(A2.19) 
2

1

2

1

/

/

/

/

xg

xg

xf

xf








 

In the utility maximization problem we have ii xuxf  //  and ii pxg  / . Thus, 

(A2.19) becomes 

(A2.20) 
2

1

2

1

/

/

p

p

xu

xu





 

This is the familiar tangency condition, stating that the slope of the indifference curve 

(the marginal rate of substitution) is equal to the slope of the budget constraint at the 

optimum.  

 

In the specific case of Cobb-Douglas (CD) utility, (A2.20) becomes 

(A2.21) 
2

1

1

2
1

21

2
1

1

p

p

bx

ax

xbx

xax
ba

ba





 

Thus, in the case of CD utility, the consumption ratio is inversely proportional to the 

price ratio.  
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Note that (A2.21) is one equation in two unknowns. It tells us the relationship between 

1x  and 2x  at the optimum but cannot be solved for unique values of 1x  and 2x . In the 

geometric interpretation, it tells us that we must have a tangency but it does not tells us 

where that tangency must be. For that we need additional information: the position of the 

budget constraint (as opposed to its slope). That information is contained in the budget 

constraint itself, which in the 2n  case is 

(A2.22) mxpxp  2211  

 

Combining equations (A2.21) and (A2.22), we have two equations in two unknowns, 

which can be solved by simple substitution. In particular, express (A2.21) as 

(A2.23) 
b

xap
xp 22

11   

and substitute into the budget constraint to obtain 

(A2.24) mxp
b

xap
 22

22  

Solving for 2x  yields 

(A2.25) 
2

2 )(
),(

pba

bm
mpx


  

 

Substituting this solution for 2x  into (A2.25) then yields the solution for 1x : 

(A2.26) 
1

1 )(
),(

pba

am
mpx


  

 

Equations (A2.25) and (A2.26) are called the Marshallian demands; they relate the 

demand for each good to the prices, and to income.  
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A2.6 The Lagrange Multiplier Approach 

The Lagrange multiplier approach to the constrained maximization problem is a useful 

mathematical algorithm that allows us to reconstruct the constrained problem as an 

unconstrained problem which yields (A2.17) as its solution. 

 

Consider the problem  

(A2.27) 
x

max  )(xf   subject to   0),( bxg  

where },...,{ 1 nxxx   and b  is a parameter in the constraint, identified explicitly here 

because we have some particular interest in it. 

 

To solve this problem, we define the Lagrangean by introducing a new variable   called 

the Lagrange multiplier (LM): 

(A2.28) )()(),( xgxfxL    

 

We then solve the unconstrained maximization problem 

(A2.29) 
,

max
x

 ),( xL  

The necessary (first-order) conditions for a maximum are 

(A2.30) 0



ix

L
  i  

and 

(A2.31) 0



L

 

 

Note that (A2.30) comprises n  equations, so together with (A2.31) we have 1n  

equations in 1n  unknowns (including  ). Take these derivatives of ),( xL  to yield 

(A2.32) 0











iii x

g

x

f

x

L    i  

and 

(A2.33) 0),( 



bxg
L


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Now take the ratio of any two equations from (A2.32), say for 1i  and ji  : 

(A2.34) 
11 /

/

/

/

xg

xg

xf

xf jj









  1j  

Note that the LM has now been eliminated. This expression can be rearranged to yield 

(A2.35) 
1

1

/

/

/

/

xg

xf

xg

xf

j

j








  1j  

 

These 1n  equations are the same as conditions (A2.17). Thus, the LM method yields 

the solution to the constrained optimization problem. The additional information we need 

to complete the solution is the constraint itself, and this is given by (A2.33). Thus, 

conditions (A2.33) and (A2.35) describe a complete solution to the constrained problem. 

 

Example 1: CD Utility Maximization Revisited 

Recall the constrained optimization problem for CD utility: 

(A2.36) 
x

max ba xx 21   subject to  mxpxp  2211  

 

Construct the Lagrangean: 

(A2.37) )( 221121 xpxpmxxL ba    

Derive the first-order conditions: 

(A2.38) ax x pa b
1

1
2 1

   =0 

 

(A2.39) bx x pa b
1 2

1
2

   =0 

 

(A2.40) 02211  xpxpm  

 

Take the ratio of (A2.40) and (A2.39) to obtain 

(A2.41) 
ax

bx

p

p
2

1

1

2

  

and rearrange this to yield 
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(A2.42) 
2

11
2 ap

xbp
x   

 

Now substitute (A2.42) into the budget constraint (A2.40): 

(A2.43) m p x p
bp x

ap
 







1 1 2

1 1

2

 

and solve for 1x : 

(A2.44) 
1

1 )(
),(

pba

am
mpx


  

 

Then substitute (A2.44) into (A2.42) to yield 

(A2.45) 
2

2 )(
),(

pba

bm
mpx


  

 

Example 2: Generalized Log-Linear Utility 

(A2.46) 
x

max   i

n

i
i xa log

1



  subject to   mxp
n

i
i 

1
1  

 

Construct the Lagrangean: 

(A2.47) )(log
11

i

n

i
ii

n

i
i xpmxaL 



   

Derive the first-order conditions: 

(A2.48) 
a

x
pi

i
i  0   i  

(A2.49) 0
1




i

n

i
i xpm  

 

In this example, taking the ratio of any pair of equations from (A2.48) will yield the usual 

tangency condition, but it is not the most efficient way to solve the problem. Instead we 

will use an alternative solution method that usually performs better when we have 2n  

variables.  
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Rearrange (A2.48) to yield 

(A2.50) iii xpa   i  

Now take the sum over i on both sides of (A2.50) to yield 

(A2.51) a p xi
i

n

i
i

n

i
 
 

1 1

  

Substitute m for expenditure in the RHS term to yield: 

(A2.52) a mi
i

n


 

1

   

and rearrange to solve for  : 

(A2.53) 
m

a
n

i
i

 1  

Now substitute (A2.53) for   in (A2.50) and solve for ix : 

(A2.54) 





n

i
ii

i
i

ap

ma
mpx

1

),(  

 

Note that in the special case where 2n , these solutions become 

(A2.55) 
121

1
1 )(

),(
paa

ma
mpx


  

 

(A2.56) 
221

2
2 )(

),(
paa

ma
mpx


  

 

Compare these with the CD Marshallian demands from (A2.44) and (A2.45). They are 

the same solutions (with aa 1  and ba 2 ). Why? The CD utility function and the log-

linear utility function represent exactly the same preferences; one function is a monotonic 

transform of the other. A monotonic transform does not change the underlying 

preferences because preferences have no cardinal interpretation; they are an ordinal 

notion only. 
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3. PROPERTIES OF CONSUMER DEMAND 

 

3.1 Properties of the Hicksian Demands  

1. Negativity 

0
i

i

p

h




 

That is, the compensated own-price effect – the substitution effect – is non-positive. 

(Hence, the usual term, “negativity”, is somewhat misleading). 

Proof. By Shephard’s lemma: 

 h
e

pi
i





 

and by concavity of ),( upe : 







h

p

e

p
i

i i

 
2

2 0 

 

2. Symmetry 







h

p

h

p
i

j

j

i

  

That is, compensated cross-price effects are symmetric. 

Proof.  By Shephard’s lemma: 

 




 





 

h

p

e

p p
and

h

p

e

p p
i

j i j

j

i j i

 
2 2

 

The result then follows by Young’s theorem. 

 

3. Homogeneity 

),( uph  is homogeneous of degree 0 in p. 

Proof.  ),( upe  is homogeneous of degree 1 in p.  By Shephard’s lemma: 

h
e

pi
i





 

and so the result follows from Euler’s theorem. 
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Note that these three properties follow from the definition of ),( upe  as a minimum value 

function. Thus, if the consumer is maximizing utility – in which case she must also be 

minimizing expenditure for a given utility – then the above properties hold if ),( upe  is 

differentiable. 

 

A sufficient condition for differentiability of ),( upe  is convexity of preferences. Why? 

Suppose preferences are non-convex, as illustrated if Figure 3.1.1  As p1  rises from 0
1p  

to 1
1p , there is a discrete jump in the Hicksian demand.  This renders ),(1 uph  

discontinuous at some price ),(~ 1
1

0
11 ppp  , as in Figure 3.2.  In this case, the expenditure 

function is kinked at 1
~p , as in Figure 3.3, and therefore not everywhere differentiable. 

 

Suppose instead preferences are weakly convex, as in Figure 3.4.  At the kink in the IC, a 

small change in price induces no response in ),(1 uph , as in Figure 3.5. In this case, the 

SE is only weakly negative ( 0SE ). 

 

In contrast, if preferences are strictly convex then ),( upe  is strictly concave, ),(1 uph  is 

smooth and 0SE . 

 

 

3.2 The Slutsky Equation and the Marshallian Demands 

Recall from section 2.5: 

 h p u x p e p ui i( , ) ( , ( , ))  

Differentiate both sides with respect to p j :  

 












h

p

x

p

x

m

e

p
i

j

i

j

i

j

    

We know from Shephard’s lemma that 

 



e

p
x

j
j  

                                                           
1 Note that the indifference curve is nonetheless negatively sloped; monotonicity is not violated. 
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Making this substitution and rearranging, we have the Slutsky equation: 

 









x

p

h

p
x

x

m
i

j

i

j
j

i   

This holds for both ji   and ji  .  In particular, for ji  : 

 









x

p

h

p
x

x

m
i

i

i

i
i

i   

 

Interpretation 

Marshallian demand response = substitution effect + income effect: 


i

i

p

h




 substitution effect 


m

x
x i

i 


 income effect  

We have seen that concavity of ),( upe  allows us to sign the SE0, but theory says 

nothing about the IE.  There are three possibilities: 

0
m

xi




: ix  is a normal good 

0
m

xi




: ix  is an income-neutral good 

0
m

xi




: ix  is an inferior good 

These are illustrated in Figures 3.6 – 3.8 respectively.  

 

For normal and neutral goods, we know that : 

 


x

p
i

i

 0  

That is, the Marshallian demand is non-positively sloped.  

 

For inferior goods, it is possible that over some range, the positive income effect more 

than offsets the substitution effect, such that the Marshallian demand is positively sloped; 
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such a good is called a Giffen good. However, for sufficiently high pi , it must be true 

that x pi i is negative, or else the budget constraint would be violated. 

 

 

3.3 Additional Properties of Demand Systems 

The budget constraint implies two important restrictions on Marshallian demands as a 

system of equations. 

  

1. Engel Aggregation 

 p
x

mi
i

i

n 


 
1

1   

Proof.  From the budget constraint: 

 p x p m mi
i

n

i

 

1

( , )  

Differentiate both sides with respect to m: 

 p
x

mi
i

i

n 


 
1

1 

 

2. Cournot Aggregation 

 p
x

p
xi

i

ji

n

j




  
1

0  

Proof.  Differentiate the budget constraint with respect to p j  and rearrange. 

 

 

3.4 Demand Elasticities 

An elasticity measures the %  in one variable in response to a %  in another. 

 

Own-Price Elasticity 

 

ii

i

i

i

i

x

p

p

x
   
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It is often convenient to express this in logarithmic terms.  Note that 

xdx

xd 1log
  

pdp

pd 1log
  

Thus,  

x

p

dp

dx

pd

xd


log

log
 

and hence 



ii

i

i

x

p


log

log
 

 

Some definitions: 

 Inelastic demand: 1ii  

 Elastic demand: 1ii  

 

Cross-Price Elasticity 

 




ij

i

j

j

i

i

j

x

p

p

x

x

p
  

log

log
 

 

Income Elasticity 

 




i

i

i

ix

m

m

x

x

m
  

log

log
 

 

Some definitions: 

 A normal good: 0i  

 An inferior good: 0i  

 A luxury: 1i  

 A necessity: 10  i  
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Example: Cobb-Douglas 

 x
m

pi
i

i i






 

 

ii

i

i

i

i

x

p

p

x
   1 

 0ij  

 1i  

These properties make the C-D specification very restrictive. 

 

 

3.5 Labor Supply 

Suppose an agent has one unit of time to split between leisure l and labor supply L, and 

that utility is increasing in consumption c and leisure l: 

 ),( lcu  

Labor can be sold at wage w; consumption has price p.  Suppose the agent also has non-

labor income m. 

 

Utility maximization: 

 
lc,

max ),( lcu  subject to mwLpc   and 1 Ll  

Merge the two constraints to obtain: 

 mwwlpc   

where we can think of mw    as total income and w as the price of buying back leisure. 

Thus, the Lagrangean is : 

 )(),( wlpcmwlcuJ    

and the FOCs are 

0 p
c

u 



 

 0 w
l

u 



 

Taking the ratio yields a standard tangency condition: 
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w

p
MRScl   

Solution of the FOCs yields the demand for leisure: ),,( mwpl .  Labour supply is then 

given by the residual, ),,(1 mwpl . 

 

 

3.6 Homothetic Preferences  

A homothetic function is one that can be expressed as a monotonic transform of a 

homogeneous function.  If preferences can be represented by a homothetic utility 

function then those preferences are said to be homothetic. 

 

If )(xu  is homothetic then a monotonic transformation can yield a utility function that is 

homogeneous of degree 1 that represents the same preferences.  Thus, we can represent 

homothetic preferences with a utility function )(xu  such that 

 u tx tu x( ) ( )  

Consider the MRS for such a function, evaluated at some bundle x~ : 

 
21

)~()~(
)~(

x

xu

x

xu
xMRS







  

and at some other bundle proportional to x~ : 

)~(
)~()~()~()~(

)~(
2121

xMRS
x

xut

x

xut

x

xtu

x

xtu
xtMRS 













 

Thus, MRS is constant along a ray; see Figure 3.9.  This means that a change in income 

does not change the proportion in which goods are consumed.  Equivalently, the 

expenditure function is linear in u : 

 upaupe )(),(   

Why? To double u we must double x (with no change in consumption proportions) since 

)()( xtutxu  , and to double x (at given prices) we must double expenditure. 

 

Now consider ),( mpv .  Set mupe ),(  and umpv ),(  to obtain 

 ),()( mpvpam   



Kennedy: Microeconomic Theory 

Posting this material to any site other than web.uvic.ca/~pkennedy is a violation of copyright. 46

Thus, we can write 

 mpb
pa

m
mpv )(

)(
),(   

Then by Roy’s  Identity: 

 
m

mpv

p

mpv
mpx

i
i 




 ),(),(
),( 

ip

b

pb

m




)(
  

Thus, Marshallian demands associated with homothetic preferences are linear in income.  

Note that the C-D specification is homothetic. 
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4. MEASURES OF CONSUMER WELFARE 

 

4.1 Compensating Variation and Equivalent Variation 

Suppose prices change from 0p  to 1p .  What is the effect on consumer welfare? 

 

We cannot put a cardinal number on the utility change; the best we can do is determine 

whether utility rises or falls.  Consider the indirect utility function. If 

 0),(),( 01  mpvmpv  then the consumer is better-off 

 0),(),( 01  mpvmpv  then the consumer is worse-off             

This is not a very useful measure since we often want to compare welfare changes for 

different policy options, or compare welfare changes across individuals, and for this we 

need a cardinal measure.  For this purpose we use money-metric welfare change 

measures: compensating variation (CV) and equivalent variation (EV). 

 

Compensating Variation 

CV measures the (negative of the) amount of money necessary to fully compensate an 

individual for a price change. In other words, given the new prices, how much extra 

income does the consumer need in order to be restored to the original level of utility? In 

terms of the expenditure function: 

),( 01 upemCV     

Note that if 0CV  then the consumer is made better-off by the price changes (the actual 

compensation needed would be negative) and if 0CV  then the consumer is made 

worse-off by the price changes.  

 

When representing CV graphically in },{ 21 xx  space, it is customary to measure CV in 

units of 2x  rather than dollars. See Figure 4.1. 
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It is useful to interpret CV in terms of willingness-to-pay (WTP)  and willingness-to-

accept (WTA): 

 if the individual is made worse-off by the change in conditions (as from a price rise) 

then CV  measures her WTA for that change in conditions. 

 if the individual is made better-off by the change in conditions (as from a price fall) 

then CV  measures her WTP to obtain that change in conditions. 

 

Equivalent Variation 

EV measures the (negative of the) amount of money that would have to be taken away 

from the consumer, at the original prices, to yield a change in utility equivalent to the 

change created by the price changes. In terms of the expenditure function: 

  mupeEV  ),( 10  

Note that if 0EV  then the consumer is made better-off by the price changes and if 

0EV  then the consumer is made worse by the price changes.  

 

See Figure 4.2 for a graphical representation, where EV is measured in units of 2x . 

 

It is useful to also interpret EV in terms of WTP and WTA: 

 if the individual is made worse-off by the change in conditions (as from a price rise) 

then EV  measures her WTP to avoid the change in conditions. 

 if the individual is made better-off by the change in conditions (as from a price fall) 

then EV  measures her WTA to forego that change in conditions. 

 

 

Which Measure Should We Use? 

EV and CV always have the same sign but their magnitudes will generally be different 

because they use different reference points: CV uses 0u as the reference point; EV uses 

1u  as the reference point. 
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So which measure should we use?  The conventional answer that it depends on the 

assignment of property rights implicit in the analysis: 

 if the individual is deemed to have a right to the benefit of the change in conditions, 

or a right not to be harmed by the change in conditions, then we should use WTA 

 use EV if she gains from the change, and CV if she loses from the change. 

 if the individual is deemed to have no right to the benefits of the change in conditions, 

or no right not to be harmed by the change in conditions, then we should use WTP 

 use CV if she gains from the change, and EV if she loses from the change. 

 

This conventional answer is not very satisfactory because property rights are often not 

defined in the context of many changes induced by policy or by the behaviour of other 

agents. For example, do you have a right to less polluted air, or does a car driver have a 

right to drive her car, and pollute the air as a consequence? 

 

A potentially better approach is to first ask what purpose we have in mind for the 

measurement of the welfare impact. If our purpose is to calculate the payment that will 

actually be made to compensate a damaged individual, then we should use CV because it 

is based on WTA in that setting. Similarly, if our purpose is to calculate the payment that 

a beneficiary will actually make in return for a change in conditions, then we should use 

CV because it is based on WTP in that setting. This ensures that the actual property-rights 

assignment implied by the payments is consistent with the welfare measure used. 

 

Conversely, if our purpose is to calculate the loss that a change in conditions will impose 

on an individual who will not actually be compensated for the change, then we should use 

EV because it is based on her WTP in that context. Similarly, if our purpose is to 

calculate the gain that a beneficiary will receive without having to actually pay for that 

gain, then we use EV because it measures WTA in that context. Again, this ensures that 

the actual property-rights assignment implied by the absence of payments is consistent 

with the welfare measure used. 
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To summarize, if actual payments will be made then we should use CV to calculate those 

payments. If no actual payments will be made, then we should use EV to measure the 

gains and losses that will arise precisely because compensating payments were not 

actually made. 

 

 

Relationship to the Hicksian Demands 

The EV and CV can be represented as areas under Hicksian demands. In particular, 

  ),( 01 upemCV   

         ),(),( 0100 upeupe   

          = 
0

1

),( 0
p

p

dpuph  

where the final step follows from Shephard’s lemma: 

  
i

i p

upe
uph


 ),(

),(
0

0   

This is illustrated in Figure 4.3 for the case of a price fall for a normal good. 

 

In the case of EV, 

  mupeEV  ),( 10  

         ),(),( 1110 upeupe   

         = 
0

1

),( 1
p

p

dpuph    

This is illustrated in Figure 4.4 for the case of a price fall for a normal good. 

 

 

4.2 Consumer Surplus  

Consumer is defined as an area under the Marshallian demand: 

  
0

1

)(
i

i

p

p

i dppxCS  
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This is illustrated in Figure 4.5.  

 

Relationship to EV and CV 

Recall the Slutsky equation: 

  









x

p

h

p
x

x

m
i

i

i

i
i

i     

This means  

 for a normal good: h p ui ( , )  is steeper than ),( mpxi  

 for an inferior good: h p ui ( , )  is flatter than ),( mpxi  

 

The normal good case is illustrated (for a price fall) in Figures 4.6 – 4.8; the inferior good 

case is illustrated (for a price fall) in Figures 4.9 – 4.11.   

 

These relationships between the Hicksian and Marshallian demands imply that for a  

 price fall for a normal good: CVCSEV   

 price rise for a normal good: EVCSCV   

 price fall for an inferior good: EVCSCV   

 price rise for an inferior good: CVCSEV   

 price change for a neutral good: EV CS CV   

 

If more than one price changes then the CV and EV can be calculated as the sum of the 

CVs and EVs associated with the individual price changes taken sequentially. The value 

of the total CV or EV is invariant to the order of this calculation.  That is, the sequence of 

price changes assumed for the calculation is irrelevant.  This property of the CV and EV 

is called path independency. 

 

In contrast, CS  is path dependent;  that is, it is not invariant to the sequence of changes 

assumed for the calculation when more than one price changes or if prices and income 

change.  This reflects the presence of income effects in ordinary demand curves, which 
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means that cross-price effects are generally not symmetric (unless preferences are 

homothetic; see Question 11 in Problem Set 1).  Thus, it matters which demand curve is 

allowed to shift first for the purposes of measuring areas.  This is an important theoretical 

shortcoming but empirically it is not likely to be of serious concern. 
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5. CHOICE UNDER UNCERTAINTY 

 

5.1 Preliminaries: Definitions and Assumptions 

A prospect (or lottery) Y is a set of state-contingent payoffs im  (which we will interpret 

to be income or wealth) and associated probabilities i : 

   nnmmmY  ,....,,;,.....,, 2121   such that  



n

i
i

1

1  

A certain prospect is one for which immi  . 

 

A prospect Y j  is the consequence of taking some action a j .  Thus, decision-making 

under uncertainty can be thought of as choosing between prospects. 

 

The expected value of a prospect is 

  



n

i
iimY

1

]E[    

 

 

5.2 Expected Utility 

If preferences satisfy reasonable assumptions on preferences and perceptions over 

prospects (see the Appendix to this Chapter for more detail) then there exists a utility 

function )(Yu  – called a Von Neumann-Morgenstern utility function – defined over 

prospects such that 21 YY   if and only if )()( 21 YuYu  , where 


n

i ii mvYu
1

)()(  , 

and )(mv  is the standard indirect utility function. This Von Neumann-Morgenstern utility 

function is unique up to an affine transformation. 

 

This expected utility representation of preferences over prospects extends to continuous 

probability distributions )(m  defined over outcomes Mm , where 

  



Mm

dmmmvYu )()()(   
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Note that we can embed the consumer demand theory from Topics 2 – 4 into this 

expected utility framework by interpreting )( imv  as the indirect utility function 

corresponding to income level im , where the dependence of )( imv  on prices is 

suppressed for notational simplicity.  

 

In general, we will write )](E[ mv  to denote the expected utility of a prospect, where m is 

a random variable corresponding to the payoffs (or outcomes) of the prospect. 

