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GLOBAL SURVEY OF MITOCHONDRIAL DNA SEQUENCES IN THE
THREESPINE STICKLEBACK: EVIDENCE FOR RECENT MIGRATIONS
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Abstract. — Phylogenetic analyses of mitochondrial DNA (mtDNA) sequences were used to assess
the matriarchal genetic structure of the threespine stickleback, Gasterosteus aculeatus. A 747 base-
pair (bp) fragment of the cytochrome b was sequenced from 36 individuals collected from 25
localities in Europe, North America, and Japan. Two major divergent clades were revealed: one
widespread in Japan but with representatives in some Alaskan and British Columbian lakes and
the other common in Europe and North America. A simple diagnostic test using the polymerase
chain reaction (PCR) and a restriction enzyme was used to assay additional individuals, confirming
the absence of the Japanese clade in the Atlantic basin. Geographic distribution of mtDNA variation
suggests (1) a recent origin of the Atlantic populations, and (2) support for previous hypotheses
about the existence of Pleistocene refugia for freshwater fishes in Alaska and British Columbia.
Silent substitution rates were used to date the colonization of the Atlantic at 90,000 to 260,000
yr before present, which conflicts with earlier dates implied by the fossil record. The recent re-
placement of Atlantic mitochondrial lineages suggested by our data may be explained by severe
reduction or extinction of northern Atlantic populations during the Pleistocene, followed by a
recent reinvasion from the Pacific. With a global perspective of the distribution of genetic variation
as a framework, meaningful comparisons at a smaller geographical scale will now be possible.

Key words. —Biogeography, cytochrome b, Gasterosteus aculeatus, mitochondrial DNA sequences,
molecular phylogeny, Pleistocene refugia, polymerase chain reaction, substitution rate.
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Intraspecific studies of genetic variation based
on mitochondrial DNA (mtDNA) have opened
up a phylogenetic perspective on population bi-
ology (Wilson et al. 1985; Avise et al. 1987; Mo-
ritz et al. 1987; Avise 1989). The relative ease
of obtaining mtDNA sequences by using the
polymerase chain reaction (PCR) and direct se-
quencing (Kocher et al. 1989) allows for high-
resolution analyses of population processes, as
well as the study of molecular substitution pat-
terns (reviewed in Meyer 1993a). Recent work
has shown the utility of this approach for a va-
riety of population-level questions in several spe-
cies of fishes (e.g., Bartlett and Davidson 1991;
Carr and Marshall 1991; Finnerty and Block
1992; Sturmbauer and Meyer 1992). A phylo-
genetic approach to the study of standing vari-
ation allows for the important distinction be-
tween historical and contemporary gene flow
(Slatkin 1987). Studies of phenotypic evolution
such as in morphological characters and allo-
zyme frequencies usually lack this phylogenetic
perspective (but see, €.g., Buth and Haglund 1994;
Haglund et al. 1992, 1993).

The threespine stickleback, Gasterosteus acu-

leatus, is a widespread circumboreal and north-
temperate species mostly restricted to coastal
regions (fig. 1). Three major life-history modes
occur: fully marine, resident freshwater, and
anadromous (entering freshwater only to breed).
Freshwater populations are believed to have in-
dependently evolved from marine and anadro-
mous ones (McPhail and Lindsey 1970; Bell 1976,
1984; Bell and Foster 1994a). Distinct mor-
phologies associated with different freshwater
habitats seem molded by selection and derived
repeatedly under appropriate conditions (Hagen
and Gilbertson 1972; Moodie 1972; Moodie and
Reimchen 1976; Gross 1978; Reimchen 1980;
reviewed in Bell 1976, 1984; Wootton 1976,
1984; Bell and Foster 1994a). Parallelism in
morphological transformations is ubiquitous
among freshwater geographic isolates of this spe-
cies, hindering attempts to reconstruct historical
relationships using phenotypic data. Given that
subspecific recognition has been based on mor-
phology (e.g., Miller and Hubbs 1969), consid-
erable taxonomic confusion has ensued (Hubbs
1929; Penczak 1966; Wootton 1976; Bell 1984).