 

Example 

Suppose 2

1

)( mmv    and },;64,100{ 2
1

2
1Y . Then      

  9)64(
2

1
)100(

2

1
)](E[)(  vvmvYu     

 

 

5.3 Attitudes Towards Risk 

Consider the following prospects: 

  },;64,100{ 2
1

2
10 Y  with 82]E[ 0 Y  

     1,;82,82Y  with 82]E[ Y  

These have identical expected values, but different degrees of risk; prospect 0Y is riskier. 

 

A risk averse agent dislikes risk. That is, ])E[()](E[ mvmv  . 

 

A risk neutral agent is indifferent between prospects with the same expected values, 

regardless of risk.  That is, ])E[()](E[ mvmv  . 

 

A risk loving agent prefers risky prospects. That is, )]E[(]E[ mvv(m)  . 
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Relation to the Curvature of v(m) 

1. Risk aversion    v(m)  is strictly concave.  That is, 

  )1,0()()1()())1(( 2121   mvmvmmv  

 

Example (see Figure 5.1): 

  },;64,100{ 2
1

2
10 Y  and 2

1

mv   

  9)64(
2

1
)100(

2

1
)]([E)( 2

1

2

1
0  mvYu  

  9)82()64
2

1
100

2

1
(])E[( 2

1

2

1

mv  

 

2. Risk neutral    v(m)  is linear 

 

3. Risk loving    v(m)  is strictly convex 

 

Measures of Risk Aversion 

 Using )(mv   as a measure of risk aversion is not useful because it is not invariant to 

affine transformations.  Instead we use either: 

   

 Arrow-Pratt measure of absolute risk aversion: 

 

   
)(

)(
)(

mv

mv
m




   

 

 Arrow-Pratt measure of relative risk aversion: 

 

  
)(

)(
)(

mv

mmv
m




  
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In macroeconomic modeling, it is common to assume a utility function that exhibits 

constant relative risk aversion (CRRA):  

 









1
)(

1m
mv  

For this utility function,  )(m . 

 

 

5.4 Certainty-Equivalent Wealth and the Risk Premium 

Consider a prospect 

     1,;, 21 mmY  

with expected utility 

  )()1()()](E[)( 21 mvmvmvYu    

 

Define the certainty equivalent wealth as m̂  such that 

  )](E[)ˆ( mvmv   

That is, m̂  is the level of wealth, which if received with certainty, would yield the same 

utility as the uncertain prospect. See Figure 5.2. 

 

Example 

  },;36,100{ 2
1

2
1Y  and 2

1

mv   

  8)36(
2

1
)100(

2

1
)](E[ 2

1

2

1

mv  

Solve for m̂  such that 8]ˆ[ 2

1

m . Thus, 64ˆ m .   

 

The risk premium for a prospect is defined as  

 mmR ˆ]E[   

See Figure 5.2. 
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Interpretation 

Suppose an agent must choose between a certain prospect that pays m̂ , and an uncertain 

prospect with expected value ][E m  and certainty-equivalent payoff m̂ .  For the agent to 

be indifferent between the two prospects, the uncertain prospect must have an associated 

expected value of Rm ˆ , where R is the premium required to compensate for the risk.  

Note that 0R  for a risk neural agent, and 0R  for a risk lover. 

 

 

5.5 The Demand for Insurance 

Suppose an agent has current wealth m but with probability   she will suffer a loss L.  

She therefore faces an uncertain prospect: 

    ,1;,  LmmY  

Suppose further that she can buy insurance against loss at price r per dollar of coverage q.  

How much insurance will she buy? 

 

Her choice problem is to choose one prospect from a schedule of prospects: 

    ,1;,)(  qLrqmrqmqY  

and she makes that choice to maximize her expected utility: 

  )()1()(max rqmvqLrqmv
q

   

The associated first order condition is 

  0)()1()1)(( ***  rrqmvrqLrqmv   

which can be written as a standard tangency condition: 

  
)1(

)1(

)(

)(
*

**

r

r

rqmv

qLrqmv











 

 

Profit for the Insurer 

In the event of a loss, the insurer makes 

  qrq  )loss(  

and in the event of no loss, the insurer makes 

  rq )loss no(  
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Thus, expected profit for the insurer is 

  )()1()(]E[   rqrqqrq  

Under perfect competition, expected profit is zero.  In that case, r .  That is, the price 

of insurance is actuarially fair: price is just equal to expected cost. 

 

Setting r  in the buyer’s first-order condition yields 

  )()( *** qmvqLqmv    

Suppose the agent is risk-averse. Then 0v , and so )()( 21 mvmv   iff 21 mm  . Thus, 

the first-order condition implies 

    qmqLqm   

which means Lq * . That is, the agent buys full insurance.  

    

Conversely, if r  then agent will buy less than full insurance ( Lq  ), and face some 

residual risk 

 

Note that we have assumed here that the agent cannot influence   (no moral hazard) and 

that the insurer can observe   (no adverse selection); we will later return to these issues 

and consider their implications for the market for insurance.  

 

5.6 The Value of Information 

Consider a setting where a risk-neutral agent faces an investment decision from which the 

returns are uncertain. In particular, the payoff from investing effort level e is e , where 

  is unknown. The cost of this investment is quadratic (and hence, strictly convex) in 

effort: 2)( ceeC  , where 0c . Thus, net payoff to the agent is 

  2)( ceeeP    

Suppose she believes that   has two possible values: L  with probability  ; and 

LH    with probability 1 . Then the expected value of   is  

    HL )1(  
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No Information Acquisition: Choice Under Uncertainty 

Consider her investment decision when facing this uncertainty. Since she is risk-neutral 

(by assumption), she will choose e  to maximize her expected payoff 

  222 ))(1()()]([ ceeceeceeePE HL    

Her optimal investment is 

  
c

e
2

*
0


  

where the “0”subscript indicates a choice under uncertainty. The associated expected net 

payoff is 

  
c

ePE
4

)]([
2

*
0


  

 

Note that she will not actually receive this expected net payoff under any realization of 

 . She will actually receive 

  
ccc

eP
4

)2(

42
)(

2
*
0





  

This is less than )]([ *
0ePE  if the true value of   is L , and greater than )]([ *

0ePE  if the 

true value of   is H . 

   

Moreover, under either realization of  , her investment choice is wrong ex post in the 

sense that her choice is not optimal given the realized value of  . Her choice is 

nonetheless optimal ex ante (before the uncertainty is resolved) based on her beliefs 

about  . 

 

Choice Under Full Information 

Now suppose the agent can purchase full information at cost k  prior to making her 

investment choice. Her ex post investment-choice problem (that is, after she becomes 

informed), is to maximize 

  2)( cekeeP    

and her optimal investment will be 
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c

e
2

*
1


  

where the “1”subscript indicates a choice under full information. The associated net 

payoff is 

  k
c

eP 
4

)(
2

*
1


 

 

Note that if 0k  then this net payoff is strictly greater than the realized net payoff under 

any outcome when her choice is made under uncertainty. In particular, the difference in 

net payoff is  

  0
4

)(
)()(

2
*
0

*
1 




c
ePeP




  for  L    and for  H   

It is this difference in net payoff that makes information about   valuable. The 

information allows the agent to make a better decision. 

 

The Value of Information 

To determine how much she is willing to pay to obtain the information before making her 

investment choice, we must compare the expected payoff under uncertainty with the ex 

ante expectation of her payoff under full information. The latter is calculated as follows.  

 

If she obtains the information, then with probability   she will learn that L  , and she 

will then go on to choose  

  
c

e L

L 2
*
1







 

and receive net payoff 

  k
c

eP L

L


 4

)(
2

*
1




 

Conversely, with probability 1  she will learn that H  , and she will then go on to 

choose  
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c

e H

H 2
*
1







 

and receive net payoff 

  k
c

eP H

H


 4

)(
2

*
1




 

Her ex ante expected net payoff from making an informed decision is  

  k
c

ePePePE HL

HL











4

)1(
)()1()()]([

22
*
1

*
1

*
1







  

 

We can now calculate her WTP for the information as the maximum value of k  that 

would make her just indifferent between being informed and remaining uniformed. We 

can find this value by setting )]([)]([ *
0

*
1 ePEePE   and solving k. This yields 

  
c

k HL

4

)1( 222  
  

This expression can be written in terms of the variance of the Bernoulli distribution that 

describes her beliefs. That variance is 

  2222 ))(1()(])[(   HLE   

It is then straightforward to show that 

  
c

k
4

2
  

Note that WTP for the information is increasing in the degree of prior uncertainty, as 

measured by 2 , and decreasing in the investment-cost parameter. The latter property 

reflects the fact that a high cost of investment reduces the level of investment undertaken 

under any beliefs, and that in turn reduces the difference that information makes to the 

investment choice. In particular, note that *
0e  and *

1e  both approach zero as c , so in 

that limiting case, becoming informed can have no effect on the decision made. Hence, 

0k  as c .  

 

 



Kennedy: Microeconomic Theory 

Posting this material to any site other than web.uvic.ca/~pkennedy is a violation of copyright. 82

APPENDIX A5: PREFERENCES OVER PROSPECTS 

 

Assumptions on Perceptions of Prospects 

1.  0,1;, 21 mm      1,;, 11 mm  

That is, the agent perceives as equivalent a prospect in which a payoff is received with 

probability one and a certain prospect with that same payoff.  

2.    ,1;1,;,, 212 mmm      1,;, 21 mm  

That is, the agent’s perception of a prospect depends only on compound probabilities.  

 

 

Assumptions on Preferences over Prospects 

1. Complete, reflexive and transitive. 

2. Continuous: given three outcomes  321 mmm  , there exist prospects 21 ~ YY  such 

that    1,;, 31
1 mmY  and  1;2

2 mY  . 

3. Independence (or “sure thing principle”): for two prospects    1,;, 21
1 mmY  and 

   1,;, 23
2 mmY , 21 YY   iff 31 mm  , regardless of 2m . 

4. Positive Responsiveness: for two prospects  11
21

1 1,;,   mmY  and 

 22
21

2 1,;,   mmY , if 21 mm   then 21 YY   iff 21   .   That is, the prospect 

with the highest probability weight on the preferred outcome is the preferred prospect.  
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6. INTERTEMPORAL CHOICE 

 

6.1 Intertemporal Preferences 

Consider a consumer with preferences over a time path of composite consumption 

bundles c c cT1 2, ,..., . Under reasonable assumptions, these preferences can be represented 

by an intertemporal utility function u c c cT( , ,..., )1 2 .  

 

It is common to assume a time-separable form: 

  



T

t
t

t
T cucccu

1

1
21 )(),...,,(   

where   is the discount factor and u ct( ) is a time-invariant utility function (or felicity 

function).  Note that we can express the discount factor as  

  




1

1
 

where   is the rate of time preference or discount rate. 

 

Note that this time-separable form imposes a common discount factor for all goods, the 

composite consumption of which in any period is ct . It is therefore a restrictive 

representation of intertemporal preferences.  

 

We can also express intertemporal utility in continuous time:  

  u c u c e dtt
t

t

T

( ) ( ) 


 

0

 

where  is the discount rate. 

 

 

6.2 A Simple Two-Period Model 

A two period-lived agent has income 1m  when young and income 2m  when  

old.  She has intertemporal preferences represented by 

  u u c u c ( ) ( )1 2  
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Assume that income is storable; that is, income not consumed in period 1 can be saved 

for consumption in period 2.  

 

Case 1: No Capital Market 

Suppose there is no market for borrowing or lending.  In this case the consumer’s 

problem is 

  max ( ) ( )
c c

u c u c
1 2

1 2    

   subject to  
)( 1122

11

cmmc

mc




 

See Figure 6.1 for an agent who saves, and Figure 6.2 for an agent who does not save.  

 

Case 2: Perfect Capital Market 

Suppose the agent can borrow and lend on the market at interest rate r. In this case her 

choice problem is 

  max ( ) ( )
c c

u c u c
1 2

1 2   

   subject to  w
r

m
m

r

c
c 







11
2

1
2

1  

 

Interpretation of the budget constraint: PV(consumption) = PV(lifetime income). Note 

that the maximum she can borrow in period 1 against future income is 
r

m

1
2 , since she 

must pay that amount back with interest in period 2: 

  2
2 )1(

1
mr

r

m










 

See Figure 6.3. This reproduces the case from Figure 6.2 in which the agent did not save. 

Note that she now chooses to save due to the availability of interest on her savings, and 

she is better off because of it.  
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The Lagrangean for her choice problem is 

  )
1

()()( 2
121 r

c
cwcucuL


   

with associated FOCs: 

   u c( )1   

  


 


u c
r

( )2 1
 

which can be written in ratio form as an Euler equation: 

  
rcu

cu







1

1

)(

)(

1

2
 

This is simply a tangency condition: intertemporal MRS relative price of future and 

current consumption. 

 

Writing 




1

1
, we have 

  







u c

u c r

( )

( )
2

1

1

1


 

Thus, if 0u , then 

  


  
  

r c c

r c c
1 2

1 2

 

Note that in both cases, the agent could be a borrower or a lender when young, depending 

on her preferences and the relative value of 1m  and 2m .  See Figure 6.3 for the case of a 

young lender, and Figure 6.4 for the case of a young borrower. 

 

Case 3: Imperfect Capital Market 

Suppose the borrowing rate is greater than the lending (or saving) rate: r rB S .  See 

Figure 6.5.   This distortion could be caused by a variety of factors: for example, interest 

income is taxable, but interest payments are not tax deductible; imperfect competition; 

asymmetric information with respect to risk of default; transaction costs. If sufficiently 

large, such distortions can cause agents not to borrow or lend, when in the absence of the 

distortion they would (as illustrated in Figure 6.5).  
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7. PRODUCTION TECHNOLOGY 

 

7.1 Technical Rate of Substitution   

Consider a production function in two inputs 1x  and 2x : 

  y f x x ( , )1 2  

Total differentiation yields 

  dy
f

x
dx

f

x
dx  





1

1
2

2 0  

Rearranging yields the technical rate of substitution (TRS): 

  TRS
211

2

x

f

x

f

dx

dx







    slope of an isoquant 

See Figure 7.1. 

                

Examples 

1. Cobb-Douglas 

  y x x 1 2
   

  



  f

x
x x

1
1

1
2   

  



  f

x
x x

2
1 2

1   

  
1

2

x

x
TRS




  

 

2. Leontief (fixed proportions) 

   y ax bx min ,1 2  

  0TRS  for 21 x
a

b
x   

  TRS  for 21 x
a

b
x   

See Figure 7.2.  
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7.2 Elasticity of Substitution 

TRS measures the slope of an isoquant; the elasticity of substitution measures its 

curvature: 

   
% ( )

% ( )




x x

TRS
2 1

TRS

TRS
xx

xx





 )(

)(

12

12

 

This measures the rate at which the slope of an isoquant changes as we rotate a ray from 

the origin. See Figure 7.3. 

 

For small changes we have 

  
)(

)(

12

12

xx

TRS

TRSd

xxd
  

Moreover, any elasticity 

   
dy

y

dx

x
 

can be written as 

  ][log][log xdyd  

Thus, we can write 

  
][log

])[log( 12

TRSd

xxd
  

 

 

Example:  Cobb-Douglas 

  y x x 1 2
   

  
1

2

x

x
TRS




  

Thus,  

    TRS
x

x





1

2  
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Taking the logarithm of both sides yields 

  TRS
x

x
log)log()log(

1

2 



 

and so we have 

  1
][log

])[log( 12 
TRSd

xxd
  

 

 

7.3 Returns to Scale 

What is the effect on output if all inputs are changed in the same proportion; that is, if the 

scale of production changes? 

 

A technology exhibits constant returns to scale (CRS) iff 

  )()( xtftxf   1t  

That is, the production function is homogeneous of degree 1. 

 

Three reasons why a technology may not exhibit CRS: 

(a) subdivision not possible (there is some minimum feasible scale) 

(b) non-integer replication may not be possible  

(c) an increase in scale may allow use of a more efficient technique (using the same 

inputs).   

 

A technology exhibits increasing returns to scale (IRS) iff 

  )()( xtftxf   1t  

and decreasing returns to scale (DRS) iff 

  )()( xtftxf   1t  

 

In reality we offer observe apparent DRS because not all inputs have truly been scaled up 

(eg. managerial attention in a firm); the fixed factors become “congested”. 
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Examples 

1. Cobb-Douglas 

  y x x 1 2
   

  f tx tx tx( ) ( ) ( ) 1 2
   t x x   

1 2  

Thus,  

  CRS iff    1 

  DRS iff    1 

  IRS  iff    1 

 

2. Leontief 

   y ax bx min ,1 2  

   f tx atx btx( ) min , 1 2   t ax bxmin ,1 2  

Thus, CRS ba, . 

 

 

7.4 Homogeneous and Homothetic Technologies 

Theorem 

 The TRS for a homothetic production function is independent of scale. 

Proof.  If )(xf  is homothetic then 

  )]([)( xhgxf   

where  g 0 and )(xh is homogeneous. Thus, 

  






f

x
g

h

x1 1

    

  






f

x
g

h

x2 2

    

and so 

  

2

1

x

f
x

f

TRS







 







h

x
h

x

1

2
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If )(xh  is homogeneous of degree k, then 



h

xi

 is homogeneous of degree k-1 (by Euler’s 

theorem), so 

  






h tx

x
t

h x

xi

k

i

( ) ( )
 1  

Thus, 

  

2

1

2

1

1

1

2

1
)(

)(

)(

)(

)(

)(

x

xh
x

xh

x

xh
t

x

xh
t

x

txh
x

txh

k

k
























  

which is independent of t. 

 

Geometric Interpretation 

Isoquants of homothetic functions have equal slope along a ray.  See Figure 7.4. 

 

 

7.5 A Production Function with Constant Elasticity of Substitution (CES)  

  y a x a x ( )1 1 2 2

1

    

Fort this CES production function, 

  






1

1
 

To see this, note that  

  












1

1

2

2

1

x

x

a

a
TRS  

So we can write 

  












1

1

1

2

1

2 TRS
a

a

x

x
 

Take logs to yield 

  )log(
1

1
log

1

1
log

1

2

1

2 TRS
a

a

x

x

 



















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Then 

  






1

1

][log

])[log( 12

TRSd

xxd
 

 

 

Special Cases 

1. Linear: 1  

  2211 xaxay   

In this case,  .  The isoquants are linear; see Figure 7.5. 

 

2. Cobb-Douglas:   0  

At   0 , the CES function is not defined, but note that  

  1

2

1 )(  

x

x
TRSCES   for 21 aa   

Taking the limit we have 

  lim ( )


 
0

2

1

TRS
x

xCES  

which is the TRS for a Cobb-Douglas production function when a a1 2 . 

 

3. Leontief:     

   )(
2

1

x

x
TRSCES  for 21 aa   

      ( )
x

x
2

1

 

      if 12 xx   

    0  if 12 xx   
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8. COST MINIMIZATION AND THE COST FUNCTION 

 

8.1 The Cost Minimization Problem  

Behavioral assumption: firms act to minimize cost. That is, 

  min ( )
x

w x x   subject to yxf )(  

Restrict attention to the case where the firm takes input prices as given: 0)(  xw . That 

is, the firm is a price-taker on the input market. Thus, the first-order conditions for a 

minimum are 

  w f ii i   0  

Taking the ratio of any pair i and j yields 

  
f

f

w

w
i

j

i

j

  

or equivalently, 

  
f

w

f

w
i

i

j

j

  

That is, the input mix is chosen to ensure that the marginal product per dollar of cost is 

equated across inputs.  

 

Geometric interpretation: the slope of the isoquant is equal to the slope of the isocost line 

at the optimum. See Figure 8.1.  

 

 

8.2 Conditional Input Demands 

The solution to the cost minimization problem is 

  x w yi ( , )  for ni ,...,1  

These are conditional input demands (or conditional factor demands). They are 

conditional on a particular level of output. 
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Note that the cost minimization problem is analogous to the expenditure minimization 

problem for the consumer, and the conditional input demands are analogous to the 

Hicksian demand curves. 

 

 

8.3 The Cost Function  

The cost function specifies the minimum cost of producing y: 

  



n

i
ii ywxwywxwywc

1

),(),(),(  

 

Properties of the Cost Function 

1. ),( ywc  is non-decreasing in w and increasing in y. 

2. ),( ywc  is homogeneous of degree 1 in w. 

3. ),( ywc  is concave in w. 

 

These properties are analogous to the properties of the expenditure function; see section 

2.5 in Chapter 2.  Recall in particular the intuition for property 3: a passive reaction to an 

increase in w would leave input choices unchanged, and cost would rise linearly. The 

firm can generally do better than a passive reaction by substituting out of the input whose 

price has risen (except in the case of a fixed proportions technology). 

 

Properties of the Conditional Input Demands  

The following three properties follow from the definition of ),( ywc  as a minimum value 

function. 

 

1. Negativity 

0
i

i

w

x




 

That is, the conditional own-price effect – the substitution effect – is non-positive.  

Proof. By Shephard’s lemma and concavity of ),( ywc .  
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2. Symmetry 

i

j

j

i

w

x

w

x







  

That is, conditional cross-price effects are symmetric. 

Proof.  By Shephard’s lemma and Young’s theorem. 

 

3. Homogeneity 

),( ywx  is homogeneous of degree 0 in w. 

Proof. By Shephard’s lemma and Euler’s theorem. 

 

 

8.4 Marginal Cost and Average Cost 

Marginal cost 
y

ywc
MC


 ),(

  

Note that MC is equal to the Lagrange multiplier from the cost-minimization problem.  

 

  Average cost 
y

ywc
AC

),(
  

 

Theorem 1 

If MC is rising then MC and AC are equal at minimum AC.  

Proof. Consider the problem 

  min
y

AC  

the first-order condition for which is     

  0

),(














y

y

ywc
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That is, 

  0
),(

),(

2




y

ywc
y

ywc
y




 

This yields a minimum iff 0/),( 22  yywc  (that is, iff MC is rising).  Rearranging the 

first-order condition yields 

  
y

ywc

y

ywc ),(),(





 

That is, MC =AC. If AC has no interior minimum then it is minimized at 0y , where 

MC =AC. 

 

Short-Run vs. Long-Run Cost 

In the short-run (SR) at least one input is fixed; that is, its level cannot be chosen freely. 

In the long-run (LR) all inputs can be varied. 

 

Suppose input nx  is fixed in the SR. Then the SR cost-minimization problem is 

  nn
ni

ii
x

xwxw
ni




min  subject to  yxf )(  

and the associated cost function is 

  



ni

nnniin xwxywxwxywc ),,(),,(  

This can be interpreted as 

  Total Cost (TC) = Total Variable Cost (TVC) + Total Fixed Cost (TFC) 

 

Note that in the LR there are no fixed costs.  

 

We will use the notations SRMC and SRAC to denote SR costs, and MC and AC to 

denote LR costs.  Thus, we have SRAC = AVC + AFC. 
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8.5 Cost and Returns to Scale 

Suppose the production function is homogeneous; thus, it exhibits either DRS, CRS or 

IRS. What can we say about the associated long run cost function? (Note that returns to 

scale is by definition a LR notion).  

 

Theorem 2 

If )(xf  is homogeneous of degree k then ),( ywc  is homogenous of degree )/1( k  in y. 

Proof.  Let )(xfy  . If )(xf  is homogeneous of degree k then  

(8.1)  ytxfttxf kk  )()(  

If ),( ywc  is the cost of y, then the cost of )(txf  must be ),( ywtc . Thus, by (8.1) 

(8.2)  ),(),( ywtcytwc k   

Define kt . Then kt /1 . Making this substitution in (8.2) and reversing the equation 

yields 

  ),(),( /1 ywcywc k   

That is, ),( ywc  is homogeneous of degree ( k/1 ) in y.  

 

Example 

Consider the Cobb-Douglas production function: 

  
21)( xxxf   

Note that this is homogeneous of degree )(   . The cost-minimization problem is 

  2211min xwxw
x

   subject to 
21 xxy   

The first-order conditions for a minimum are 

   2
1

11 xxw    and  1
212
  xxw  

where   is the Lagrange multiplier. Together with the production constraint, these 

conditions solve for the conditional input demands: 

  
)/(

1

2)/(1
1 ),(




















w

w
yywx  
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)/(

2

1)/(1
2 ),(




















w

w
yywx  

Substitution back into the objective function then yields the cost function: 

  




































)/(

2

1
2

)/(

1

2
1

)/(1),(










w

w
w

w

w
wyywc  

which we will write as  

  ),(),( 21
)/(1 wwyywc   

since our focus here is on the relationship between ),( ywc  and y. This cost function is 

homogeneous of degree )/(1    in y.♣ 

 

Theorem 3 

If )(xf  is homogeneous of degree 

(a) 1k  (that is, it exhibits DRS) then ),( ywc  is strictly convex in y; 

(b) 1k  (that is, it exhibits CRS) then ),( ywc  is linear in y; and 

(c) 1k  (that is, it exhibits IRS) then ),( ywc  is strictly concave in y. 

Proof.  If )(xf  is homogeneous of degree k then by Theorem 2 and Euler’s theorem, 

yywc  /),(  is homogenous of degree 1)/1( k  in y. That is, 

  yywctytywc k   /),(/),( 1)/1(   1t  

which we can write as 

  1)/1(

/),(

/),( 

 kt
yywc

ytywc
 1t  

Thus, yywc  /),(  is positively sloped if 1k  (in which case 11)/1( kt  for 1t ), zero-

sloped if 1k  (in which case 11)/1( kt  for 1t ), and negatively sloped if 1k  (in 

which case 11)/1( kt  for 1t ).  See Figure 8.2 for the case of 1k .  
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Corollary 

If )(xf  exhibits  

(a) DRS then MC and AC are increasing in y, and AC < MC. See Figure 8.3. 1 

(b) CRS then MC and AC are constant, and MC = AC. See Figure 8.4. 

(c) IRS then MC and AC are decreasing in y, and AC > MC. See Figure 8.5. 

 

An alternative way to see these properties of  AC is to note that if ),( ywc  is homogenous 

of degree )/1( k  in y, then 

  
y

ywct

ty

ywct

ty

tywc kk ),(),(),( 1)/1(/1 

  

This it, AC is homogeneous of degree 1)/1( k  in y. Thus, if 1k  then 11)/1( kt  for 

1t , and so )()( yACtyAC   for 1t . That is, AC is rising. Conversely, if 1k  then 

11)/1( kt  for 1t , and so )()( yACtyAC   for 1t . That is, AC is falling. 

 

Note that a production function need not be homogeneous; that is, it may not exhibit 

CRS, IRS or DRS. In practice, AC is often U-shaped, as illustrated in Figure 8.6. Why? 

There are no fixed costs in the LR so this cannot explain it. However, there may be quasi-

fixed costs. A quasi-fixed cost is a non-variable cost that must be incurred if and only if 

there is a positive level of output; that is, it is independent of output for 0y  but is zero 

at 0y . An important example: a learning cost associated with the first unit of 

production.  

  

 

 

 

                                                 
1 Figures 8.3 – 8.5 depict the AC and MC curves for the Cobb-Douglas production function. 
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9. PROFIT MAXIMIZATION AND THE COMPETITIVE FIRM 

 

9.1 The “Competitive” Firm 

The “competitive” firm is a price-taker in its input markets and in its product market; that 

is, its own output choice has no impact on market prices because it is so small relative to 

the market.1 Behavioral assumption: the firm acts to maximize profit. 

 

There are two equivalent ways to derive the firm’s input and output choices: 

(1) direct profit maximization to obtain (unconditional) input demands and output; 

(2) a two stage procedure in which we first derive the cost function (recall Topic 8) and 

then use the cost function in the profit maximization problem to derive supply. 

 

The two approaches are equivalent. The second is somewhat more general because it 

allows us to examine profit maximization under a variety of product markets structures 

using the same cost function. 

 

We begin with the first approach, and then follow the second approach in section 9.5. 

 

 

9.2 Input Demands and the Supply Function 

The direct profit maximization problem is 

  max ( )
x

pf x wx  

The first-order conditions are 

  pf w ii i   

Interpretation: the value marginal product (VMP) of each input is equated to its price. 

 

Solution of the first-order conditions yields the input demands (or factor demands): 

  x p wi ( , )  for ni ,...,1  
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Substitution of the input demands into the production function yields the supply function: 

  )),((),( wpxfwpy   

 

Example:  Cobb-Douglas 

  f x x xa b( )  1 2  

The profit maximization problem is 

  max
x

a bpx x w x w x1 2 1 1 2 2   

with first-order conditions 

(9.1)           apx x wa b
1

1
2 1

          

(9.2)  bpx x wa b
1 2

1
2

          

 

Take the ratio of (9.1) and (9.2) to obtain 

(9.3)  
ax

bx

w

w
2

1

1

2
          

Rearrange (9.3) to obtain: 

(9.4)  x
bw x

aw2
1 1

2
          

Substitute (9.4) into (9.2) and rearrange to obtain the input demand for 1x : 

(9.5)  
ba

b

ba

bw

aw

w

bp
wpx
























1

1

1

2
1

1

2
1 ),(      

Then substitute (9.5) into (9.4) to obtain x p w2 ( , ) .  Then construct the supply function: 

  y p w x p w x p wa b( , ) ( , ) ( , ) 1 2  

 

                                                                                                                                                 
1 We will see in Chapter 13 (Section 13.6) that price-taking behaviour can be viewed as a limiting case of 
an oligopoly where the number of firms approaches infinity. 
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Second-Order Conditions 

The first-order conditions for profit maximization are necessary and sufficient for a 

global interior maximum if  wxxpf )(  is concave in x.  This requires that )(xf  be 

concave.  Uniqueness requires strict concavity. 

 

Example:  Cobb-Douglas 

  H = 

















2221

1211

ff

ff
 

 

      = 
























2
21

1
2

1
1

1
2

1
12

2
1

)1(

)1(

baba

baba

xxbbxabx

xabxxxaa
 

 

Strict concavity requires (i) 011 f , and  (ii) 012212211  ffff . That is, 

(i) :011 f  1a  

(ii) 0)1)(1( )1(2
2

)1(2
1

22)1(2
2

)1(2
112212211   baba xxbaxxbaabffff :  1 ba  

 

Thus, we require diminishing marginal products for each factor, and DRS. 

 

 

9.3 The Profit Function 

The maximum value function for the profit-maximization problem is the profit function: 

   ( , ) ( , ) ( , )p w py p w wx p w   

 

Properties of the Profit Function 

1. non-decreasing in p; non-increasing in w 

2. homogeneous of degree 1 in p and w 

3. convex in p and w   
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These properties do not rely on concavity of )(xf ; they follow from the definition of 

),( wp  as a maximum value function. 

 

Proof of Property 3 

Define 

      p tp t p( )1  

      w tw t w( )1  

Then 

  ),(),(),( wpxwwpypwp   

              ),(])1([),(])1([ wpxwttwwpypttp   

        = )],(),()[1()],(),([ wpxwwpyptwpwxwppyt   

By definition of ),( wp   as a maximum value function. 

  py p w wx p w p w( , ) ( , ) ( , )        

           p y p w w x p w p w( , ) ( , ) ( , )  

Thus, 

  ),()1(),(),( wptwptwp    

That is,  ( , )p w is convex in p and w. 

 

Intuition: if the firm reacted to a change in w or a change in p by keeping inputs and 

output unchanged, then profit would be linear in w and p.  However, the firm can 

generally do better than that by adjusting input and output optimally in response to price 

changes.   

 

Hotelling’s Lemma 

(i)   



( , )

( , )
p w

p
y p w      

(ii)   


( , )

( , )
p w

w
x p w

i
i         

if these derivatives exist. 
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Proof. These are just applications of the envelope theorem.  Alternatively, they can be 

proved by brute force. Consider (ii): 

   ( , ) ( , ) ( , ) ( , )p w py p w w x p w w x p wi i i j
j i

  

  

Therefore 

  












( , )
( , )

p w

w
p

f

x

x

w
x p w w

x

wi j

j

ij

n

i j
j

ij

n

 










  

 
 

1 1

 

       

       = p
f

x
w

x

w
x p w

j
j

j

ij

n

i



























 




1

( , )  

But at the optimum: 

  p
f

x
w j

j
j




  0  

Therefore 

  


( , )

( , )
p w

w
x p w

i
i   

 

 

9.4 Properties of the Supply Function and the Input Demands 

1. Monotonicity 

(i) 



y p w

p

( , )
 0  

(ii) 



x p w

w
i

i

( , )
 0  

Proof. By Hotelling’s lemma: 

  



 


y p w

p

p w

p

( , ) ( , )


2

2  

This is non-negative by convexity of ),( wp . Similarly, by Hotelling’s lemma: 

  



 


x p w

w

p w

w
i

i i

( , ) ( , )

 2

2  



Kennedy: Microeconomic Theory 

Posting this material to any site other than web.uvic.ca/~pkennedy is a violation of copyright. 122

This is non-positive, also by convexity of ),( wp .  

 

2. Homogeneity 

),( wpy  and ),( wpx  are homogeneous of degree zero in p and in w. 

Proof. Recall that  ( , )p w  is homogeneous of degree 1 in p and w. By Hotelling’s lemma 

  y p w
p w

p
( , )

( , )




 

Then by Euler’s theorem, ),( wpy  is homogeneous of degree zero in p and w.  Similarly 

for ),( wpx . 

 

3. Symmetry 

 






x p w

w

x p w

w
i

j

j

i

( , ) ( , )
  

Proof.  By Hotelling’s lemma 

  



 
 

x p w

w

p w

w w
i

j i j

( , ) ( , )


2

 

The result then follows from Young’s theorem. 

    

Relationship to the Production Function 

A sufficient condition for existence of the derivatives in Hotelling’s lemma is concavity 

of the production function.  Strict concavity of )(xf  implies strict convexity of  ( , )p w , 

which in turn implies: 

  



y p w

p

( , )
 0  

  



x p w

w
i

i

( , )
 0  
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9.5 Profit Maximization Using the Cost Function 

The profit-maximization problem:   

  ),(max ywcpy
y

  

The first-order condition is 

  p
y

ywc



 ),(

 

That is, pMC  .  This condition solves for the supply function, ),( wpy .  

 

The second-order condition is 

  0
),(

2

2


y

ywc




 

That is, the cost function is strictly convex in y.  This requires that )(xf  is strictly 

concave.  If the production function is homogenous, then concavity requires DRS.  

 

Under CRS there is a continuum of profit maximizing outputs – the argmax is not unique 

– and under IRS there is no finite argmax.  

 

Important Identities 

1. ),()),(,( wpxwpywx   

 

2.   ),()),(,()),(,( wpwpywcwpywxpf   

 

Fixed Costs and Supply 

Suppose the cost function is 

  Fywcywc v  ),(),(  

where  ),( ywcv  is total variable cost, and F is fixed cost.2 The firm will produce 0y  if 

and only if 

                                                 
2 Note that a fixed cost is incurred in the SR even if 0y . In contrast, a quasi-fixed cost is independent of 

output for 0y  but is zero at 0y . 
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  FFpywcppy v  ))(,()(  

since profit is F  at .0y  Thus, production at 0y  is worthwhile if and only if 

  
)(

))(,(

py

pywc
p v  

That is, price must be no less than AVC.  Thus, the SR supply curve for the competitive 

firm is the SRMC curve above AVC.  

 

In the LR there are no fixed costs, and the firm will continue to supply 0y  if p AC .  

Thus, the LR supply curve is the MC above AC. 

 

See Figure 9.1 for a summary of the key relationships in the theory of competitive firm. 

 

See the Appendix to this Chapter for a summary of results on the relationship between 

the production function, the cost function and the supply curve for a competitive firm. 
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APPENDIX A9: A SUMMARY OF RESULTS ON 

PRODUCTION, COST, AND COMPETITIVE SUPPLY 

 

A9.1 Cost and Supply for Homogeneous Production Functions 

Long Run Cost 

 A homogeneous production function exhibits either CRS, IRS or DRS. 

 MC and AC are both either constant (CRS), decreasing (IRS) or increasing (DRS). 

 Neither MC nor AC can be U-shaped in the LR if the production function is 

homogeneous. 

 

Long Run Supply 

 With IRS, there is no competitive supply curve; competitive profit-maximization at 

pMC   yields negative profit, at any price. 

 With CRS, the supply curve is not uniquely defined; pMC   does not yield a unique 

solution for output. 

 With DRS, the LR supply curve is the entire MC curve, since MC lies above AC for 

all .0y   

 

Short Run Cost 

Suppose at least one factor is fixed; then there exists a fixed cost (in the SR). In this case: 

 SRAC can be U-shaped under CRS and IRS, and must be U-shaped under DRS. 

 If the SRAC is U-shaped, it is due to the combination of an increasing AVC and 

decreasing AFC; AVC itself cannot be U-shaped. 

 In all cases, SRMC and AVC are both monotonic 

 

Short Run Supply 

 With CRS or DRS, SRMC is positively sloped, and the SR supply curve is the entire 

SRMC curve, since SRMC lies above AVC for all 0y . 

 With IRS, SRMC is positively sloped if and only if the returns to scale are not too 

strong, and in that case the SR supply curve is the entire SRMC curve. 
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 With strong IRS, SRMC is constant or negatively sloped, and the SR supply curve is 

either non-unique or undefined, respectively. 

 

Example 

Consider the Cobb-Douglas production function: 

  ba xxxf 21)(   

where 0a  and 0b . This function is homogeneous of degree ba  ; it exhibits DRS if 

1 ba , CRS if 1 ba  and IRS if 1 ba . Recall from Section 8.5 in Chapter 8 that 

the associated LR cost function is 

),(),( 21
)/(1 wwyywc ba   

 

LR marginal cost (MC) is 

  
ba

y
y

ywc baba





  )/()1(),(

 

The slope of this MC is  

  
2

)/()221(
2

2

)(

)1(),(

ba

ba
y

y

ywc baba







  
 

Thus, MC is positively sloped iff 1 ba  (DRS), constant iff 1 ba  (CRS), and 

negatively sloped iff 1 ba  (IRS).  

 

LR average cost (AC) is 

  )/()1(),( babay
y

ywc   

The slope of this AC is 

)(

)1(

),(

)/()221(

ba

ba
y

y

y

ywc

baba

















 
 

Thus, AC is positively sloped iff 1 ba  (DRS), constant iff 1 ba  (CRS), and 

negatively sloped iff 1 ba  (IRS). 
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Two additional points are noteworthy: 

(1)   ba
MC

AC
  

Thus MCAC   iff 1 ba  (DRS); MCAC   iff 1 ba  (CRS); and MCAC   

iff 1 ba  (IRS). Recall Figures 8.3 – 8.5 from Chapter 8. 

 

(2)   ba
MC

AC


ofslope

ofslope
 

Thus, AC is flatter than MC iff 1 ba  (DRS); AC and MC have the same slope iff 

1 ba  (CRS); and AC is steeper than MC iff 1 ba  (IRS). Recall Figures 8.3 – 

8.5 from Chapter 8. 

 

 

Now consider the SR cost functions. Suppose 2x  is fixed at 2x . Then the cost 

minimization problem is trivial; there is only one choice of 1x  that can yield output y 

when 2x  is fixed: 

  
a

bx

y
xywx

/1

2
21 ),,( 








  

Then the SR cost function is 

  22
/1

/
2

1
2 ),,( xwy

x

w
xywc a

ab









  

For notational convenience, write this as 

  Fyxywc a  /1
2 ),,(   

where ay /1  is total variable cost (TVC) and F is total fixed cost (TFC).  

 

SR marginal cost (SRMC) is 

  aay
ay

xywc /)1(2 ),,( 


 
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The slope of SRMC is 

  aay
a

a

y

xywc /)21(
22

2
2 )1(),,( 




 
 

This slope is positive iff 1a . This condition must hold if )(xf  exhibits DRS or CRS, 

since in that case 1 ba  (and recall that 0b ). Note also that this slope can be 

negative under IRS since it is possible that 1a  even when 1 ba . 

 

SR average cost (SRAC) is 

  
y

F
y

y

xywc aa   /)1(2 ),,(   

where the first component is average variable cost (AVC) and the second component is 

average fixed cost (AFC).  

 

The slope of SRAC is 

2
/)21(

2

)1(

),,(

y

F
y

a

a

y

y

xywc

aa 
















 

Note that the first term is monotonic in y. Thus, AVC cannot be U-shaped; it is increasing 

if 1a , constant if 1a , and decreasing if 1a . However, the presence of the fixed 

cost means that SRAC can be U-shaped. In particular, SRAC is U-shaped iff .1a This 

must be true under DRS and CRS, and can be true even under IRS.  

 

Note also that 

ya

a

AVC

SRMC
2

)1( 
  

This is greater than one for 1a . Thus, AVCSRMC   in that case.  This means that the 

SR supply curve is the entire SRMC when 1a , since it lies everywhere above AVC. 

That is, the firm will supply a positive amount (in the SR) at any positive price even it 

makes a loss, since revenue will exceed variable costs.  
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A9.2 Cost and Supply for Non-Homogeneous Production Functions: An Example 

In this case it is possible to have U-shaped MC and AC, even in the LR.  However, not all 

non-homogeneous production functions will yield U-shaped cost curves, either in the SR 

or the LR; depends on the specific nature of the function. 

 

We will examine a modified form of the Cobb-Douglas production function: 

  21)( xxxf   

where   is a productivity factor. 

 

If   is a constant then this is a regular C-D production function, exhibiting IRS (since 

1a  and 1b ). If   is not a constant then the production function is non-homogenous.   

 

Suppose the productivity of all factors declines as the scale of production rises, reflecting 

limited managerial attention (LMA). In particular, suppose 

211

1

xx
  

In this case, the production function becomes 

  
21

21

1
)(

xx

xx
xf


  

This function is non-homogeneous.  

 

Long Run Cost in the LMA Example 

 Both MC and AC are U-shaped because productivity eventually must decline as 

managerial attention is spread too thin. 

 

Long Run Supply in the LMA Example 

 The LR competitive supply curve in the case of U-shaped AC, is the MC curve above 

the AC curve; the firm will not produce if ACp  .  
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Short Run Cost in the LMA Example 

 In the SR there are fixed costs. Recall that fixed costs can cause SRAC to be U-

shaped even if AC is not U-shaped in the LR. In the LMA example, SRAC must be 

U-shaped.  

 Even though MC and AC are U-shaped, SRMC and AVC are not U-shaped.  

 Simple textbook presentations often claim erroneously that if MC is U-shaped then 

SRMC must also be U-shaped. The LMA example provides a counter-example. 

  

 

Short Run Supply 

 The SR competitive supply curve is the SRMC curve above AVC. 
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10. COMPETITIVE MARKETS AND SOCIAL SURPLUS 

 

10.1 Industry Supply 

The industry supply function is the sum of the individual firm supply functions: 

  



n

i
i pypY

1

)()(  

where the dependency of yi  on w is suppressed here for notational simplicity.  

 

Examples 

1. Two firms with cost functions 2
1 )( yyc   and 2

2 2)( yyc  .  For firm 1: 

  p
y

yc



 )(1    

2
)(1

p
py   

For firm 2: 

  p
y

yc



 )(2    

4
)(2

p
py   

Industry supply: 

  Y p
p p p

( )   
2 4

3

4
 

 

2. n firms each with cost function c y y( )  2 1 (so AC is U-shaped). For each firm,  

   p
y

yc



 )(

            















0)(

2
)(

py

p
py

     if     

2

2





p

p

 

       

Industry supply: 

   
2

)(
np

pY   if   2p       

   0)( pY  if   2p  
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10.2 Market Equilibrium in the Short Run 

Equilibrium price equates supply and demand: 

  )()()()(
11

pXpxpypY
I

i
i

n

j
j  



 

 

Example 

Suppose there are n identical firms each with cost function c y y( )  2 . Industry supply is 

  
2

)(
np

pY   

Suppose aggregate demand is linear: 

  bpapX )(  

In equilibrium: 

  bpa
np


2

 

Solving for p: 

  
bn

a
p

2

2*


  

 

 

Equilibrium Price and the Number of Firms 

How does *p  vary with n? In general, equilibrium with identical firms requires 

  )()( pXpny   

Differentiate both sides with respect to n: 

  )()()()()( nppXpynppyn   

Collecting terms: 

  0
)()(

)(
)( 




pynpX

py
np   for  0)(  pX   and  0)(  py   
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10.3 Free Entry and Long Run Equilibrium 

A competitive market is characterized by price-taking firms and free-entry in the LR. 

Firms enter to the point where profit is driven to zero for the marginal firm; that is, 

pAC  . 

 

Note that if firms are heterogeneous in some respect then existing firms may possibly 

earn positive profit even though profit is zero for the marginal firm . These infra-marginal 

firms earn economic rent; this is either a rent to being first, or a rent to being a low cost 

producer. 

 

Example with U-Shaped Costs 

Suppose cost for any incumbent firm or potential entrant is: 

  82)( 2  yyc  

and demand is given by 

  ppX 10403)(   

Profit maximization implies pMC  : 

  py 4  

and associated individual supply: 

  
4

)(
p

py   

Zero profit implies pAC  : 

  p
py

py 
)(

8
)(2  

Solving for p yields: 

  8* p  

and individual supply is therefore 

  2
4

8
)( * py  

Equilibrium requires: 

  )()( ** pXpny   
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or 

  804032 n  

Solving for n: 

  5.161* n  

But n must be an integer. Thus, 

  161ˆ n  

Therefore 

  )(161)(ˆ pypY   

Equating supply with demand, we have   

  p
p

ˆ10403
4

ˆ
161   

Solving for p̂  yields  

  02.8ˆ p  

and all firms earn positive profit. 

 

Cost in Equilibrium 

Recall from Section 8.4 in Chapter 8 that when AC is U-shaped, minimum AC occurs 

where ACMC  . Thus, ignoring integer problems, AC is minimized in CE when AC is 

U-shaped. 