Pleistocene Glaciation greatly influenced pat-
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terns of geographic variation in freshwater and
coastal fishes of northern latitudes (Hocutt and
Wiley 1986). As recently as 15,000 yr ago, vast
areas were completely covered by the ice. Fishes
now found in those regions must have immi-
grated since then either from the south or from
ice-free refugia that have been postulated to have
existed in Alaska and western Arctic Canada
(McPhail and Lindsey 1970, 1986; O’Reilly et
al. 1993). Morphology, fossils, and parasites have
been used as evidence for suggesting dispersal
routes and refugial origins of present-day faunas
(Crossman and McAllister 1986), and differences
among geographic forms have been attributed to
divergence in isolated refugia during glaciation.
For example, morphologically and genetically di-
vergent freshwater populations of sticklebacks in
the Queen Charlotte Islands have been suggested
to have diverged in isolation in a Pleistocene
refugium (O’Reilly et al. 1993). However, some
of these differences may precede the last ice sheet
and reflect older vicariant events, as will be shown
below for mtDNA. Alternatively, geographic
variants could have arisen rapidly after degla-
ciation. Postglacial morphological differentia-
tion of freshwater sticklebacks now inhabiting
several isolated drainages in Alaska might illus-
trate such cases (Bell et al. 1985; Francis et al.
1986; Bell and Orti 1994). A more extensive un-
derstanding of the historical origins of patterns
of variation observed in areas affected by glaci-
ation should involve a global study of population
structure covering the whole range of a species.

A recent specieswide allozyme survey assessed
relationships among populations of G. aculeatus
(Haglund et al. 1992). It revealed “very great™
intraspecific genetic variation and two major ge-
netic groups: a divergent set of populations from
Japan versus all other populations. The former
was suggested to become taxonomically distin-
guished from the rest of G. aculeatus. The latter
were seen as a cohesive unit, albeit divided into
two geographical subgroups: an Atlantic basin
subgroup and an eastern Pacific subgroup which,
interestingly, also included two populations from
Japan. Congruence between this allozyme study
and the present study will be discussed.

Here we present the results of a global survey
of three-spine sticklebacks based on mtDNA se-
quences. Our approach allows for a detailed ex-

-

FiG. 1. Geographic distribution of Gasterosteus acu-
leatus (stippled areas) and sample localities. JA1: JA-
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PAN, Port Ryotsu, Sado Island (marine, Y. Honma
collector); JA2: JAPAN, Kanazawa, Ishikawa (marine,
from D. Buth); JA3, 7: JAPAN, Maegata, Shariki, Ao-
mori (marine, from D. Buth); JA4: JAPAN, Ohgaki,
Gifu (freshwater, from D. Buth); JAS, 6: JAPAN, Biwa-
ko (Biwa Lake), Bunka (freshwater, M. Matsuoka col-
lector); JA8: JAPAN, Biwa Lake, Shiga, Shiga (fresh-
water, from D. Buth); JA9: JAPAN, Ohnuma, Nanae,
Hokkaido Island (marine, from D. Buth); AK1: ALAS-
KA, Cook Inlet, Matanuska Lake (freshwater, M. Bell
collector); AK2: ALASKA, Cook Inlet, Prator Lake
(freshwater, M. Bell collector); AK3: ALASKA, Cook
Inlet, Lampert Lake (freshwater, M. Bell collector); AK4:
ALASKA, Deep Creek, Cook Inlet (anadromous, M.
Bell collector); AKS5: ALASKA, Cook Inlet, Head-
quarters Lake (freshwater, M. Bell collector); BCl:
BRITISH COLUMBIA, Canada, Rouge Lake, Queen
Charlotte Island (freshwater, T. Reimchen collector);
BC2: BRITISH COLUMBIA, Canada, Delkatla Es-
tuary, Queen Charlotte Island (anadromous; T.
Reimchen collector); BC3: BRITISH COLUMBIA,
Canada, Drizzle Lake, Queen Charlotte Island (fresh-
water, T. Reimchen collector); BC4, 5: BRITISH CO-
LUMBIA, Canada, Paxton Lake (freshwater, D. Schlu-
ter and D. McPhail collectors); BC6, 7: BRITISH
COLUMBIA, Canada, Misty Lake (freshwater, D.
Schluter and D. McPhail collectors); BC8, 9: BRITISH
COLUMBIA, Canada, Little Campbell River (marine,
D. Schluter and D. McPhail collectors); LA1, 2, 3: LOS
ANGELES, California, Ventura River (freshwater, M.
Bell collector); WA1: NEW YORK, Flax Pond, Long
Island (marine, M. Bell collector); WA2: QUEBEC,
Canada, Isle Verte (anadromous, G. Rico collector);
WA3, 4: NOVA SCOTIA, Canada, New Harbor River
(“White stickleback,” marine, D. Blouw collector); EU1:
SCOTLAND, Sound of Mull, Argyllshire (anadro-
mous, N. Campbell collector); EU2: SWEDEN, Fish-
ebackskill (marine, A. Berglund collector); EU3, 4: EN-
GLAND, Pond in Leicester (freshwater, P. Taberlet
collector); EUS, 6: FRANCE, Thonon-Les-Bains,
Leman Lake (freshwater, P. Taberlet collector). Aster-
isks indicate samples that belong to the “Japanese clade”
(see text and fig. 3).
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amination of intraspecific phylogeny based on
gene genealogies, and provides a global perspec-
tive to previous observations from more restrict-
ed geographical areas. In particular, the magni-
tude and pattern of differentiation among mtDNA
variants and their geographic distribution are
discussed in terms of historical gene flow during
the Pleistocene.