 

Returns to Scale and LR Equilibrium 

(a) CRS: ACMC   

 Price is determined by 

  ACp *  

Industry output is determined by aggregate demand: 

  )( *pXY   

but individual firm output and the number of firms is indeterminate, since the profit-

maximization problem does not have a unique solution.   
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(b) DRS: ACMC   y  

Any 0p  yields positive profit at pMC  . (See Figure 10.1). Thus, equilibrium occurs 

at minimum feasible production for each firm.  

 

(c) IRS: ACMC   y  

In this case, profit maximization ( pMC  ) yields negative profit at any price. Thus, a 

competitive equilibrium does not exist under IRS. The unregulated market structure will 

be characterized by a small number of firms, and these firms will not act as a price-takers.  

 

Under IRS, production at the lowest possible AC requires a monopoly, where one firm 

supplies the entire market.  This is natural monopoly. See Figure 10.2. Such a firm will 

tend to exploit its monopoly power (see Chapter 12), and hence, natural monopoly is 

usually regulated. 

 

 

10.4 Competitive Equilibrium and Social Surplus: Partial Equilibrium Analysis 

Consider a representative consumer with quasi-linear preferences: 

  21)()( xxhxu   

where )( 1xh  is some function with 0)( 1  xh .  Let pp 1  and 12 p ; that is, 2x  is the 

numeraire good. Utility maximization: 

   2121)( xpxmxxhL    

The interior solution yields demand curves 

  )(1 px   such that  pxh  )( 1  

  )(),( 12 ppxmmpx   

 

Focus on equilibrium in the market for 1x . Consider a representative firm with cost 

function )( yc  in the production of 1x . Competitive supply is given by 

  )( py  such that pyc  )(  
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Thus, in competitive equilibrium (CE): 

  )()( 11 xhxc   

 

Now compare this CE with the solution to the following centralized planning problem: 

  21
,

)(max
21

xxh
xx

  subject to exxc  21)(  

where e is the economy’s endowment of the numeraire good, which can be consumed 

directly as 2x  or transformed into 1x  according to the cost function )( 1xc .  The objective 

is to maximize social surplus subject to the production technology in the economy. 

 

Substituting directly for the constraint, we have 

  )()(max 11
1

xcexh
x

  

with first order condition 

  )()( 11 xcxh   

This states that marginal social benefit is equal to marginal social cost. Thus, the CE and 

the planning solution coincide; the CE maximizes social surplus. 

 

The same result can be obtained via a somewhat different approach. Consider a single 

market, for good x.  Inverse demand is given by )(xp . Suppose the market quantity and 

price are qx   and )(qpp   respectively. Then consumer surplus is given by  

  qqpdxxpCS
q

)()(
0

   

See Figure 10.3.   

 

The competitive supply curve is the marginal cost curve: )(xc .  Producer surplus is 

given by 

   
q

dxxcqqpPS
0

)()(  

See Figure 10.4.  
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Thus, social surplus is given by 

   
qq

dxxcdxxpPSCSSS
00

)()(  

Now consider a planning problem in which q is chosen to maximize SS: 

   
qq

q
dxxcdxxp

00

)()(max  

The first order condition (using Leibnitz’s rule for differentiating an integral; see 

technical note below): 

  )()( qcqp   

That is, MCP  ; social surplus is maximized at the CE. 

 

Technical Note: Leibnitz’s Rule 

For the definite integral  

  V r f x r dx
a r

b r

( ) ( , )
( )

( )

   

The derivative with respect to r is 

             V r f b r r b r f a r r a r f x r r dx
a r

b r

( ) ( ), ( ) ( ), ( ) ( , )
( )

( )

   

Proof. Evaluation of the definite integral yields 

  )),(()),(()( rraFrrbFrV   

where )(xF  is the indefinite integral of )(xf . Differentiation with respect to r then 

yields the result. 
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11. COMPETITIVE GENERAL EQUILIBRIUM 

IN A TWO-SECTOR ECONOMY 

 

11.1 The Two-Sector Model 

There are two factors of production (K and L), two consumption goods (X and Y), and h 

households (consumers of X and Y and suppliers of K and L). Resource constraints: 

K and L  are fixed. 

 

Production 

  ),( xx
x LKFX   

  Y F K Ly
y y ( , )  

Assume CRS. This implies: 

(i) zero profit in equilibrium (since ACp   in equilibrium) and hence we do not need to 

be concerned with the ownership of firms among households and the distribution of 

dividends; 

(ii) the number of firms is indeterminate.  

 

Consider profit for a representative firm in sector i: 

  i i
i

i i i ip F K L wL rK  ( , )  

Profit maximization implies: 

  
F

F

w

r
L
i

K
i   

  MC pi
i  

from which we can derive factor demands in each sector, 

  ),,( rwpK i
i   and  ),,( rwpL i

i  

and aggregate supply functions for each sector, 

  ),,( rwpX x
s   and  ),,( rwpY y

s  
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Consumption 

Household j is endowed with jL  and jK  such that 

   
j

j LL    and    
j

j KK  

This means that wealth for household j is 

  jjj KrLwM   

Utility maximization for household j: 

  ),,(max
,,

jjjj

lYX
lYXu

jjj
  subject to  p X p Y wl Mx

j
y

j j j    

This yields the usual first-order conditions: 

  
y

xj
yx p

p
MRS ,   and  

y

j
yl p

w
MRS ,  

from which we can construct the Marshallian demand functions for X and Y, 

  ),,,( rwppX yx
j   and  ),,,( rwppY yx

j  

and labour supply, 

  ),,,( rwpplLL yx
jjj   

From these we can construct aggregate demands for X and Y and aggregate labour supply: 

  
j

yx
j

yx
D rwppXrwppX ),,,(),,,(   

  
j

yx
j

yx
D rwppYrwppY ),,,(),,,(   

  
j

yx
j

yx
S rwppLrwppL ),,,(),,,(  

 

Market Equilibrium 

In the goods market: 

(11.1)  X p w r X p p w rS
x

D
x y( , , ) ( , , , )     

(11.2)  Y p w r Y p p w rS
y

D
x y( , , ) ( , , , )    
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In the factor market: 

(11.3)  KrwpK
i

i
i  ),,(       

(11.4)  L p w r L p p w ri
i

i

S
x y( , , ) ( , , )     

We have four equations and four unknowns ( wpp yx ,,  and r). However, there are only 

three independent equations because the equations are linked by the household budget 

constraint. This linkage implies Walras’ law: 

 

Walras’ Law 

If there are n markets and (n-1) are in equilibrium then the thn market must also be in 

equilibrium. 

 

This means that our four equations can only be solved for three unknowns; one of the 

goods or factors must be specified as the numeraire.  Convention: py  1. 

 

Economic interpretation: equilibrium identifies relative prices not absolute prices. More 

generally, all values in economics are relative; there are no absolute values.  

 

 

11.2 Properties of Competitive Equilibrium 

To simplify the presentation and to allow the use of some simple diagrams, we will 

henceforth abstract from the labour-leisure choice and set 0jl  j .  Thus, all available 

labour is used in production. 

 

1. Efficiency in Production 

A production allocation is efficient if it is not possible, by re-allocating available factors,  

to produce more of one good without producing less of another.  This means the economy 

is on its production possibility frontier (PPF).   
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The PPF is the solution to the following planning problem: 

  max ( , )
,K L

x
x x

x x

F K L   

  subject to 
















LLL

KKK

YLKF

yx

xy

yy
y ),(

  

Substitute the second and third constraints into the first, and construct the Lagrangean:  

  )],([),( xx
y

xx
x LLKKFYLKF    

The first order conditions are 

  0 y
K

x
K FF    

  0 y
L

x
L FF   

Taking the ratio yields the condition for efficiency in production: 

  
F

F

F

F

K
x

L
x

K
y

L
y     

Solution of the first order conditions, in combination with the constraint, yields the PPF. 

See Figure 11.1.   

 

The PPF is often called a transformation function and is usually written in implicit form,  

0),,,( LKYXT . The slope of the PPF is called the marginal rate of transformation 

(MRT).  The MRT can be thought of as measuring the marginal cost of producing X in 

terms of Y; that is, XYX MCMRT , . 

 

Now consider the competitive equilibrium (CE). Recall that in CE, 

  
F

F

w

r
iL

i

K
i    

Since all firms face the same prices, it follows that in CE 

  
F

F

F

F

L
x

K
x

L
y

K
y   

That is, the CE is production efficient. 
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2. Efficiency in Consumption 

A consumption allocation is Pareto efficient if it is not possible, by re-allocating the 

available goods, to make one person better off without making someone else worse off. 

This means the economy is on its utility possibility frontier (UPF).  

 

The UPF is the solution to the following planning problem (specified here for the case of 

two households, A and B): 

  ),(max
,

AAA

YX
YXu

AA
  

  subject to 














YYY

XXX

uYXu

BA

BA

BBBB ),(

 

where },{ YX  is some point on the PPF.  

 

Substitute the second and third constraints into the first, and construct the Lagrangean: 

  )],([),( AABAAA YYXXuuYXu    

The first order conditions are 

  u ux
A

x
B  0  

  u uy
A

y
B  0  

Taking the ratio yields the condition for efficiency in consumption: 

  B
yx

A
yx MRSMRS ,,   

Solution of the first order conditions, in combination with the constraint, yields the UPF 

or contract curve, ),,( BA uYXUu  . See Figure 11.2. 

 

Now consider the competitive equilibrium (CE). Recall that in CE, 

  
y

xj
yx p

p
MRS ,   j  

Since all consumers face the same prices, it follows that in CE 

  MRS MRSx y
A

x y
B

, ,    
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That is, the CE is consumption efficient. 

 

3. Overall Efficiency 

Efficiency in production requires that the economy is on the PPF. Efficiency in 

consumption requires that the goods produced are allocated in a Pareto efficient manner.  

The final element of efficiency relates to where on the PPF the economy should be.  

 

An allocation is Pareto efficient if it is not possible, by re-allocating the factors of 

production, to make one person better without making someone else worse off. This 

means the economy is on the grand utility possibility frontier (GUPF).  

 

The GUPF is the solution to the following planning problem (specified here for the case 

of two households, A and B): 

  ),,(max
,

B

YX
uYXU    subject to   0),,,( LKYXT  

The first order conditions are   

  0 x
A
x Tu   

  0 y
A
y Tu   

Taking the ratio yields the condition for overall allocative efficiency: 

  
y

x
A
y

A
x

T

T

u

u
  

That is, yx
A

yx MRTMRS ,,  .  Since we also have MRS MRSx y
A

x y
B

, ,  as an implicit 

property of the contract curve, overall we have 

  yx
B

YX
A

yx MRTMRSMRS ,,,   

See Figure 11.3. 

 

Now consider the competitive equilibrium. Recall that in CE, 

  MC px x   and  MC py y  

and 
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y

xB
YX

A
yx p

p
MRSMRS  ,,  

Therefore, in CE 

  
y

xB
YX

A
yx MC

MC
MRSMRS  ,,  

Set Y as the numeraire good; that is, MCy  1. Thus, in CE we have  

  B
yxyx

A
yx MRSMRTMRS ,,,   

That is, the CE is Pareto efficient.  

 

This result for our simple two sector economy generalizes to an economy with multiple 

factors, multiple goods, multiple households, uncertainty in outcomes, and intertemporal 

choices. It reflects a fundamental result in economics, the first welfare theorem (stated 

here without proof). 

 

The First Welfare Theorem 

In an economy where 

(a) all agents are price-takers   

(b) there are no IRS or indivisibilities 

(c) there are no public goods 

(d) there are no externalities 

(e) information is symmetric between buyers and sellers, 

every competitive equilibrium is Pareto efficient.  

 

A closely related, and equally important result, is the second welfare theorem (also stated 

here without proof). 

 

The Second Welfare Theorem 

In an economy where (a) – (e) hold, any Pareto-efficient allocation can be supported as a 

competitive equilibrium with appropriate resource transfers. 
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12.  MONOPOLY 

 

12.1  Introduction 

Monopoly is where there is a single seller of the market good. Monopoly is due to 

barriers to entry (often due to economies of scale or scope, or network effects), or 

legislative protection (such as through patents). 

 

We will deal first with the case of non-decreasing MC, and then consider the case of 

decreasing MC over the entire market range (natural monopoly). 

 

Assumptions 

1. The firm is a price-taker on factor markets.  (In reality, a single seller on the product 

market often also has market power in the factor markets). 

2. The firm is cost minimizing. (In reality, there may be “X-inefficiency”: the absence of 

competitive pressure may mean that the firm does not minimize cost). 

 

These assumptions mean that the cost function for the monopolist is independent of its 

position in the product market per se; the cost function simply reflects technological 

factors and factor prices, as it would for a “competitive” firm. 

 

 

12.2  The Monopoly Problem 

The firm chooses output to maximize profit: 

  max ( ) ( )
y

p y y c y  

where p(y) is market inverse demand and c(y) is the cost function. 

 

The first-order condition is 

(12.1)  p y yp y c y( ) ( ) ( )     
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If 0)(  yc  (that is, MC is non-decreasing) then the first-order condition defines a 

maximum.  

 

Thus, if MC is non-decreasing then the monopolist produces where 

  marginal revenue (MR) = marginal cost (MC) 

See Figure 12.1, where ŷ  is the monopoly output and p̂  is the monopoly price. 

 

Note that the monopolist does not have a supply function per se.  It does not respond to a 

given price with an output choice as competitive firms do; it sets both price and output 

simultaneously. In particular, the monopolist chooses output y  to maximize profit and 

then sets price  (  )p p y  to clear the market. 

 

Note that equation (12.1) from above can be written as 

  )(
1

1)( ycyp 





 


 

where   0  is the elasticity of demand. A competitive firm perceives    ; thus, it 

sets output such that p MC . In contrast, the monopolist sets p MC  for any    . 

 

 

12.3  Monopoly and Foregone Social Surplus 

The monopoly outcome has an associated “deadweight loss” (DWL)  since p MC . See 

Figure 12.2.  Each unit between y  and y*  has a value to consumers greater than its 

production cost; this positive net surplus is foregone in the monopoly outcome. This 

foregone surplus is the DWL, the shaded area in Figure 12.2. 

 

If the monopoly is due to patent protection then this welfare cost must be weighed 

against the ex ante incentives that monopoly rights over an invention create for research 

and development. Optimal patents are designed to just balance these two factors to 

maximize welfare in a dynamic context. 
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12.4  Price Discrimination 

The monopolist may not set a single price.  It may set a menu of prices that differ across 

units sold.  There are three basic types of such price discrimination. 

 

1. First Degree Price Discrimination 

This is often called “perfect price discrimination”: each unit is sold at a different price, 

set equal to the maximum WTP for that unit in the market.  This yields an efficient 

outcome. 

 

See Figure 12.3. The monopolist sells y* ; the last unit is sold at MC.  The monopolist 

extracts the entire surplus from the market (the shaded area in the figure); there is no 

consumer surplus. Thus, while the outcome is efficient, it leads to a very skewed 

distribution of surplus. 

 

2. Second Degree Price Discrimination 

Less than perfect discrimination: different blocks of output are sold at different prices.  

Example: “buy one and get a second one at half price”. 

 

3. Third Degree Price Discrimination 

The monopolist sets different prices for different groups of consumers or for different 

markets.  Examples: a discount for students and seniors; generic versus brand-names; 

periodic sales. It is often motivated by different income levels among consumers and 

different associated WTPs.  Note that price discrimination of this type requires 

identifiability of the different consumer groups and non-transferability of goods across 

those groups after sale. 

 

Suppose there are two markets (or two types of consumers) with demands p y1( )  and 

p y2 ( ) .  The profit maximization problem is 

  max ( ) ( ) ( )
,y y

p y y p y y c y y
1 2

1 1 1 2 2 2 1 2    
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with first order conditions 

  MR MC1   

  MR MC2   

These imply 

  MR MR1 2  

Intuition:  if revenue is higher on the marginal unit in one market, shift sales into that 

market until marginal revenue is equated across the two markets. 

 

In which market is price higher?  Since MR MR1 2 , we have 

  p p1
1

2
2

1
1

1
1

( ) ( )  
 

 

Thus p p1 2  if and only if  1 2 .  That is, price is higher in the less elastic the 

market.  (Note that   0 , so  1 2     1 2 ). 

 

 

12.5  Natural Monopoly 

Natural monopoly is characterized by declining MC over the entire market range.  

 

See Figure 12.4. The key implication of declining MC is that AC MC .  The “efficient” 

output is y* , where MCp  , but this solution involves a loss to the supplying firm.  If 

this solution is implemented through regulation or direct public provision then this loss 

must be covered by a subsidy.  Raising the funds needed to finance the subsidy will 

generally create distortions elsewhere in the economy (because taxation is generally 

distortionary). Taking the efficiency cost of these distortions into account means that the 

“second-best” efficient output is less than y* . 

 

The maximum output not involving a loss is y , where p AC . Thus, the second-best 

output will lie somewhere between y  and y* . 
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The unregulated output is y , where MR MC .  As drawn in figure 12.4, this involves 

positive profit; it need not.  Thus, supply of any positive amount in natural monopoly 

may require public provision or subsidization.  If the market is sufficiently small then the 

true optimum may be zero provision. 
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ŷ y

p̂

 



Kennedy: Microeconomic Theory 

Posting this material to any site other than web.uvic.ca/~pkennedy is a violation of copyright. 162

13.  AN INTRODUCTION TO GAME THEORY AND OLIGOPOLY 

 

13.1  Introduction 

Game theory is the appropriate analytical framework in any setting with strategic 

interaction. Such a setting is where the actions of one agent affect the payoff (utility or 

profit) of another agent in a way that in turns affects the choice of best action by the 

affected agent. 

 

All economic interaction can be examined using game theory.  The price-taking behavior 

we examined earlier can be derived as a limiting case of more general environments 

involving strategic interaction.  In Section 13.6 we will derive a perfectly competitive 

outcome as a limiting case of oligopoly. 

 

 

13.2  Nash Equilibrium 

Let si  be the strategy of player i, and s i  be the vector of strategies of all other players.  

Let u s si i i( , ) be the payoff to player i. 

 

A Nash equilibrium is a vector { ,  }s si i  such that 

  u s s u s s s ii i i i i i i(  ,  ) ( ,  ) ,     

That is, a NE is an outcome in which each player chooses her strategy to maximize her 

payoff, given the equilibrium strategies of all other players. 

 

By definition, no player has an incentive to deviate from the Nash equilibrium. 
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13.3  A Normal Form Example 

A “normal form” representation of a game is like a reduced form; the sequence of 

multiple moves that comprise the “extensive form” are subsumed into a single payoff 

matrix. 

Consider the cartel problem illustrated in Figure 13.1. (This is the so-called “prisoners’ 

dilemma” game).  There are two firms (1 and 2) and two possible strategies: collude (C), 

or defect (D) from the collusive agreement. The first number in each cell of the patoff 

matrix is the payoff to the row player; the second number is the payoff to the column 

player. The Nash equilibrium in this game is {D,D}. 

 

Note that {C,C} Pareto dominates the NE (from the perspective of the two firms).  This 

inefficiency is a common, but not necessary, property of Nash equilibria.  (The 

competitive general equilibrium is an instance in which the NE is Pareto efficient). 

 

 

13.4  The Cournot Model of Oligopoly 

There are n firms each selling an identical product on a market with inverse demand 

function p Y( ) , where Y y jj

n


 1
is aggregate output.  Firm i has cost function c yi i( ) , 

with  c yi i( ) 0 .  Firms choose output, and choices are made simultaneously. 

 

The problem for firm i is 

  max ( ) ( )
y

j i i ij

n

i

p y y c y
 1

 

which can be rewritten as 

  max ( ) ( )
y

i j i i ij i

n

i

p y y y c y 
  

 

Since decisions are made simultaneously, firm i’s choice cannot affect the choices of 

other firms.  Thus, firm i perceives correctly that  y y j ij i   0 . 
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The best choice for firm i is given by 

(13.1)   p y y y p c yi jj i

n

i i i( ) ( )    
  

 

This is just a MR = MC condition; but MR here is a function of aggregate output from 

other firms.  Thus, there is a strategic interaction between firms. 

 

Equation (13.1) can be interpreted as a best response function or reaction function for 

firm i.  It specifies the best choice for firm i in response to (or in reaction to) the choices 

by other firms. 

 

This terminology is somewhat misleading since firm i does not respond to the actions of 

other firms in a sequential sense (since all firms act simultaneously); firm i responds to 

what it expects other firms to do. 

 

How are those expectations formed?  Firm i expects all other firms to play the strategy 

(output choice) that is a best response to its choice.  This is true for all firms.  That is, 

each firm expects every other firm to behave rationally.  Moreover, each firm knows that 

every other firm knows that it knows that every other firms know that ..… each firm will 

behave rationally.  That is, there is common knowledge of rationality. 

 

From common knowledge it follows that firm i expects every other firm to play its NE 

equilibrium strategy. Therefore, its own best response is to play its NE strategy. 

 

The Cournot Nash equilibrium { }y  is therefore characterized by  

(13.2)   p y y y p c yi jj i

n

i i i(   )  (  )    
    i  
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13.5  A Cournot Duopoly Example 

Suppose there are two firms with constant marginal costs c1 and c2  respectively, and 

suppose demand is linear: p Y a bY( )   . 

 

The problem for firm 1 is 

  max [ ( )]
y

a b y y y c y
1

1 2 1 1 1    

with the first-order condition given by  

(13.3)   [ ( )]a b y y by c   1 2 1 1  

Rearrange this to obtain the best response function (BRF) in explicit form: 

(13.4)   
b

byca
yy

2
)( 21

21


  

A similar BRF can be derived for firm 2: 

(13.5)   
b

byca
yy

2
)( 12

12


  

 

Nash Equilibrium 

The NE is {  ,  }y y1 2  such that y1  is a best response to y2 , and y2  is a best response to y1 . 

Thus, {  ,  }y y1 2  must solve (13.4) and (13.5) simultaneously. Solving by substitution 

yields  

(13.6)   y
a c c

b1
1 22

3


 
 

(13.7)   y
a c c

b2
2 12

3


 
 

Note that y1  is decreasing in c1  and increasing in c2 , as expected. 

 

Profits in equilibrium are 

(13.8)  
b

cca

9

)2(
ˆ

2
21

1


  

(13.9)  
b

cca

9

)2(
ˆ 12

2


  
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Figure 13.2 provides a geometric representation of the game. The figure is drawn for the 

symmetric case, where 21 cc  . The intersection of the BRFs is the geometric 

interpretation of the simultaneous solution of (13.4) and (13.5). In the symmetric case the 

intersection lies on the 045  line. 

 

Isoprofit Contours and the Pareto Frontier 

To understand the properties of the equilibrium, first consider a set of isoprofit contours 

for firm 1, as depicted in Figure 13.3 . Each contour is a locus of pairs },{ 21 yy  that yield 

a fixed level of profit for firm 1. That profit is highest at the monopoly output for firm 1, 

denoted My1  in Figure 13.3, where 02 y . Profit decreases as we move away from the 

monopoly solution in any direction. 

 

To understand the shape of a contour, start at a pair }0,{ 1
y  where Myy 11  , as depicted 

in Figure 13.3. Profit at this output must be less than the monopoly profit because 

Myy 11  . Now suppose firm 1 reduces output towards My1 . If 2y  remains zero, profit for 

firm 1 would have to rise. Thus, for profit to remain constant, 2y  would also have to rise, 

thereby driving down price and offsetting the increase in profit for firm 1 that would 

otherwise occur. The same thought experiment can be conducted beginning at a pair 

}0,{ 1
y  where Myy 11  , as depicted in Figure 13.3. 

 

The isoprofit contour becomes flat at the point where it crosses the BRF for firm 1 

because that BRF by definition identifies the profit-maximizing output for firm 1 in 

response to any given output from firm 2. We can think of a point on the BRF for firm 1 

as identifying the output that achieves the lowest possible isoprofit contour for any given 

value 2y . This implies a tangency condition, as depicted in Figure 13.3 at an arbitrarily 

chosen value 22 yy  . 

 

We can show this analytically. Totally differentiate profit for firm 1 to yield 

  2111211 )2( dybydycybyad   
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By definition, 01 d  along any isoprofit contour for firm 1. Impose this requirement 

and solve for the slope of the contour in ),( 21 yy  space: 

  
1

121

11

2 2

0 by

cbybya

ddy

dy 



 

 

It is straightforward to show that this slope is zero at the BRF by substituting )( 211 yyy   

from (13.4) above. Moreover, the slope of  the contour is positive at any )( 211 yyy  , 

and negative at )( 211 yyy  , as depicted in Figure 13.3 

.  

Figure 13.4 depicts a set of isoprofit contours for firm 2, overlaid on the contours for firm 

1 from Figure 13.3, all drawn for the symmetric case, where 21 cc  . There are two 

points to note from Figure 13-4. First, the contours for firm 2 have infinite slope where 

they cross the BRF for firm 2. Equivalently, they have zero slope in ),( 12 yy  space, 

reflecting the same interpretation that we gave earlier for the slope of the contours for 

firm 1. 

 

Second, Figure 13.4 identifies a locus of tangencies between the isoprofit contours (in 

bold). Any point on this locus is the solution to a planning problem that maximizes profit 

for firm 1 subject to holding profit for firm 2 at some fixed level, k: 

 11121
,

)]([max
21

ycyyyba
yy

   subject to  kycyyyba  22221 )]([  

From the perspective of the two firms, this locus of tangencies is a Pareto frontier: the 

set of output pairs from which it is not possible to find an alternative pair that yields 

higher profit for one firm without reducing profit for the other firm.  

 

It should be stressed that the output pairs on the Pareto frontier in this oligopoly game are 

Pareto-efficient only from the perspective of the two firms. We cannot say that they are 

Pareto efficient from a social perspective because we have not considered the welfare of 

consumers when deriving this frontier. 
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An analytical solution can be found for the Pareto frontier in this example. In particular, 

first derive the slope of the isoprofit contour for firm 2: 

  
212

2

21

2

20 cbybya

by

ddy

dy





 

Now set  

  
00 11

2

21

2




  ddy

dy

ddy

dy
 

 

and solve for 2y  to find the set of tangency pairs. In the symmetric case, where 

c c c1 2  , the solution reduces to a simple linear expression: 

  112 2
)( y

b

ca
yy PF 


  

This is the locus plotted in bold in Figure 13.4. 

 

Figure 13.5 highlights the isoprofit contours passing through the NE, and identifies a 

shaded region called the lens of mutual benefit. The output pairs in the interior of this 

lens Pareto-dominate the NE from the perspective of the two firms; it would be to their 

mutual benefit if they could agree to move from the NE to a point inside the lens. 

 

The segment of the Pareto frontier passing through the lens of mutual benefit – 

highlighted in bold in Figure 13.5 – is called the core. The core is the set of Pareto-

efficient output pairs that Pareto-dominate the NE. Again we need to stress that this is all 

from the perspective of the two firms, not society as a whole. 

 

The Cartel Solution 

There is one output pair on the Pareto-frontier that has special status. It is the pair that 

maximizes the joint profits of the two firms: 

  11121
,

)]([max
21

ycyyyba
yy

  22221 )]([ ycyyyba   

The solution to this problem is the cartel solution or the collusive solution. In our simple  

example where marginal costs are constant, the cartel solution is a corner solution: the 
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firm with the lowest cost should produce its own monopoly output and the other firm 

should produce nothing. Thus, the cartel solution is 

  
b

ca
yC

2
1

1


    and    02 Cy  if   21 cc   

  01 Cy    and    
b

ca
yC

2
2

2


  if   21 cc   

In the symmetric case, where c c c1 2  , any pair of outputs for which total output is 

  
b

ca
Y C

2


  

will maximize joint profits. Note that all points on the Pareto frontier satisfy this 

condition in the symmetric case. 

 

The cartel solution cannot be achieved if the game is played only one time (a “one-shot” 

game). In that setting, each firm has a strict incentive to cheat on any agreement to 

restrict output. (We know this must be true because the cartel solution is not a NE). 

 

If instead the game is repeated then there may be scope for the firms to act as a cartel 

because cheating can be punished in a future stage of the game. However, the repetition 

must be infinite or else there is no future beyond the last period of the game, and cheating 

will occur in that period. A rational expectation of that last-period cheating then leads to 

cheating in every prior period. 

 

 

13.6  An Example with Identical Firms  

Suppose there are n identical firms each with marginal cost c, and suppose demand is 

linear: p Y a bY( )   . 
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The problem for representative firm i is 

  ii

n

j j
y

cyyyba
i

  
][max

1
 

The best response function (first-order condition) is 

(13.10)  y
a c b y

bi

jj i

n


 


2

   i  

 

Since firms are identical, it is natural to look for a symmetric Nash equilibrium in which 

each firm chooses the same equilibrium output.  (Symmetric equilibria do not always 

exist, and in some non-symmetric equilibria, identical agents may behave differently).  

 

In symmetric equilibrium: 

   y yi    i    and    ( ) y n yjj i

n
 

 1  

 

Making these substitutions in (13.10) and solving yields 

(13.11)  
( )

y
a c

b n



1

 

Note that setting 2n  in (13.11) yields the same result as setting c c c1 2   in (13.6).  

 

The NE price is 

(13.12)  
1

ˆ)(ˆ




n

nca
ybnanp  

 

Special Cases 

1. Perfect competition: 

  cnp
n




)(ˆlim  

 

2. Monopoly: 

  
2

)(ˆ
1

ca
np

n





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13.7 Takeovers and the Nash Bargaining Solution 

Recall the duopoly model from Section 13.5. Suppose one of the firms can buy the other 

firm, and then act as a true monopoly. It is clear that the joint gains from this takeover are 

highest if the low-cost firm buys the high-cost firm and then closes down the high-cost 

firm entirely. At what price would the two firms agree to make this sale? 

 

This is a type of bargaining problem, and there are two different approaches to solving it: 

 a game-theoretic approach (find the equilibrium to a game of alternating offers) 

 an axiomatic approach (find the Nash bargaining solution) 

Under some circumstances the two approaches yield the same solution but in other 

instances they do not. Here we will consider only the axiomatic approach. 

 

The Nash Bargaining Solution 

Nash proposed that any bargaining solution should satisfy four requirements (axioms): 

 Pareto efficiency (or else there would be room for renegotiation) 

 symmetry (if the players are indistinguishable, then the agreement should not 

discriminate between them) 

 invariance (monotonic transforms of the payoff functions should not change the 

outcome) 

 independence of irrelevant alternatives (payoffs over non-feasible outcomes should 

have no effect on the bargaining solution) 

 

Nash showed that there exists only one solution that meets these requirements, and it is 

now called the Nash bargaining solution.  

 

Suppose two players bargain over how to share an amount A. The players submit bids 

},{ 21 bb , and if Abb  21  then they each receive their bid. If Abb  21  then they each 

receive nothing. Each player has an outside option to which they revert if an agreement 

cannot be reached. The payoff to player i in her outside option is id , called the 

disagreement payoff.  
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The Nash bargaining solution solves 

  
}{

max
b

 





 





  )()()()( 22221111 dubudubu  

where this maximand is called the Nash product. 

 

Application to the Takeover Problem 

Suppose 21 cc  , then firm1 will buy firm 2. As a monopoly, firm 1 will produce output 

  
b

ca
y M

2
1

1


  

and earn profit  

  
b

caM

4

)( 2
1

1


  

Firm 1 pays a fraction )1,0(s  of this profit to firm 2 in the takeover sale. Thus, in this 

setting 

  Msbu 111 )1()(     and    Msbu 122 )(   

 

If the firms cannot agree on a sale then they will continue to compete in a duopoly, with 

profits 1̂  and 2̂  for firms 1 and 2 respectively, as given in (13.8) and (13.9). These 

equilibrium profits are the disagreement payoffs in this setting. That is, 

  111 ˆ)( du    and    222 ˆ)( du  

 

We can now make the substitutions in the Nash product and maximize with respect to s 

to yield the Nash bargaining solution: 

  
2

1

1122

)(6

)2()2)(23(~
ca

caccaca
s




  

This share is decreasing in 2c  because high cost reduces the bargaining power of firm 2.  

In the symmetric case, where c c c1 2  , 2
1~ s ; the monopoly profit is split evenly. 
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14. EXTERNALITIES AND PUBLIC GOODS 

 

14.1 Introduction 

An externality (or external effect) is a cost or benefit associated with an action that is 

external to the agent taking that action. Externalities can be positive (in which case there 

is an external benefit) or negative (in which case there is an external cost). 

 

We will identify the agent taking the action as the source agent, and those external agents 

affected by the action as the external agents. 

 

Externalities can be unilateral, where the external agents are passive players, or 

reciprocal, where at least some external agents are also source agents (as for example, 

with road congestion). 

 

The key economic feature of an externality is the potential for inefficiency. In particular, 

if an action has an associated externality then the privately optimal action may be 

inefficient; it may be possible for the agent to take a different action that leaves no one 

worse-off and at least one agent better-off than at the private optimum. 

 

Our plan in this chapter is as follows. We will begin with a graphical treatment of 

unilateral externalities to so as establish some basic intuition for the economic problem. 

We will then examine reciprocal externalities as a simple game between source agents, 

and consider the properties of the Nash equilibrium of that game. Finally, we will 

examine a special case of a reciprocal positive externality: public goods.  

 

 

14.2 Unilateral Externalities: A Graphical Treatment 

Consider a setting in which the external agents are passive recipients of an external effect 

from the action, z of a single source agent. Suppose z is continuous. (Imagine that z is the 

discharge of effluent into a river).  We will first derive the private optimum for the source 

agent and then show that social surplus is not maximized at that private optimum.  
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The Private Optimum 

Let PB(z) denote private benefit from the action and let PC(z) denote the private cost of 

that action. The source agent will choose the level of the action to maximize her private 

surplus (or private net benefit). That is, she will choose z  such that 

(14.1)  [ ( ) ( )] [ ( ) ( )]PB z PC z PB z PC z     z  

 

Suppose PB(z) and PC(z) are increasing and twice continuously differentiable in z, and 

that PB z ( ) 0  and PC z ( ) 0 .  Then z  is given by 

(14.2)  PB z PC z  ( ) ( )  

That is, z  is chosen to equate marginal private benefit (MPB) with marginal private cost 

(MPC).  This solution is illustrated in Figure 14.1. 

 

Social Surplus Maximization 

For generality in exposition, suppose the action z potentially imposes an external cost 

D(z) and an external benefit G(z).  Define the social cost of z: 

(14.3)  SC z PC z D z( ) ( ) ( )   

and the social  benefit of z: 

(14.4)  SB z PB z G z( ) ( ) ( )   

 

Social surplus (or net social benefit) is maximized at z*  such that 

(14.5)  [ ( ) ( )] [ ( ) ( )]* *SB z SC z SB z SC z     z  

 

If D(z) and G(z) are increasing and twice continuously differentiable in z, with  D z( ) 0  

and  G z( ) 0 , then z*  is defined by 

(14.6)  SB z SC z  ( ) ( )* *  

That is, z*  equates marginal social benefit (MSB) with marginal social cost (MSC). 
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A Positive Externality 

Figure 14.2 illustrates a positive externality. It is drawn for the case where D z( )  0  (that 

is, there is no external cost) and  G z( ) 0  (which means that MSB and MPB diverge 

decreasingly). 

 

The vertical difference between MSB and MPB in Figure 14.2 is marginal external 

benefit (MEB). Social surplus at z*  is the area between MSB and MSC from zero to z* . 

 

The presence of the external benefit means z z*  .  Intuition:  the agent does not take 

into account the external benefit she bestows on others when she chooses her action, and 

so her chosen level of the action is too low from a social perspective. 

 

Note that a reallocation from z  to z*  would make the external agents better off: 

(14.7)  gain to external agents 

    G z G z( ) ( )*  

    area abcd( )  

but the source agent would be made worse off: 

(14.8)  loss to source agent (foregone private surplus) 

      [ ( ) ( )] [ ( ) ( )]* *PB z PC z PB z PC z  

    area acd( )  

Thus, the move from z  to z*  would not be a Pareto improvement.  However, it would be 

a potential Pareto improvement: the external agents could in principle compensate the 

source agent for her loss in moving from z  to z*  and still be better off. That is, the gain 

to the external agents is greater than the loss to the source agent. The move from z  to z*  

would raise social surplus by area(abc) in Figure 14.2. 

 

A Negative Externality 

Figure 14.3 illustrates a negative externality.  It is drawn for the case where G z( )  0  

(that is, there is no external benefit) and  D z( ) 0  (which means that MSC and MPC 

diverge increasingly).   
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The vertical difference between MSC and MPC in Figure 14.3 is marginal external cost 

(MEC). Social surplus at z*  is the area between MSB and MSC from zero to z* . 

 

The presence of the external cost means z z*  .  Intuition:  the agent does not take into 

account the external cost she imposes on others when she chooses her action, and so her 

chosen level of the action is too high from a social perspective. 

 

Note that a reallocation from z  to z*  would make the external agents better off: 

(14.9)  gain to external agents (reduced external cost) 

    D z D z( ) ( )*  

    area abcd( )  

but the source agent would be made worse off: 

(14.10)  loss to source agent (foregone private surplus) 

      [ ( ) ( )] [ ( ) ( )]* *PB z PC z PB z PC z  

    area abd( )  

Thus, the move from z  to z*  would not be a Pareto improvement.  However, it would be 

a potential Pareto improvement: the external agents could in principle compensate the 

source agent for her loss in moving from z  to z*  and still be better off. That is, the gain 

to the external agents is greater than the loss to the source agent. The move from z  to z*  

would raise social surplus by area(bcd) in Figure 14.3. 

 

 

14.3 Reciprocal Externalities 

Let us begin with a simple setting in which there are just two agents. Each agent derives 

some benefit from the activity but that activity imposes a cost on the other agent.  To fix 

ideas, imagine two countries engaged in industrial activity z where the combined activity 

causes global environmental damage, which affects them both.  

 

The private benefit of activity iz  to agent i is )( ii zb , with 0)(  ii zb  and 0)(  ii zb . 
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The cost (in terms of environmental damage) to agent i due to the combined activity is 

)(Zci , where 21 zzZ   is the aggregate activity.  Assume that 0)(  Zci  and 0)(  Zci . 

 

Note that we have allowed damage from Z to be different for the two agents. Thus, the 

externality is reciprocal but it is not necessarily symmetric in its impact.  

 

We will examine the simplest possible formulation of this game, where the agents act 

simultaneously, and the game is played just once. 

 

Nash Equilibrium 

The choice problem for each agent 1 is  

(14.11)  )()(max 21111
1

zzczb
z

  

In choosing 1z , agent 1 takes 2z  as given. The first-order condition for a maximum is 

(14.12)  )()( 111 Zczb   

This condition is sufficient for a maximum given our assumptions on )( ii zb  and )(Zci . 

 

Condition (14.12) states that agent 1 will set her activity level to equate her marginal 

private benefit with her marginal private cost, given the level of activity from agent 2.  

 

Note that condition (14.12) can be interpreted as the best-response function (BRF) for 

agent 1, which we denote )( 21 zz . This specifies the privately optimal activity for agent 1 

for any given level of activity from agent 2. 

 

An analogous BRF can be derived for agent 2. It is denoted )( 12 zz  and defined by 

(14.13)  )()( 222 Zczb   

 

The Nash equilibrium is }ˆ,ˆ{ 21 zz  such that 1ẑ  is a best response to 2ẑ , and 2ẑ  is a best 

response to 1ẑ . Thus, }ˆ,ˆ{ 21 zz  must solve (14.12) and (14.13) simultaneously.1  

                                                 
1 Note the similarity between this problem and the Cournot duopoly problem from Chapter 13. 
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Figure 14.4 illustrates the BRFs and the Nash equilibrium in the symmetric case, in 

which the two agents have identical benefit functions and identical cost functions. The 

points labeled 0
1z  and 0

2z  identify the “sole-agent optima” for agents 1 and 2 respectively. 

That is, 0
iz  is the level of z agent i would undertake if she were the sole agent in this 

economy, and was thus unaffected by the actions of the other agent.2 

 

 

14.4 An Example with Two Identical Agents 

Suppose there are two identical agents and the payoff to agent i is 

  2
21 )()log( zzzu ii    for }2,1{i  

 

The first order condition for agent 1 is 

(14.14)  )(2 21
1

zz
z

 
 

This can be interpreted as MPCMPB  , but in contrast to the unilateral externality case, 

the MPC for this agent now depends on the action taken by the other agent. 

 

This first order condition is the BRF for agent 1. We can solve (14.14) for 1z  to obtain a 

closed form solution for this BRF: 

(14.15)  



2

)2(
)( 2

2/12
2

2

21

zz
zz


  

An analogous BRF can be found for agent 2: 

(14.16)  



2

)2(
)( 1

2/12
1

2

12

zz
zz


  

 

These BRFs are as illustrated in Figure 14.4. The “sole agent” optima, 0
1z  and 0

2z ,  can be 

calculated easily by setting 02 z  in (14.15) and 01 z  in (14.16) respectively to obtain 

  
2/1

0
1

2

2

1










z      and     
2/1

0
2

2

2

1










z  

                                                 
2 This is akin to the monopoly output in Figure 13.3 from Chapter 13. 
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Nash Equilibrium 

The Nash equilibrium, denoted }ˆ,ˆ{ 21 zz , must solve (14.15) and (14.16) simultaneously. 

Finding this solution involves lots of tedious algebra. Fortunately, this can be avoided by 

utilizing the symmetry of the problem. In the symmetric equilibrium, zzz ˆˆˆ 21  . Impose 

this restriction on (14.14) to obtain 

(14.17)  )ˆˆ(2
ˆ

zz
z

 
 

which can be solved easily to yield 

(14.18)  
2/1

2

1
ˆ 










z  

This is the same solution that would obtain by solving (14.15) and (14.16) directly.  

 

Isopayoff Contours  

Figure 14.5 depicts a set of isopayoff contours for agent 1. The equation for an isopayoff 

contour for agent 1 can be found by setting uu 1  and solving for 2z  as a function of 1z : 


 1

2/1
1

12

])log([
),(

zuz
uzz


  

The different contours in Figure 14.5 correspond to different values of u. Note that utility 

increases as we move towards the sole-agent optimum. Note also that each isopayoff 

contour is flat at the point where it crosses the BRF because by definition the BRF 

identifies the utility-maximizing activity level for agent 1 in response to any given level 

of activity by agent 2. 

 

The Pareto Frontier 

There are a continuum of efficient allocations in this economy corresponding to different 

distributions of utility across the two agents. The Pareto frontier (the set of Pareto-

efficient allocations) is found by maximizing the utility of one agent subject to 

maintaining a given level of utility for the other: 

21 ,
max

zz
 2

211 )()log( zzz   

subject to uzzz  2
212 )()log(   
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where u is a given level of utility for agent 2. The solution to this problem is3 

(14.19)  





 








2

1
exp

2

2

1
)(

2/1
*
1 

 u
uz  

 

(14.20)  





 





2

2
exp)(*

2

u
uz  

 

These expressions identify efficient levels of 1z  and 2z  for a given value of u. The 

solution highlights the fact that there is a different efficient allocation for every different 

value of u, where u captures the distribution of utility across the agents. (A higher value 

of u means more utility for agent 2 and less utility for agent 1).  

 

We can now use (14.19) and (14.20) to derive a closed-form solution for the Pareto 

frontier in ),( 21 zz  space. Rearrange (14.19) to obtain 

(14.21)  
2

2

2

1
log *

1

2/1 

 

















 zu  

Substitute this into (14.20), and simplify to obtain 

(14.22)  *
1

2/1
*
2

2

2

1
zz 










 

This frontier is linear with a slope of 1 . It is depicted in Figure 14.6, labeled PF. The 

frontier is the locus of tangencies between the isopayoff contours. 

 

The Inefficiency of the Equilibrium  

Figure 14.7 highlights the isopayoff contours passing through the NE, and identifies the 

lens of mutual benefit. All points in the interior of this lens Pareto-dominate the NE; it 

would be to the mutual benefit of both agents if they could agree to move from the NE to 

a point inside the lens. 

 

                                                 
3 The algebra for this problem gets messy. I used Maple to solve it. 
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Recall from Chapter 13 that the segment of the Pareto frontier passing through the lens of 

mutual benefit – highlighted in bold in Figure 14.7 – is called the core. The core is the set 

of Pareto-efficient output pairs that Pareto-dominate the NE.  

 

It is clear from Figure 14.7 that the Nash equilibrium is inefficient; it does not lie on the 

Pareto frontier. Why? Each agent ignores the cost her activity imposes on the other agent 

precisely because that cost is external to her. This external cost is nonetheless part of the 

true social cost of the activity, and efficiency requires that it be taken into account.  

 

Surplus Maximization 

By definition, all points on the Pareto frontier are Pareto efficient. Conversely, all points 

not on the frontier are inefficient (including the NE). However, note from Figure 14.7 that 

there are many Pareto-efficient points – those points on the frontier but not in the core – 

that do not Pareto-dominate the NE. What can we say about these points? 

 

Those points on the Pareto frontier that are not in the core are potential Pareto 

improvements over the NE. A move from the NE to any point on the frontier creates 

enough social surplus that the winner from that move could in principle compensate the 

loser and still be better off. (Of course, if the move is to a point in the core, then there are 

no losers).  

 

Does a move from the NE to a point on the frontier create the same amount of social 

surplus, regardless of the point on the frontier to which we move?  

 

In general, the answer is no. In most problems, there is a unique point on the Pareto 

frontier at which social surplus is maximized.4 In a setting with identical agents, that 

surplus-maximizing point lies in the core on the 045  line. 

 

                                                 
4 Analogously, recall from Topic 13.5 in Chapter 13 that the unique joint-profit-maximizing output is one 
of the two monopoly points. 
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We can solve for this allocation in our example by setting **
2

*
1 zzz   in (14.22) and 

solving for *z  to yield 

(14.23)  
2/1

*

22

1










z  

This solution corresponds to the point S in Figure 14.8. Note that zz ˆ*  : there is too 

much of this activity by both agents in equilibrium relative to the surplus-maximizing 

solution (SMS)  because both agents fail to take account of the cost their activity imposes 

on the other agent. 

 

Unilateral Externalities Revisited 

In a setting in which agents are not identical, the SMS may not lie in the core. In that 

case, a move from the NE to the SMS is not a Pareto improvement. We can think of a 

unilateral externality as an extreme case of asymmetry in a reciprocal externality 

problem, where the external cost on one of the agents is vanishingly small. We have 

already seen (in Section 14.2) that the SMS is not a Pareto improvement over the private 

optimum in the unilateral problem. The private optimum in that problem is just a special 

case of the Nash equilibrium in which all agents have dominant strategies. 

 

In general, any externality problem can – and should – be modeled as a game. The simple 

unilateral externality problem can then be derived as a limiting case of that more general 

framework. 

 

 

14.5 Public Goods 

Public goods are characterized by two features: 

 joint consumption possibilities 

 high exclusion costs 

 

Joint consumption possibilities means that the benefits of the good can be enjoyed by 

more than one agent at the same time. For example, a lecture, a park, a lighthouse beam. 
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That is, consumption of public goods is “non-rivalrous” (in contrast to private goods like 

bread, cheese and wine). 

 

High exclusion costs means that it is costly to prevent agents from consuming the good 

once it is provided (eg. it is costly to build a fence around a national park). 

 

Public goods are a type of positive externality in the sense that provision of the good by 

one agent bestows a positive benefit on other agents (who can enjoy the public good 

without paying for it). 

 

Note that public goods may or may not be provided by the public sector. Moreover, many 

goods provided by the public sector are not public goods. Thus, we need to keep a clear 

distinction between public goods and goods provided by the public sector; they are not 

the same thing. 

 

Public goods are often classified according to the degree to which they are non-rivalrous 

and/or non-excludable. In particular: 

 pure public goods are those that are perfectly non-rivalrous (eg. radio signals, a 

lighthouse beam, knowledge). 

 impure (or congestible) public goods are subject to congestion; that is, the benefits of 

consumption declines as more agents use the good (eg. roads, the radio spectrum, a 

beach, a wilderness area). 

 club goods are congestible public goods with relatively low exclusion costs (eg. a 

swimming pool, a restaurant). 

This categorization is somewhat artificial since there are in fact a continuum of 

possibilities with respect to congestibility and exclusion costs.  
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14.6  Efficient Provision of a Public Good 

Consider an economy with two agents, A and B, and two goods y and G, where y is a 

private good and G is a continuous public good.  Production possibilities are represented 

by the transformation function T y G( , )  0 . 

 

We can derive the set of Pareto-efficient allocations as the solution to the following 

planning problem: 

  max ( , )
, ,y y G

A A
A

u y G    

   subject to uGyu BB ),(  

     y y yA B   

     T y G( , )  0  

That is, we are looking for a point on the production possibility frontier, and a division of 

the associated output of the private good, such that it is not possible to make agent A 

better-off without making agent B worse-off. 

 

The associated Lagrangean is 

  ),(]),([),( GyTuGyyuGyuL ABAA  

and the first-order conditions for a maximum are 

(14.24)   u Ty
B

y  0  

(14.25)  u uy
A

y
B  0  

(14.26)  u u TG
A

G
B

G    0  

Divide (14.26) by uy
A  to obtain 

(14.27)       u u u u T uG
A

y
A

G
B

y
A

G y
A    0  

Then use (14.24) and (14.25) in (14.27) to obtain 

(14.28)     u u u u T TG
A

y
A

G
B

y
B

G y   
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Equation (14.28) has the following interpretation: 

  MRS MRS MRTGy
A

Gy
B

Gy   

 

This condition is known as the Samuelson Condition for efficient public good provision.  

Intuition: the sum of the marginal private valuations of the public good should be equated 

to the marginal cost of provision (in terms of private good foregone). Why the sum of 

marginal private valuations? Because G can be consumed jointly by all agents. 

 

Contrast this condition with efficient provision of private goods x and y: 

  MRS MRS MRTxy
A

xy
B

xy   

Only one agent can consume a unit of the private good; efficiency dictates that it should 

be allocated to the agent with the highest valuation of that good until marginal valuations 

are just equated across agents, and these are in turn equated to marginal cost. 

 

See Figure 14.9 for a geometric representation of the Samuelson condition. Note that for 

every different value of  u  (corresponding to a distribution of utility in the economy) 

there is a different corresponding efficient level of G.  That is, the efficient level of G is 

not unique. 

 

 

14.7  Voluntary Private Provision of the Public Good 

Private provision of the public good is subject to a free-rider problem: each agent has an 

incentive to free-ride on the contributions to the public good made by other agents.  This 

can lead to inefficiency in private provision. 

 

Consider the Nash equilibrium provision in our example economy.  To simplify matters, 

assume the transformation function is linear with slope  .  (That is, it takes   units of 

the private good to create one unit of the public good). 
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Suppose we start from the point where G  0 and y y , as illustrated in figure 14.9 

Suppose further that the initial allocation of y  between the agents is { , }m mA B  such that 

m m yA B  .  Let gi  be the voluntary contribution to the public good by agent i.  Then  

  G g gA B   

The choice problem for agent A is 

  max ( , )
g

A A A A B
A

u m g g g   

The first-order condition defines the BRF for agent A: 

(14.29)    u uy
A

G
A 0  

Totally differentiate with respect to g A  and g B to obtain the slope of this best response 

function: 

(14.30)     dg dg u u u u uA B
yG
A

GG
A

yy
A

yG
A

GG
A     2  

This slope is negative if the agent has convex preferences. Intuition: if agent B 

contributes more to the public good, agent A will tend to free ride on the higher 

contribution, and so reduce on her own contribution. 

 

A similar BRF can be derived for agent B.  The two BRF, together with the associated 

Nash equilibrium, are illustrated in Figure 14.10 for the case of identical agents. 

 

The Inefficiency of the Equilibrium 

The Nash equilibrium is inefficient. This property is illustrated in Figure 14.10, which 

depicts indifference curves for the two agents. The shape of these indifference curves 

reflects the fact that utility is increasing in the contributions from other agents because G 

is a public good (in contrast to the negative externality problem form Section 14.4). 

 

The Pareto frontier is the locus of tangencies of the indifference curves, identified in 

Figure 14.10 as PF. The lens of mutual benefit is the shaded region in the figure, and the 

core is the bold portion of the PF passing through the lens. All points in the core Pareto-

dominate the NE. 
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The tangency requirement underlying the Pareto frontier follows directly from the 

Samuelson condition. To see this, note that the indifference curve for agent A in 

( , )g gA B  space is found by totally differentiating 

  u m g g g uA A A A B( , )    

with respect to g A and g B  to obtain 

(14.31)      u u dg u dgy
A

G
A A

G
A B 0  

The slope of this indifference curve in ( , )g gA B  space is 

(14.32)     dg dg u u uB A

A y
A

G
A

G
A   

We can similarly derive the slope of the indifference curve for agent B: 

(14.33)     dg dg u u uB A

B G
B

y
B

G
B   

Tangency occurs where these slopes are equated: 

(14.34)      u u u u u uy
A

G
A

G
A

G
B

y
B

G
B    

Rearranging this expression yields 

(14.35)     u u u uG
A

y
A

G
B

y
B    

This is the Samuelson condition (where MRT ). 

 

 

14.8  A Symmetric Example 

Consider an economy in which n identical agents each have the following utility function 

  u y G y G( , ) log   

where y is a private good and G is a continuous public good. Each agent has income m (in 

terms of the private good) which she divides between consumption of the private good 

and a contribution g to the provision of the public good, such that 

  G gii

n


 1
 

Thus, in this economy, MRT  1.  
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Nash Equilibrium in Voluntary Contributions 

Agent i solves 

  max
gi

 ( ) log( )m g g Gi i i     

where G i  is the total contribution from agents other than agent i. The first-order 

condition is 

   





1
1

0
g Gi i

 

Simplifying yields 

  g Gi i  1  

This represents the best response function for agent i. Note that it is downward-sloping; 

the more agent i expects others to provide, the less she will provide herself. This reflects 

the free-rider problem. 

 

In a symmetric Nash equilibrium, g gi   i  and so G n gi  ( )1 . Thus, in equilibrium 

  g
n


1

 

The aggregate contribution is 

   G ng  1 

 

The Inefficiency of the Equilibrium 

The Pareto frontier in a setting with n agents is a surface in n-dimensional space. We will 

focus on just one point on that surface, at which all agents have equal utility. This point is 

the surplus-maximizing solution (SMS) for this problem because agents are identical. 

  

The most straightforward way to solve for the SMS when agents are identical is to 

maximize the utility of a representative agent subject to the resource constraints of the 

economy: 

  
yG ,

max  y G log    subject to  ny G nm   

where nm is the total amount of the private good available in the economy for allocation 

between direct consumption and transformation into the public good. 
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The first-order condition is 

    1 0
n

G
 

which solves for 

  G n*   

 

Comparing this with G  reveals that the Nash equilibrium level of G is inefficiently low. 

Note too that in this example, 

  0
ˆ

*









n
G

G




 

This reflects the so-called “Mancur Olsen conjecture”:  the distortion associated with 

free-riding gets worse as the number of agents rises. 
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Bĝ
NE

)( BA gg

AgBĝ
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15. AN INTRODUCTION TO ASYMMETRIC INFORMATION 

 

15.1 Introduction 

Asymmetric information describes an economic environment in which one agent in a 

transaction has different information to the other agent in that transaction. There are two 

classes of asymmetric information problem:  adverse selection  and moral hazard. 

 

(a)  Adverse Selection 

Consider a market for goods of variable quality where the seller of a particular good 

knows its quality but the buyer does not.  The buyer will base her initial valuation of the 

good on the market-wide expected quality. 

 

The seller of a high quality good, not being able to credibly convince the buyer that it is 

high quality and thereby charge a high price, may decide to retain the good rather than 

sell it at an average-quality price.  Conversely, the seller of a low quality good will be 

happy to sell it at an average-quality price. 

 

Thus, the market adversely selects  the lowest quality goods for sale, even though there 

may be buyers and sellers who would mutually benefit from the sale of the high quality 

goods. Adverse selection therefore leads to a loss of social surplus relative to a setting 

with symmetric information. 

 

Adverse selection can potentially lead to the collapse of the market:  buyers know that 

only low quality sellers will be willing to sell, so when they see a good for sale they 

revise downward their beliefs about the quality;  this drives out still more sellers whose 

quality is above the “revised” average, and the downward spiral continues. 

 

(b)  Moral Hazard 

Consider an insurance market where a risk averse agent, faced with some uncertainty 

(such as the possibility of a house fire), buys insurance from a firm. 
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If the agent buys full insurance (to completely cover all loss) and her actions are 

unobservable to the firm then she has no incentive to take precautionary action to prevent 

the loss, even if such action is not very costly.  Full insurance can therefore lead to an 

inefficiently low level of precautionary action. 

 

In response to this problem the firm offers only partial insurance and so the agent is 

exposed to some risk;  she must therefore take precautionary action anyway and so incurs 

both the cost of the action and the cost of the remaining risk. 

 

The agent would be better-off by taking precautionary action and getting full insurance 

but the moral hazard makes this impossible. Consequently, there is foregone social 

surplus relative to a setting with symmetric information.. 

 

The same problem arises more generally in any principal-agent problem, where the 

payoff to the principal depends in an uncertain way on the action of the agent contracted 

to perform that action, and the principal can only base payment for the agent’s services 

on the observed outcome (because the action itself is not observable). 

 

 

15.2 The Market for “Lemons”:  An Example of Adverse Selection 

Consider a product of quality s.  Suppose the seller values the product at s1  and the 

potential buyer values it at s2 . Assume 12   . Thus, Pareto efficiency requires trade 

(regardless of quality). 

  

Suppose the seller knows s, but the buyer does not.  Thus, there is asymmetric 

information. The buyer has prior beliefs about s represented by a uniform distribution 

over the interval ],0[ s . Thus, the prior expectation on quality is 

  2/2/]0[ ss   

To simplify the analysis, suppose the buyer knows 1 . 
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Suppose the product is offered for sale at price p.  What should the buyer infer about s? 

If the seller is willing to sell at price p, it must be that ps 1 .  Thus, the buyer can infer 

that ]/,0[ 1ps .  That is, the buyer revises her beliefs about quality in response to the 

observation that the product is being offered for sale at price p. 

 

Conditional expected quality – that is, expected quality conditional on the product being 

offered for sale at price p – is  

  11 2/2/]0/[)(ˆ  ppps   

since beliefs are uniform. Recall that the prior expected quality is 2/s . Thus, 

)(ˆ ps  if sp 1 , and )(ˆ ps  if sp 1 . 

 

The buyer will buy at price p if and only if 

  )(ˆ2 psp   

or, equivalently, if and only if 12 2  .  Thus, if valuations are not sufficiently different 

(that is, if 12 2  ), then there exists no price at which trade occurs, even though trade is 

always Pareto efficient. 

 

 

15.3 The Spence Signaling Model:  A Labour Market Example 

There are three main mechanisms through which the market can potentially deal with 

problems of adverse selection: warranties, reputation effects (in a repeated interaction 

context such as repeat sales or word-of-mouth communication), and signaling. In this 

section we focus on signaling. 

 

The Basic Model 

Consider a situation where a worker obtains education level e and demands wage w from 

the employer. The firm accepts or refuses the demanded wage. Assume that education 

has no productivity effect (unlike a degree in economics). 
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The worker is one of two types:  high productivity (H) or low productivity (L). The firm 

knows the true population distribution of workers. In particular, a fraction   of workers 

are of type L, and a fraction 1  are of type H.  

 

For the worker, the cost of obtaining education level e is correlated with her productivity.  

In particular, effort cost of education level e is te / , where Lt   or Ht  . Thus, the net 

payoff to a worker of type t who obtains education level e and receives wage w is 

  
t

e
wu   

A worker will undertake education only if 0u . This means that a type L worker 

requires a higher wage to compensate for a given education level than does a type H 

worker.  We will see below that this asymmetry between the H type and the L type 

creates the potential for the worker to signal her type via education level. 

 

The firm accepts the wage demanded if and only if the wage does not exceed expected 

productivity;  that is, if and only if )/( etEw  . This means that any Lw   is always 

accepted, and any Hw  is always refused.   

 

Key question of interest: can an H type ever convince the employer that she is an H type 

and so obtain Hw  ? She may be able to do so through her choice of e.  That is, there 

may be an education level ê  that only an H type would be willing to undertake, which 

thereby signals that the worker must be of type H. To put this differently, there may be an 

education level ê  that allows an H type to separate herself from L types. 

 

Separating Equilibria 

We are looking for an education level ê  that convinces the employer that the worker is 

an H type, because the employer knows that only an H type would choose this education 

level.  If there exists such a signal, then any worker who does not choose ê  will be 

viewed by the employer as an L type. 
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Thus, in a separating equilibrium (if one exists), the H type will choose ê  and receive 

wage Hw  , and obtain net payoff  

  
H

e
HuH ˆ
  

and the L type will choose 0e  and receive wage Lw  , and obtain net payoff 

  u LL   

 

If ê  is a separating equilibrium then it must be incentive compatible for both types: 

 the L type must prefer her equilibrium strategy to any alternative strategy, including 

one where she mimics the H type; and  

 the H type must prefer her equilibrium strategy to any alternative strategy, including 

one where she mimics the L type. 

 

These incentive compatibility conditions are 

(15.1)  
L

e
HL

ˆ
    for the L type 

(15.2)  L
H

e
H 

ˆ
  for the H type 

 

Equation (15.1) requires )(ˆ LHLe  .  Equation (15.2) requires )(ˆ LHHe  . These 

conditions can be mutually satisfied if and only if LH  . Since this condition holds, a 

separating equilibrium does exist in this example; education level can signal productivity. 

 

 

15.4 Moral Hazard in Insurance 

Suppose an agent has wealth 1w  in the good state, and wealth 12 ww   if an accident 

occurs (the bad state).  Let )(e  denote the probability of an accident, as a function of 

preventative effort e, where 0)(  e . 
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Expected utility without insurance is 

  )()](1[)()( 12
0 ewueewueuE    

The agent chooses e to maximize this expected utility.  The first-order condition is 

 0)()](1[)()()()()()( 1122  ewueewueewueewue   

This solves for the optimal preventative effort *e . In general, 0* e . 

 

Now suppose this agent can purchase full insurance for a total premium p.  Then she has 

expected utility 

  )()()](1[)()( 111
1 epwuepwueepwueuE    

She then chooses e to maximize this expected utility, with solution 0ˆ e . That is, having 

obtained full insurance, thereby eliminating all risk associated with an accident, she has 

no incentive to prevent an accident. This is the essence of the moral hazard problem.  

 

A partial solution to this problem is co-insurance:  a deductible of x is required in the 

event of a claim. Then her expected utility is 

  )()](1[)()( 11
2 epwuexepwueuE    

This restores some incentive to take preventative effort but the agent is now exposed to 

some risk.  The first-best solution is *e  and full insurance, but this cannot be achieved in 

the face of the moral hazard problem. 
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PROBLEM SET 1 

Coverage: Chapters 2 and 3 

 

PS1 Question 1 

A consumer has the following utility function: 

  u x x x( ) / / 1
1 2

2
1 2  

(a) Show that the expenditure function is given by 

  e p u
p p u

p p
( , )

( )



1 2

2

1 2

 

(b) Verify Shephard’s lemma for x1 . 

(c) Find the indirect utility function by inverting the expenditure function, and use Roy’s 

identity to find the Marshallian demands.  

 

PS1 Question 2 

A consumer has the following utility function: 

u x
x x

( )   










1 1

1 2

 

(a) Find the Marshallian demand functions. 

(b) Find the indirect utility function and verify Roy’s identity for x1 . 

(c) Find the Hicksian demand functions. 

(d) Find the expenditure function using two different methods.  

 

PS1 Question 3 

A consumer has the following utility function: 

  u x xi i i
i

n

( ) log( ) 

 

1

 

where i  0  and  i  0  i .  

(a) Find the Marshallian demand function for good i. What restriction must be placed on 

income to make this expression sensible? 

(b) Provide an interpretation of  i  in this utility function.  
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PS1 Question 4 

A consumer has the following utility function: 

  ],min[)( 21 xxxu   

(a) Derive the Hicksian demands and explain their properties. Derive the expenditure 

function. 

(b) Derive the Marshallian demands and the indirect utility function. 

(c) Derive the cross-price elasticity of 1x  with respect to 2p . 

 

PS1 Question 5 

A consumer has the following utility function: 

   u x a x
i

i i( ) min  

Note that this is a generalization of the Leontief function with n goods.  

(a) Find the Marshallian demand for good i. 

(b) Find the indirect utility function and the expenditure function. 

(c) Find the Hicksian demand for good i. Explain why this is not a function of pi . 

 

PS1 Question 6 

A consumer has the following expenditure function 

   2/1
21 )(2),( ppuupe   

(a) Show that the Hicksian demands are 

   
2/1

1

2
1 ),( 










p

p
uuph   and    

2/1

2

1
2 ),( 










p

p
uuph  

(b) Derive the indirect utility function and use Roy’s identity to show that the 

Marshallian demands are 

   
1

1 2
),(

p

m
mpx     and   

2
2 2

),(
p

m
mpx   

(c) Verify the own-price Slutsky equation for these preferences. 
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PS1 Question 7 

A consumer has the following expenditure function: 

   



n

i
ipuupe

1

),(  

(a) Derive the Hicksian demand for .jx  What sort of preferences underlie this 

expenditure function? Explain your answer. 

(b) Derive the indirect utility function and use Roy’s identity to derive the Marshallian 

demand for good .jx   

(c) Suppose 2n . Draw an appropriate diagram to illustrate the substitution and income 

effects for a price rise for 1x , and explain the relationship between the substitution 

effect and the Hicksian demand. 

 

PS1 Question 8 

A consumer has the following utility function: 

  21 loglog)( xxxu   

(a) Derive the Hicksian demands and explain their properties.  

(b) Derive the expenditure function. Is it convex in prices? 

 (c) Are 1x  and 2x  complements or substitutes? Explain your answer. 

 

PS1 Question 9 

A consumer has preferences over three goods. Show that no more than two of these can 

be inferior.  

 

PS1 Question 10 

Show that if the income elasticities for a consumer are all equal and constant then they 

must all be equal to one.  

 

PS1 Question 11 

Show that Marshallian cross-price effects are equal for homothetic preferences. 
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SOLUTIONS TO PROBLEM SET 1 

 

Answer to PS1 Question 1 

(a) min p x p x1 1 2 2   st  u u x ( )  

FOC: p
x

i
i



1 2

2

/

 

  
x

x

p

p
2

1

1

2

2








  

 u x x
p

p
 

















1

1 2
1

1

2

2 1 2

/

/

 

   x p u u
p

p p1
2 2

1 2

2

( , ) 








   and  x p u u

p

p p2
2 1

1 2

2

( , ) 








  

 

  e p u p x p u p x p u( , ) ( , ) ( , ) 1 1 2 2  

 

  e p u
p p u

p p
( , )

( )



1 2

2

1 2

 

 

(b) Shephard’s lemma: 

  x p u
e p u

pi
i

( , )
( , )





 

  x p u u
p

p p1
2 2

1 2

2

( , ) 








  

 

(c) Set e p u m( , )   and solve for u: 

   u v p m
p p m

p p
 







( , )

( )
/

1 2

1 2

1 2

 



Kennedy: Microeconomic Theory 

Posting this material to any site other than web.uvic.ca/~pkennedy is a violation of copyright. 216

Roy’s identity: 

  x p m

v
p

v
m

i
i( , ) 

 





 

   x p m
mp

p p pi

j

i i j

( , )
( )




 

  x p m
mp

p p p1
2

1 1 2

( , )
( )




  and  x p m
mp

p p p2
1

2 2 1

( , )
( )




 

 

Answer to PS1 Question 2 

(a) max u(x)  st  p x p x m1 1 2 2   

 FOC: 
1

2x
p

i
i   

   
x

x

p

p
1
2

2
2

2

1

  

   x x
p

p1 2
2

1

1 2










/

 

  m p x
p

p
p x







 1 2

2

1

1 2

2 2

/

 

   x p m
m

p p p2
2 1 2

1 2( , )
( ) /


  and  x p m

m

p p p1
1 2 1

1 2( , )
( ) /


 

 

(b) v p m u x p m( , ) ( ( , ))  

  v p m
x p m x p m

( , )
( , ) ( , )

  










1 1

1 2

 

   
 

v p m
p p p p

m
( , )

( ) /


  2 1 2

1 2
1 2
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Roy’s identity: 

  x p m

v
p

v
m

i
i( , ) 

 





 

   x p m
m

p p p1
1 2 1

1 2( , )
( ) /


 

 

(c) min p x p x1 1 2 2   st  u u x ( )  

 FOC: p
xi

i




2  

   
p

p

x

x
1

2

2
2

1
2  

   x
p

p
x1

2

1

1 2

2








/

 

Substitute into u(x) and solve for x2  and then x1 : 

  x p u
p p

up2
1
1 2

2
1 2

2
1 2( , )

( )/ /

/
 

  and  x p u
p p

up1
1
1 2

2
1 2

1
1 2( , )

( )/ /

/
 

 

 

(d) Method 1: direct substitution for the Hicksian demands 

  e p u p x p u p x p u( , ) ( , ) ( , ) 1 1 2 2  

  
 

e p u
p p p p

u
( , )

( ) /


  2 1 2

1 2
1 2

 

Method 2: invert the indirect utility function. Set v p m u( , )   and solve for m: 

  
 

m e p u
p p p p

u
 

  
( , )

( ) /2 1 2
1 2

1 2
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Answer to PS1 Question 3 

(a) max u(x)  st  p x p x m1 1 2 2   

 FOC: 



i

i i
ix

p
( )

  

Rearrange and multiply by pi  to obtain: 

  p x pi i
i

i i




 




  

Sum across i and set equal to m. Then solve for  : 

  









i

i im p( )
 

Then use FOC to solve for a particular x j : 

  x p m
m p

pj j

j i i

j i

( , )
( )

 




 


 

Required restriction: m pi i   . 

 

(b)  j  is the minimum amount of x j  that the consumer needs to survive. Any amount 

less than this yields   utility (that is, death).  

 

Answer to PS1 Question 4 

(a) At any prices, expenditure is minimized where 21 xx  . Thus, the Hicksian demands 

are simply given by 

  uuph ),(1  

  uuph ),(2  

  

The key properties of the Hicksians are 

(i) negativity 

  00
1

1 


p

h
  and similarly for ),(2 uph  
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(ii) symmetry 

  
1

2

2

1 0
p

h

p

h








 

(iii) homogeneity 

  ),(),( 1
0

1 uphtuutph    and similarly for ),(2 uph  

The expenditure function is 

  )(),(),(),( 212211 ppuuphpuphpupe   

Note that this is weakly concave in p.  

 

(b) At any prices, utility is maximized where 21 xx  . The constraint is then used to solve 

for Marshallian demands: 

  
21

1 ),(
pp

m
upx


  

  
21

2 ),(
pp

m
upx


  

The indirect utility function is 

  
21

21 )].(),,(min[),(
pp

m
mpxmpxmpv


  

Note that this is convex in p.  

 

(c)   
21

2

1

2

2

1
12

),(

pp

p

x

p

p

upx







  

 

Answer to PS1 Question 5 

(a) At the maximum 

  a x a x a xn n1 1 2 2  ....  

Then express x x xn2 3, ,...,  all in terms of x1 . That is: 

x
a x

aj
j

 1 1   for  j n 2,...,  

Then substitute into the budget constraint 
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m p x p xj j
j

n

 

1 1

2

 

to obtain 

  m x p p
a

aj
jj

n

 





















1 1

1

2

 

Solve for x1 : 

  x p m
m

p p
a

aj
jj

n
1

1
1

2

( , ) 

























 

In general: 

  x p m
m

p p
a

a

i

i j
i

jj i

n
( , ) 

























 

which can be written more succinctly as 

x p m
m

p
a

a

i

j
i

jj

n
( , ) 
























1

 

 

(b) v p m u x p m( , ) ( ( , ))  

   v p m a x p m
i

i i( , ) min ( , )  

Since a x a xi i  1 1   i, without loss of generality we can write 

  v p m
a m

p
a

a

m

p

aj
jj

n
j

jj

n
( , ) 
































 
 

1

1

1 1

 

Derive the expenditure function by inverting v p m( , ) : 

  e p u u
p

a
j

jj

n

( , ) 













1
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(c) Shephard’s lemma: 

  x p u
e p u

pi
i

( , )
( , )





 

   x p u
u

ai
i

( , )   

This is independent of pi  because there is no substitution effect for Leontief preferences.  

 

Answer to PS1 Question 6 

(a) By Shephard’s lemma, 

i
i p

upe
uph





),(

),(  

 

(b) Invert the expenditure function to obtain the indirect utility function: 

   
2/1

21 )(2
),(

pp

m
mpv   

Then by Roy’s identity, 

m
v

p
v

mpx i
i







),(  

 

(c) The own-price Slutsky equation is 










x

p

h

p
x

x

m
i

i

i

i
i

i   

The LHS is 

22 ii

i

p

m

p

x





 

The RHS components are (i) and (ii) as follows: 

(i)  
2/3

2/1

2 i

j

i

i

p

up

p

h




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Since the Slutsky equation holds for all u, it must hold at ),( mpvu  . Make this 

substitution to obtain 

  
22/3

2/1

2/1 42)(2 ii

j

jii

i

p

m

p

p

pp

m

p

h
















 

 

(ii)  
242

1

2 iii

i
i p

m

pp

m

m

x
x 





















 

Thus, we have for the RHS: 

  
222 244 iii p

m

p

m

p

m
  

 

Answer to PS1 Question 7 

(a) By Shephard’s lemma: 

  u
p

upe
uph

j
j 





),(

),(   

This Hicksian demand is independent of p; thus, there is no substitution effect. This is 

true for all goods; the preferences must therefore by Leontief.  

 

(b) Set mupe ),(  and solve for u: 

   




 n

i
ip

m
mpv

1

),(  

By Roy’s identity:  

   














 n

i
i

n

i
i

n

i
i

j

p

m

pp

m
mpx

11

2

1

1
),(  

 

(c) The Hicksian demand measures the substitution effect but in this case that effect is 

zero. See Figure P1.1 
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Answer to PS1 Question 8 

(a) This is simpler to solve if )(xu  is first transformed to  

21)( xxxu   

Set up the expenditure minimization problem: 

x
min 2211 xpxp    s.t.  uxx 21  

The FOCs yield the tangency condition: 

2

1

1

2

p

p

x

x
  

The constraint is then used to solve for Hicksian demands: 

2/1

1

2
1 ),( 










p

up
uph  

 

2/1

2

1
2 ),( 










p

up
uph  

Note that if the problem is solved without transformation then the solutions are 

2/1

1

2
1

]exp[
),( 










p

pu
uph  

2/1

2

1
2

]exp[
),( 










p

pu
uph  

These are economically equivalent to those derived from the transformed problem since u 

and ]exp[u  are simply monotonic transformations of each other, and utility has no 

cardinal meaning. 

 

The key properties of the Hicksians are: 

(i) negativity 

  0
2

1
2/1

3
1

2

1

1 












p

up

p

h
  and similarly for ),(2 uph  
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(ii) symmetry 

  
1

2

2/1

212

1

2

1

p

h

pp

u

p

h

















 

(iii) homogeneity 

  ),(),( 1
0

2/1

1

2
1 upht

tp

utp
utph 








   and similarly for ),(2 uph  

 

(b) The expenditure function is 

  2/1
212211 )(2),(),(),( pupuphpuphpupe   

Note that this is concave in p. (The Hessian matrix is negative definite). 

 

(c) They are neither substitutes nor complements; the Marshallian cross-price effects are 

zero. 

 

Answer to PS1 Question 9 

By Engel aggregation: 

  p
x

m
p

x

m
p

x

m1
1

2
2

3
31














  





 















  

If x2  and x3  are both inferior then the RHS must be positive. Hence, the LHS must also 

be positive, which means that x1  must be normal. 

 

Answer to PS1 Question 10 

Express Engel aggregation in elasticity form: 

wi i
i

n

 

 1

1

 

where w
p x

mi
i i  is the “expenditure share” for good i. Then let  i   i . Thus, 

   wi
i

n



 1

1
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Since wi
i

n



 1

1

, it follows that   1. 

 

Answer to PS1 Question 11 

If preferences are homothetic then )()( xtutxu  . It follows that upaupe )(),(  . Then 

derive the indirect utility function by inverting the expenditure function, and writing it in 

the form 

mpbmpv )(),(   

Now invoke Roy’s identity: 

)(),( pb
p
b

m

m
v

p
v

mpx ii
i












  

and 

)(),( pb
p

b
m

m

v
p

v

mpx jj
j












  

Then by the quotient rule for differentiation: 

2

2

)(

)(

pb

p

b

p

b
m

pp

b
mpb

p

x jiji

j

i















 

and 

2

2

)(

)(

pb

p

b

p

b
m

pp

b
mpb

p

x ijij

i

j 














 

By Young’s theorem, these two expressions are equal. 
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PROBLEM SET 2 

Coverage: Chapters 4 – 6 

 

PS2 Question 1 

A consumer has the following utility function: 

  u x x x( ) log 1 2  

(a) Find the Marshallian demands and discuss the income elasticity of the demand for x1 . 

 

Suppose she has income m  7 , the price of x2  is p2 1 , and the price of x1  falls from 

p1
0 1  to p1

1 0 25 . .  

 

(b) Calculate the compensating and equivalent variations associated with the price 

change. Explain the relationship between your answers. 

(c) Calculate the change in consumer surplus associated with the price change. Explain 

the relationship between this and your answers to part (b).  

 

PS2 Question 2 

A consumer has the following utility function: 

  u x a x a x( ) min[ , ] 1 1 2 2  

(a) Find the expenditure function. 

(b) Suppose prices change from { } { , },p p1
0

2
0 10 5  to { } { , },p p1

1
2
1 510 . Find the associated 

compensating and equivalent variations (as functions of m).  

(c) Is the agent better-off or worse-off as a result of the price changes? Explain your 

answer with the aid of appropriate diagrams. 

(d) Explain the relationship between the two measures of welfare change in this example.  
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PS2 Question 3 

A consumer has the following indirect utility function: 

v p m
p p m

p p
( , )

( )
/









1 2

1 2

1 2

 

(a) Find the Marshallian demand functions.  

(b) Is x1  a luxury good? Is the demand for x1  price-inelastic? Explain your answers. 

(c) Derive the expenditure function and find the Hicksian demand functions. 

(d) Suppose prices change from { } { , },p p1
0

2
0 2 2  to { } { , },p p1

1
2
1 1 3 . Find the associated 

compensating and equivalent variations (as functions of m). Is the agent better-off or 

worse-off as a result of the price changes? 

 

PS2 Question 4 

An agent has the following utility function: 

u x x x( ) / / 1
1 2

2
1 2  

(a) Show that the indirect utility function is 

v p m
p p m

p p
( , )

( )
/









1 2

1 2

1 2

 

Suppose p1 2  and p2 2 . The agent’s current income is $100,000 but there is a 5% 

chance that she will become unemployed in which case her income will fall to zero. 

 

(b) Find the certainty-equivalent income level and the risk premium associated with this 

prospect. 

(c) Suppose the government introduces an income insurance program that restores 

income to 64% of its previous level in the event of unemployment. Under this 

program each worker must pay a tax of $19 for every $100 of income earned while 

employed. Is the agent made better-off by the introduction of this program? (Assume 

that the introduction of the program does not change the probability of 

unemployment).  
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PS2 Question 5  

An agent has the following intertemporal utility function: 

u c c c c( , ) log log1 2 1 2    

where c1  is current consumption and c2  is future consumption. The agent has income 

profile { , }y y1 2 . 

(a) Suppose the agent can borrow and lend at interest rate r. Let 

w y
y

r
 

1
2

1
 

denote her lifetime wealth. Show that her consumption when young will be 

c
w

1

1

2
* ( )

( )







 

where 
1

1



 .  Determine and explain the signs of 




c1
*

 and 



c

r
1
*

. 

(b) Show that she will be a lender when young if and only if 

  
y

y r
1

2

1

1






 

(c) Now suppose that interest earned on savings is subject to taxation at rate t but interest 

paid on borrowing is not tax deductible. Show that if the condition in part (b) holds 

then the tax causes her consumption when young to rise, but if the condition in part 

(b) does not hold then the tax has no effect on her consumption in either period. 

(Hint: draw a diagram and think about it carefully before doing any mathematics).  
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SOLUTIONS TO PROBLEM SET 2 

 

Answer to PS2 Question 1 

(a) max  log x x1 2   st  p x p x m1 1 2 2   

FOC: 
1

0
1

1x
p   

 1 02 p  

  x p m
p

p1
2

1

( , )   

 x p m
m p

p2
2

2

( , ) 


  if  p m2  ,  and zero otherwise 

The demand for x1  is income-neutral. 

 

(b) Given the income and prices stated in the question we can restrict attention to the case 

where p m2  . So the indirect utility function is 








 











2

2

1

2log),(
p

pm

p

p
mpv  

Invert this to find the expenditure function: 

e p u p u
p

p
( , ) log  

















2

2

1

1  

Compensating variation: 

CV m e p u m e p v p m   ( , ) ( , ( , ))1 0 1 0  

where we use v p m( , )  evaluated at p0  to find u0 . Thus, 

   )4log()4log(16)1log(17 CV  

Equivalent variation: 

EV e p u m e p v p m m   ( , ) ( , ( , ))0 1 0 1  

where we use v p m( , )  evaluated at p1  to find u1 . Thus, 

  EV      7 1 4 6 1 1 4log( ) log( ) log( )  
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Note that EV and CV are equal here only because the good whose price has changed is 

income neutral. 

 

(c) Change in consumer surplus: 

CS x p m dp
p

p

  1 1

1
1

1
0

( , )  

In this case, 

   CS
p

p
dp p

p

p








      2

1
1 1 0 25

1 1
0 25

1
1

1
0

1 0 25 4log( ) [log( ) log( . )] log log( )
. .  

where the integral has been evaluated at p2 1 . CS CV EV   because the good 

whose price has changed in income neutral. Note that this equivalence would break down 

if the prices of both goods changed. 

 

Answer to PS2 Question 2  

(a) min  p x p x1 1 2 2   st  min[ , ]a x a x u1 1 2 2   

   x p u
u

a1
1

( , )    and  x p u
u

a2
2

( , )   

   e p u u
p

a

p

a
u

a p a p

a a
( , )  









 











1

1

2

2

1 2 2 1

1 2

 

 

(b) By inversion, the indirect utility function is 

v p m m
a a

a p a p
( , ) 












1 2

1 2 2 1

 

Thus, 

u v p m m
a a

a a
0 0 1 2

1 25 10
 










( , )  

and 

u v p m m
a a

a a
1 1 1 2

1 210 5
 










( , )  
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Compensating variation: 

CV m e p u m e p v p m   ( , ) ( , ( , ))1 0 1 0  

where we use v p m( , )  evaluated at p0  to find u0 . Thus, 

CV m u
a a

a a
m

a a

a a
m

a a

a a
 









  




















 














0 1 2

1 2

1 2

1 2

2 1

1 2

10 5
1

10 5

5 10

5

5 10

( )
 

Equivalent variation: 

EV e p u m e p v p m  ( , ) ( , ( , ))0 1 0 1  

where we use v p m( , )  evaluated at p1  to find u1 . Thus, 

EV u
a a

a a
m m

a a

a a
m

a a

a a










  










 









 














1 1 2

1 2

1 2

1 2

2 1

1 2

5 10 5 10

10 5
1

5

10 5

( )
 

 

(c) The agent is better-off if a a2 1  and worse-off if a a1 2 . Why? If a a2 1  then the 

consumption of x1  (yes, x1 ), is more limiting than the consumption of x2  in the 

determination of utility. Thus, the reversal in the relative prices of the two goods, with x1  

becoming relatively less expensive, raises welfare. (See Figure P2.1). The converse is 

true if a a1 2 .(See Figure P2.2) 

 

(d) CV EV  if a a1 2 ,  and  EV CV  if a a2 1 . Why? Both goods are normal goods 

and one price has risen while the other has fallen, so there is ambiguity about the ranking 

of EV and CV. It depends on the relative magnitudes of a1  and a2 . If a a1 2  then the 

income effect is greater for x2  (the good whose price has risen) than for x1  (the good 

whose price has fallen) and so CV EV . The converse is true if a a2 1 . Note that there 

are no substitution effects due to the nature of the preferences. 
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Answer to PS2 Question 3  

(a) Roy’s identity: 

  x p m

v
p

v
m

i
i( , ) 

 





 

   x p m
mp

p p pi

j

i i j

( , )
( )




 

 

  x p m
mp

p p p1
2

1 1 2

( , )
( )




  and  x p m
mp

p p p2
1

2 2 1

( , )
( )




 

(b) A luxury good is one for which i  1, where 



i

i

i

x

m

m

x














  

In this case, 1 1 . Thus, x1  is not a luxury. The demand for x1  is price-inelastic if 

11 1 , where 



11

1

1

1

1





















x

p

p

x
 

In this case, 

11
1 2

1 2

2
1





p p

p p
  at positive prices. 

 

(c) Invert the indirect utility function: 

  e p u
p p u

p p
( , )

( )



1 2

2

1 2

 

By Shephard’s lemma: 

  x p u
e p u

pi
i

( , )
( , )





 

  x p u u
p

p p1
2 2

1 2

2

( , ) 








  

and 
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x p u u
p

p p2
2 1

1 2

2

( , ) 








  

 

(d) First find u0  and u1 : 

u v p m m0 0 1 2 ( , ) /  

and 

u v p m
m1 1

1 24

3
  


( , )

/

 

Compensating variation: 

CV m e p u  ( , )1 0  

  CV m
m m

  






3

4 4
 

Equivalent variation: 

EV e p u m ( , )0 1  

  EV
m

m
m

m
 


  

4

3
 

The agent is better-off, since CV  0  (and CV and EV always have the same sign). 

 

Answer to PS2 Question 4 

(a) max u(x)  st  p x p x m1 1 2 2   

FOC: 1
2

1 2x pi i
 /   

  x p m
mp

p p p1
2

1 1 2

( , )
( )




  and  x p m
mp

p p p2
1

2 2 1

( , )
( )




 

Then substitution into u x( )  yields, after some manipulation, 

v p m
p p m

p p
( , )

( )
/









1 2

1 2

1 2

 

 

(b) At the stated prices we have 

v p m m( , ) / 1 2  
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The expected utility is 

Eu   0 95 100 000 0 05 0 300 421 2 1 2. ( , ) . ( ) ./ /  

Certainty equivalent income is m  such that (  ) /m Eu1 2  . Thus,  

 ( . ) ,m  300 42 90 2502  

Finally, the risk premium is  

R Em m      [ . ( , ) . ( )] , ,0 95 100 000 0 05 0 90 250 4 750  

(c) Expected utility with the program in place is 

EuP    0 95 100 000 19000 0 05 64000 283021 2 1 2. ( , ) . ( ) ./ /  

Expected utility without the program is 300.42 (from part (b)). Thus, the agent is worse-

off under the program. 

 

Answer to PS2 Question 5 

(a) max log logc c1 2    st  c
c

r
w1

2

1



  

FOC: 
1

1c
   

 
 
c r2 1




 

Then taking the ratio yields the tangency condition (Euler equation): 

  
c

c

r2

1

1

1



 

 

Expressing c2  in terms of c1 , and substituting into the wealth constraint yields 

c
w

1

1

2
* ( )

( )







 

Taking the derivative with respect to   yields 

  0
)2( 2

*
1 





 wc  

 

Intuition: a higher rate of time preference ( ) means that the agent is relatively impatient 

to consume. Thus, consumption when young is increasing in  . 
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Taking the derivative with respect to r yields 







c
r

y

r
1 2

2

1

2 1
0

* ( )

( ) ( )
 


 









   

 

Intuition: A higher interest rate means that lending when young is relatively more 

attractive than borrowing when young. Thus, consumption when young is decreasing in r. 

 

(b) The agent will be a lender when young if and only if c y1 1
*  .That is, iff 

 
w

y
( )

( )

1

2 1








 

  ( ) ( )1
1

21
2

1 







  y

y

r
y  

  
y

y r
1

2

1

1






 

 

(c) Consider Figure P2.3. The dashed budget constraint is without the tax. The solid 

budget constraint is with the tax. Note that the budget constraint below the point ( , )y y1 2  

is not distorted by the tax since any point along that part of the budget constraint implies 

borrowing when young, and the interest cost of borrowing is not affected by the tax. 

 

If the condition in part (b) does not hold then the agent would choose a point below 

( , )y y1 2  in the absence of the tax. Thus, this choice is unaffected by the tax. 

 

If the condition in part (b) does hold then the agent would choose a point above ( , )y y1 2  

in the absence of the tax. Thus, the tax will affect her behavior. The easiest way to 

proceed is to recognize that the only difference between the solution with the tax and the 

solution without is that the effective interest rate is r t( )1  rather than r. Thus, simply 

substitute r t( )1  for r in the equation for c1
*  to obtain 
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c t y
y

r t1 1
21

2 1 1
* ( )

( )

( ) ( )






 














 

This is clearly increasing in t. Thus, the tax causes consumption when young to rise. 
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m
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FIGURE P2.1  
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 1
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FIGURE P2.3  
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PROBLEM SET 3 

Coverage: Chapters 7 – 10 

 

PS3 Question 1 

A price-taking firm has the following production function: 

y xa  

(a) Find the input demand x p w( , )  and the supply function y p w( , ) . 

(b) Find the conditional input demand x w y( , )  and the cost function c w y( , ) . 

(c) Show that 

y p w py c w y
y

( , ) arg max ( , )   

(d) Show that x w y p w x p w( , ( , )) ( , )   

 

PS3 Question 2 

A price-taking firm has the following production function: 

ba xxy 21  

Derive the cost function and verify that it is concave in w. Does this result depend on the 

value of a and b? Explain your answer. 

 

PS3 Question 3 

A price-taking firm has the following production function: 

  f x x x( ) / / 1
1 2

2
1 2  

Derive the supply function in two different ways. 

 

PS3 Question 4   

A firm has the following production function: 

   y x x min ,/ /
1
1 2

2
1 2  

(a) Show that this production function exhibits decreasing returns to scale. 

(b) Find the cost function and verify Shephard’s lemma.  
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(c) All firms in the industry have the above technology and no firm can produce less than 

one unit. Market demand is given by 

bXap  ,  

and w w1 2 1  . Find the competitive industry equilibrium output and the 

equilibrium number of firms.  

 

PS3 Question 5 

Each firm in a competitive industry has the following production function 

y x x 1
1 4

2
1 4/ /  

(a) Find the cost function. Why is this cost function strictly convex in output?  

(b) Let w w1 2 1  . Suppose aggregate demand is given by 

X p p( )  1000 10  

Suppose each firm must pay a license fee of $50 if it wants to produce. Otherwise 

entry is free. Find the equilibrium number of firms.  

 

PS3 Question 6 

A price-taking firm has the following production function: 

y x x x ( )/ /
1
1 2

2
1 2

3  

where x1  and x2  are variable inputs, and x3 0 1{ , }  is a quasi-fixed factor. That 

is, x3 1  if the firm produces at all, and x3 0  otherwise. 

(a) Show that the cost function is given by 

c w y y
w w

w w
w( , ) 










 

2 1 2

1 2
3   for  y  0  

(b) Explain why average cost is “U-shaped”. 

(c) Let w w1 2 2   and w3 1 . Find the supply function y p w( , ) . 

(d) Suppose market demand is given by 

X p p( )  1000  
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Suppose also that there is free entry and all firms have the above production function. 

Find the equilibrium price, the equilibrium aggregate output, and the equilibrium 

number of firms. 

(e) Show that in general, the equilibrium number of firms is decreasing in w3 . Explain 

your answer.  

 

PS3 Question 7 

Show that the cost function c w y( , )  is concave in w. Explain how this result relates to the 

returns to scale of the underlying production function.  
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SOLUTIONS TO PROBLEM SET 3 

 

Answer to PS3 Question 1 

(a)  max
x

  px wxa   

 

FOC: apx wa 1  

  x p w
ap

w

a

( , ) 







1

1

 

  y p w x p w
ap

w
a

a

a

( , ) [ ( , )] 






1

 

 

(b) The cost minimization problem is trivial since there is only one way produce a given 

level of output (unlike in instances with more than one input, where the relative mix of 

factors can be chosen). Thus, 

  x w y y a( , ) / 1  

  c w y wy a( , ) / 1  

 

(c)  max
y

  py wy a 1/  

 FOC: p
wy

a

a
a


1

 

   y p w
ap

w

a

a

( , ) 






1

 

 

(d) Substitute ),( wpy  for y in ),( ywx  to obtain 

x w y p w y p w
ap

w
x p wa

a

( , ( , )) [ ( , )] ( , )/ 









1

1

1
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Answer to PS3 Question 2 

Set up the cost minimization problem: 

x
min 2211 xwxw    s.t.  yxx ba 21  

The FOCs yield the tangency condition: 

  
1

2

2

1

bx

ax

w

w
  

The constraint is then used to solve for conditional input demands: 

  
ba

b

ba

bw

aw
yypx














1

2
1

1 ),(  

  
ba

a

ba

aw

bw
yypx














2

1
1

2 ),(  

The cost function is 

   ),(),(),( 2211 wyxwwyxwwyc
































 


ba

a

ba

b

ba

aw

bw
w

bw

aw
wy

2

1
2

1

2
1

1

 

Verification of concavity takes a bit of work. It requires showing that the Hessian for the 

cost function is negative semi-definite. The Hessian is 

 

  







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

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This Hessian is negative semi-definite iff 0
2
1

2




w

c
 and 0H . The first condition 

clearly holds for any a,b. Evaluating H  yields 0H  for any a,b. Thus, concavity is 

verified, and it does not depend on the values of a and b. Why? Recall that the concavity 

of the cost functions stems solely from its definition as a minimum value function. 

 

 

Answer to PS3 Question 3 

Method 1: Direct Profit Maximization 

  max
,x x1 2

 p x x w x w x( )/ /
1
1 2

2
1 2

1 1 2 2    

   x p w
p

w1
1

2

2
( , ) 







  

  x p w
p

w2
2

2

2
( , ) 







  

Then 

  y p w f x p w( , ) ( ( , ))  

  y p w
p w w

w w
( , )

( )


1 2

1 22
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Method 2: Cost Minimization then Profit Maximization using the Cost Function 

(i) Cost Minimization: 

min
,x x1 2

 w x w x1 1 2 2   st  y x x ( )/ /
1
1 2

2
1 2  

FOC: w
x

1
1

1 2

2


 /

 

 w
x

2
2

1 2

2


 /

 

Take the ratio to obtain the isocost-isoquant tangency condition: 

  
w

w

x

x
1

2

2

1

1 2












/

 

Express x2  in terms of x1 , substitute into the production function, and solve for x1 : 

  x w y y
w

w w1
2 2

1 2

2

( , ) 










  

Then use the tangency condition to solve for x2 : 

  x w y y
w

w w2
2 1

1 2

2

( , ) 










  

Then the cost function is 

  c w y w x w y w x w y( , ) ( , ) ( , ) 1 1 2 2  

Substituting for x w y1 ( , )  and x w y2 ( , )  yields 

  c w y y
w w w w

w w
y

w w w w

w w
( , )

( )

( )

( )













 












2 1 2

2
2 1

2

1 2
2

2 1 2 1 2

1 2
2  

Simplifying yields 

c w y y
w w

w w
( , ) 












2 1 2

1 2

 

(ii) Profit Maximization: 

  max
y

 py c w y ( , )  

   y p w
p w w

w w
( , )

( )


1 2

1 22
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Answer to PS3 Question 4 

(a)     f tx tx tx tx t x x t f x x( , ) min ( ) ,( ) min , ( , )/ / / / / /
1 2 1

1 2
2

1 2 1 2
1
1 2

2
1 2 1 2

1 2    

 

(b) At the cost minimum:  

x x1
1 2

2
1 2/ /  

   x w y y1
2( , )     and   x w y y2

2( , )   

  c w y w x w y w x w y w w y( , ) ( , ) ( , ) [ ]   1 1 2 2 1 2
2  

Shephard’s lemma: 

  



c w y

w
x w y

i
i

( , )
( , )  

In this case: 

LHS y x w y RHSi  2 ( , )   i  

 

(c) At w w1 2 1  : 

  c w y y( , )  2 2  

This cost function is strictly convex in y. Thus, for profit maximization, p MC : 

  p y 4  

Therefore, the supply function is 

  y p
p

( ) 
4

 

With n identical firms, aggregate supply is 

  Y p
np

( ) 
4

 

In equilibrium, supply = demand: 

  
np a p

b4



 

   p n
a

nb
* ( ) 


4

4
 

   y p n
a

nb
( ( ))* 

 4
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The associated profit, as a function of n, is 

  ( ) ( ) ( ( )) ( ( ( )))
( )

* * *n p n y p n c y p n
a

nb
  


2

4

2

2  

( )n  is positive for any n. Thus, entry will continue until each firm is driven down to its 

minimum feasible level of production: y*  1. Therefore, 

  
a

nb 


4
1  

  n
a

b
* 

 4
   if   a  4  

   Y n y
a

b
* * * 

 4
   if   a  4  

If a  4  then demand is negative at p MC  evaluated at y  1. This cannot be an 

equilibrium. Thus, a competitive equilibrium can exist only if a  4 . 

 

 

Answer to PS3 Question 5 

(a)  min
x
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2
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2
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Take the ratio to obtain the isocost-isoquant tangency condition: 
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Express x2  in terms of x1 , substitute into the production function, and solve for x1 : 
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Then use the tangency condition to solve for x2 : 
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Then the cost function is 

  c w y w x w y w x w y y w w( , ) ( , ) ( , ) ( ) /  1 1 2 2
2

1 2
1 22  

Note that for the general Cobb-Douglas production function: 





N

i

a
i

ixy
1

 

AN

i

a

i

i

A

j

j
j

i

a

w

w

a
yywx

1

1

),(































 



 

where 



N

i
iaA

1

 

 
  

































N

j
j

AN

i

a

i

i

A

j

j w
a

w

w

a
yywc

i

1

1

1

),(  

The strict convexity of the cost function in output stems directly from the decreasing 

returns to scale exhibited by the production function. To increase output, inputs must be 

increased more than proportionately, and so cost must increase more than 

proportionately, at given factor prices. 

 

(b) At w w1 2 1  : 

  c y y( )  2 2  

Since this cost function is strictly convex in y, profit maximization occurs where 

p MC : 

  p y 4  

Therefore, the supply function is 

  y p
p

( ) 
4

 

With n identical firms, aggregate supply is 

  Y p
np

( ) 
4

 

In equilibrium, supply = demand: 
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np

p
4

1000 10   

   p n
n

* ( ) 


4000

40
 

   y p n
n

( ( ))* 


1000

40
 

The associated profit, as a function of n, is 

  ( ) ( ) ( ( )) ( ( ( )))
, ,

( )
* * *n p n y p n c y p n

n
  


2 000 000

40 2  

Entry will drive profit down to $50. Solving ( )n  50  yields 

  n*  160  

 

Answer to PS3 Question 6 

(a) If the firm is to produce any y  0  then it must set x3 1 . The other factors are then 

chosen to minimize cost: 

min
,x x1 2

 w x w x w1 1 2 2 3    st  y x x ( )/ /
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Take the ratio to obtain the isocost-isoquant tangency condition: 
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Express x2  in terms of x1 , substitute into the production function, and solve for x1 : 

  x w y y
w

w w1
2 2

1 2

2
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Then use the tangency condition to solve for x2 : 

  x w y y
w
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Then the cost function is 
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  c w y w x w y w x w y w( , ) ( , ) ( , )  1 1 2 2 3    for y  0  

Substituting for x w y1 ( , )  and x w y2 ( , )  yields 

  c w y y
w w w w

w w
w y

w w w w

w w
w( , )

( )

( )

( )













  












 2 1 2

2
2 1

2

1 2
2 3

2 1 2 1 2

1 2
2 3  

Simplifying yields 

c w y y
w w

w w
w( , ) 










 

2 1 2

1 2
3    for y  0  

 

(b) Average cost is U-shaped because of the combination of the quasi-fixed cost w3  (a 

non-variable cost that is only incurred if y  0 ) and the increasing marginal cost. 

Spreading the quasi-fixed cost across more units of output initially causes AC to fall 

as output grows, but this effect is eventually offset by the increasing marginal cost. 

 

(c) At w w1 2 2   and w3 1 : 

  c y y( )  2 1 

Since this cost function is strictly convex in y, profit maximization occurs where 

p MC : 

  p y 2  

Therefore, the supply function is 

  y p
p

( ) 
2

 

With n identical firms, aggregate supply is 

  Y p
np

( ) 
2

 

In equilibrium, supply = demand: 

  
np

p
2

1000   

   p n
n

* ( ) 


2000

2
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   y p n
n

( ( ))* 


1000

2
 

The associated profit, as a function of n, is 

  ( ) ( ) ( ( )) ( ( ( )))
, ,

( )
* * *n p n y p n c y p n

n
  




1 000 000

2
12  

Entry will drive profit down to zero. Solving ( )n  0  yields 

  n*  998  

 

(e) Profit, as a function of n and w3 , is 

  ( , )
, ,

( )
n w

n
w3 2 3

1 000 000

2



  

Entry will drive profit down to zero. Solving ( , )n w3 0  yields 

w n3
22 1 000 000( ) , ,*    

Totally differentiating both sides yields: 

  
dn

dw

n

w

* ( )

3 3

2

2
0

 
  

 

Intuition: A higher equilibrium price is needed to ensure non-negative profit at a higher 

quasi-fixed cost. Thus, the number of competing firms in equilibrium must be smaller. 

 

Answer to PS3 Question 7 

Let 

    w tw t w0 1( )  

where 0 1 t . Then 

c w y w x w y tw x w y t w x w y( , ) ( , ) ( , ) ( ) ( , )         0 1  

By definition of the cost function as a minimum value function, 

w x w y c w y0 0( , ) ( , )   

and 

   w x w y c w y( , ) ( , )  

Therefore,  
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tw x w y t w x w y tc w y t c w y0 01 1( , ) ( ) ( , ) ( , ) ( ) ( , )          

Thus,  

c w y tc w y t c w y( , ) ( , ) ( ) ( , )    0 1  

That is, c w y( , )  is concave in w. 

 

This result has nothing to do with the returns to scale of the production function. (This is 

clear from the above proof, which makes no reference to the production function). The 

cost function is concave in w for any production function. The only link to the production 

function is the following. If the production function exhibits some substitutability 

between factors then the cost function will be strictly concave in w; if it exhibits no 

substitutability (such as a Leontief production function or a single input production 

function) then the cost function will be weakly concave in w. 

 

The returns to scale of the production function is important for the properties of the cost 

function with respect to y. If the production function exhibits decreasing returns to scale 

then the cost function is strictly convex in y, for a given w. If the production function 

exhibits increasing returns to scale then the cost function is strictly concave in y, for a 

given w. If the production function exhibits constant returns to scale then the cost 

function is linear in y, for a given w. 
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PROBLEM SET 4 

Coverage: Chapters 11 – 15 

 

PS4 Question 1 

Consider an economy with fixed endowments of two goods, “fat” and “lean”.  There are 

two agents in this economy, Jack Sprat and his friend.  The economy has the following 

characteristic: 

  Jack Sprat could eat no fat, 

  His friend could eat no lean. 

  And so between them both you see, 

  They licked the platter clean. 

There is only one Pareto efficient allocation in this economy.  True or false?  

 

PS4 Question 2 

A monopolist sells its product in two distinct markets.  The inverse demand in market 

i { , }1 2  is 

  p a b Xi i i   

The firm has cost function c y cy( )  .  Determine how much the firm will sell in each 

market and at what prices.  Explain your answer in terms of the demand elasticities in the 

two markets.  

 

PS4 Question 3 

Consider the following normal form game: 

 

3,3 0,2 

2,0 1,-1 

 

What is the Nash equilibrium of this game?  Is it Pareto efficient?  
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PS4 Question 4 

Consider the following duopoly with differentiated products.  Each firm has zero costs. 

The demand faced by firm i is 

  X a bp cpi i j    

where p j  is the price firm j charges for its product. Thus, there is some substitutability 

between the two products from the perspective of consumers; an increase in the price of 

one product increases the demand for the other product, ceteris paribus. 

 

Suppose each firm sets its price to maximize profit and both firms move simultaneously. 

Derive each firm’s reaction function and find the symmetric Nash equilibrium price. 

Illustrate this equilibrium in a diagram in { , }p p1 2  space.  

 

PS4 Question 5 

The inverse demand curve in an industry is 

  p X 100  

There are n identical firms each with cost function c y y( )  2 2 . Firms choose quantities 

and move simultaneously. 

(a) Show that a representative firm’s reaction function is given by 

  y
y

i

jj i


100

6
 

(b) Find the symmetric Nash equilibrium price and output for each firm, and find the 

aggregate industry output.  

 

PS4 Question 6 

Consider an economy in which n identical agents each have utility function 

  u x z P xz P( , , )    

where x and z are both private goods with unit price, and P is pollution (a public bad). 

Each agent has income m. All agents know that pollution is caused by the consumption of 

x in the following way 

  P X   
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where   0  and X is the aggregate consumption of x in the economy. 

(a) Find the Nash equilibrium consumption levels of x and z, and the Nash equilibrium 

level of P. 

(b) Compare the Nash equilibrium with the symmetric efficient allocation. Explain your 

answer in terms of a free-rider problem.  

 

PS4 Question 7 

Consider a market in which a monopoly seller produces a product whose quality is 

known to the seller but unknown to potential buyers.  If the product performs properly, it 

provides a service whose value to the buyer is 1 . If the good malfunctions it provides 

no service.  The product can be one of two types.  A high quality product malfunctions 

with probability Hs1 , where )1,0(Hs ; a low quality product malfunctions with 

probability Ls1 , where )1,0(Ls  and HL ss  . 

 

The seller posts a take-it-or-leave-it price p for the product. If the buyer accepts the price 

then the product is produced and exchange takes place at the posted price. Buyers are risk 

neutral and their expected surplus from a purchase is the expected service from the 

product minus the purchase price.  

 

A high quality product costs Hs  to produce while a low quality product costs Ls  to 

produce. Quality is determined by the firm’s production technology and this is fixed.  

 

The population fraction of high quality technologies is   and this is common 

knowledge. Production costs are also common knowledge. 

 

(a) Describe in words a pooling equilibrium in this market. Is such an equilibrium Pareto 

efficient? Explain your answer. 

 

(b) What is the market price in the pooling equilibrium (if one exists)? 
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(c) Derive a condition on   under which a pooling equilibrium does not exist. Interpret 

your result.  

 

(d) Describe the equilibrium in this market when a pooling equilibrium does not exist. Is 

the equilibrium Pareto efficient? Explain your answer. 

 

Now suppose that the seller is able to offer a credible product warranty with no 

transaction costs. The warranty is of the following form: if the product malfunctions then 

it is returned to the seller and an amount w is refunded to the buyer.  

 

(e) Suppose w is equal to the purchase price (that is, the warranty provides a full refund). 

Describe the equilibrium under this warranty rule. Is this a separating equilibrium? 

Explain your answer. 

 

(f) Now suppose that providing a refund requires a transaction fee k incurred by the 

seller. Derive a condition on k under which there exists a separating equilibrium in 

which a high quality seller offers a full-refund warranty but a low quality seller does 

not. 
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SOLUTIONS TO PROBLEM SET 4 

 

Answer to PS4 Question 1 

True.  Jack derives no utility from fat; his friend derives no utility from lean.  Thus, any 

allocation in which Jack has some fat and his friend has some lean is Pareto dominated 

by an allocation in which Jack has all the lean and his friend has all the fat.  This 

allocation is the only Pareto efficient allocation. 

 

Answer to PS4 Question 2 

Profit maximization requires 

  MR MR MC1 2   

  a b y a b y c   2 21 1 2 2  

  y
a c

b1
12




   and   y
a c

b2
22




 

   p
a c

1 2



   and   p

a c
2 2



 

Thus, price is the same in both markets.  Elasticity of demand varies along a linear 

demand curve; outputs are chosen so that the demand elasticities are just equated in the 

two markets: 
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    for   i  1 2,  

 

Answer to PS4 Question 3 

A Nash equilibrium is a vector of strategies { ,  }s si i  such that 

  u s s u s s s ii i i i i i i(  ,  ) ( ,  ) ,     

where si  is the strategy of player i, s i  is the vector of strategies of all other players, and 

u s si i i( , )  is the payoff to player i. 
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In the example, label the possible strategies for the row player U (up) and D (down), and 

the possible strategies for the column player L (left) and R (right).  Then the problem for 

the row player is to choose between U and D.  Suppose she expects the column player to 

play R, then 

  u U Rrow ( , )  0    and   u D Rrow ( , )  1 

Thus, the row player would play D.  But if the column player expects the row player to 

play D, then she will not play R; she will play L instead since 

  u L Dcol ( , )  0   and   u R Dcol ( , )  1 

The row player knows that the column player will think this way, and so she will not 

expect the column player to play R.  Thus, no Nash equilibrium could involve the column 

player playing R. 

 

Suppose instead the row player expects the column player to play L.  Then the row player 

will play U since 

  u U Lrow ( , )  3    and   u D Lrow ( , )  2  

And if the column player expects the row player to play U then she will play L since 

  u L Ucol ( , )  3    and   u R Ucol ( , )  2  

Thus, {U,L} is the unique Nash equilibrium.  It is clearly Pareto efficient since it Pareto 

dominates all other possibilities.  

 

Answer to PS4 Question 4 

The profit maximization problem for firm i is 

  max
pi

  p a bp cpi i j[ ]   

The best-response function (first-order condition) for firm i is 

  a bp cpi j  2 0  

which can be written in explicit form as 

  p p
a cp

bi j

j
( ) 



2
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In the symmetric Nash equilibrium, p p pi j  , so we can simply substitute p for pi  

and p j  in the best-response function for firm i and solve to obtain 

  p
a

b c


2
 

See Figures P4.1 and P4.2. 

 

Answer to PS4 Question 5 

(a) The profit maximization problem for firm i is 

  max
yi

  [ ]100 2 2  

y y y yi j
j i

i i  

The best-response function (first-order condition) for firm i is 

  y
y

i

jj i


100

6
 

 

(b) In symmetric Nash equilibrium 

y yi   i    and   y n yj
j i
  ( )1  

Substitution into the best-reponse function for firm i yields 

  y
n




100

5
 

    Y ny
n

n
 


100

5
 

    p Y
n

  


100
500

5
 

 

Answer to PS4 Question 6 

(a) The behavior of agent i is described by the solution to 

  max
xi

  x m x x Pi i i i( ) ( )     

where a direct substitution of the budget constraint x z mi i   has been made, and 

where P i  is the pollution associated with consumption of x by agents other than agent i 

(which agent i takes as given). 
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The best-response function (first order condition) is 

  x
m

i 

2

 

Note that this is independent of P i .  Thus, her best-response function describes a 

dominant strategy.  That is, the privately optimal action for agent i does not depend on 

what she expects others to do; the dominant strategy for agent i dominates all other 

strategies regardless of what other players do.  (This property stems from the quasi-linear 

nature of the utility function in this example).  Thus, in the Nash equilibrium (which in 

this example is a dominant strategy equilibrium),  

  x
m



2

  i  

   z m x
m

  

2

 

and 

   
( )

P nx
n m

 



 

2
 

 

(b) In the symmetric efficient allocation, each agent has the maximum utility possible, 

subject to all agents being treated the same.  This is characterized by maximizing the 

utility of a representative agent: 

  max
x

  x m x nx( )   

where the expression for P reflects the fact that if n agents are each allocated an amount x 

then X nx .  The first-order condition yields 

  x
m n* 
 
2

 

Note that x x*   for n  1 .  This inefficiency reflects the negative externality associated 

with pollution.  No agent takes into account the damaging impact that her consumption of 

x has on the utility of other agents; thus, in equilibrium there is too much consumption.  

An equivalent interpretation is the following.  A reduction in the level of pollution is a 

pure public good.  Each agent tends to free-ride on the contributions of others to that 
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public good (via reductions in the consumption of x) and so in equilibrium there is too 

little reduction in the level of pollution. 

 

Answer to PS4 Question 7 

(a) In a PE both types charge the same price and buyers cannot distinguish between the 

two types. Efficiency requires that a product is produced and exchanged if and only if the 

expected social surplus is positive. Expected social surplus from product i is ii ss  . 

This is positive for both types since 1 . Both types are produced and exchanged in the 

PE. Thus, the PE is efficient.  

 

(b) Both types choose a price to extract the entire expected surplus from the buyer. Thus, 

])1([ LH
PE ssp    

 

(c) The PE does not exist if either H
PE sp   or L

PE sp   since profit would be negative. 

The binding condition is the first of these. In terms of  : 

)( LH

LH

ss

ss







  

(d) The H seller withdraws from the market and only the L seller remains. It sets price 

equal to expected surplus: 

Lsp ˆ  

It is not efficient since the H quality good should be produced but is not. 

 

(e) Both firms sets price to extract the entire (certain) surplus, p . This is refunded in 

the event of a malfunction. It is not a separating equilibrium since the firms are not 

distinguished in equilibrium. 

 

(f) In the SE, Hp  with w , and LL sp  . We need to check incentive 

compatibility (IC) and participation conditions for both types.  
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For L type, IC requires that the SE payoff to be at least as great as the mimicking payoff. 

That is, 

))(1( kssss LLLL    

since a refund is made with probability )1( Ls . This holds for any k since 1Ls . 

Participation for the L type is trivial since 1 . 

 

For the H type, IC requires 

HLHH sskss   ))(1(  

which reduces to 

H

LH

s

ss
k





1

)(
 

Participation for H type requires 

0))(1(  kss HH   

which reduces to 

H

H

s

s
k





1

)1(
 

Which of these conditions is more restrictive? If HL ss   then IC is the binding 

condition; otherwise, participation is the binding condition. 
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