MATERIALS AND METHODS

Specimens of Gasterosteus aculeatus that were
used are listed in the legend of figure 1 with their
localities, life-history strategies, and the source
of the sample. Samples labeled JA2, JA3, JA4,
JA7, JA8, and JA9 belong to populations sam-
pled in the allozyme study of Haglund et al.
(1992). British Columbia samples BC1, BC2, and
BC3 from the Queen Charlotte Islands are from
the same populations as those used by O’Reilly
et al. (1993) and will allow comparison with re-
sults from their restriction-sites analysis. Alas-
kan samples derive from a survey of morpho-
logical differentiation among freshwater isolates
(Bell and Orti 1994). Specimens of the other spe-
cies, used as outgroups, are Gasterosteus wheat-
landi (Goose Neck Cove, Rhode Island; W.
Krueger, Martin, and Sparsis collectors), and
Pungitius pungitius (Freshwater Loch, Isle of
Mubb, Scotland; R. Campbell collector). All
specimens were preserved in 70% ethanol.

Total genomic DNA was extracted from white
muscle or liver tissue by Proteinase K/SDS dis-
solution and purified by phenol-chloroform ex-
traction and ethanol precipitation (Maniatis et
al. 1982; Kocher et al. 1989). The polymerase
chain reaction (PCR) (Saiki et al. 1988) was used
to amplify a segment of the cytochrome b mi-
tochondrial gene. Double-stranded amplifica-
tions were performed in 25 L volumes contain-
ing 67 mM Tris (pH 8.8), 6.7 mM MgCl,, 16.6
mM (NH,),SO,, 10 mM 2-mercaptoethanol, 1
mM of each ANTP, 1 uM of each primer, 10—
1000 ng genomic DNA, and 0.5 units of Taq
Polymerase (Cetus). Primers used were L14724
(5'-CGAAGCTTGATATGAAAAACCATC-
GTTG-3';located in the glutamine tRNA, Pddbo
1990; Meyer et al. 1990), and H15525 (5'-TTT-
GCAGGGGTAAAATTATCAGGAT-3') to ob-
tain an amplification product 831 base pairs (bp)
long. Gel purification (2.5% Nusieve-Agarose in
TAE buffer) of the double-stranded product was
followed by generation of single-stranded DNA
for direct sequencing (Gyllensten and Erlich
1988), using asymmetric polymerase chain re-
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action (PCR) with L14724 as limiting primer.
Single-stranded DNA was concentrated and de-
salted in spin columns (Millipore: Ultrafree-
MC30,000) and sequenced with 1147424 and
L15018 (5'-GCYAAYGGCGCATCCTTYT-
TYTT-3', where Y = C or T) by the dideoxy
method using a commercial kit (Sequenase Ver-
sion 2, United States Biochemical).

The orthologous DNA sequences obtained were
aligned by eye with a multiple sequence editor
(ESEE, Cabot and Beckenbach 1989). Intraspe-
cific variation in G. aculeatus was quantified by
computing haplotype diversity (%) and nucleo-
tide diversity values (II) according to Nei and
Tajima (1981) and Nei (1987). Phylogenetic
analyses were based on three different methods.
Parsimony analyses were performed using PAUP
(Swofford 1991), maximum-likelihood (Felsen-
stein 1981), and neighbor-joining (Saitou and Nei
1987) analyses using the PHYLIP package (Fel-
senstein 1991). Bootstrapping (Felsenstein 1985)
was used with all three methods to estimate sta-
tistical confidence in the data. Mean number of
substitutions per silent site (K;) between sequenc-
es were estimated according to the method of
Pamilo and Bianchi (1993) and Li (1993), with
the computer program LI93 kindly provided by
W.-H Li.

Nineteen additional samples were extracted
and amplified as above but cut with a restriction
enzyme (Bst XI) diagnostic for the major clades
found (see Results). A 10 uL aliquot of the double
stranded PCR amplification product was mixed
with 10 uL of a solution containing 200 mM
NacCl, 33 mM Tris-Cl pH 7, 13 mM MgCl,, and
4 units of Bst XI (Boehringer Mannheim), and
incubated for 2 h at 45°C. The digested product
was resolved on a 2% agarose minigel and vi-
sualized by ethidium bromide staining. All stick-
lebacks assayed by this method were from the
Atlantic basin, as follows: two individuals from
Flax Pond, Lond Island, New York (marine, M.
A. Bell collector); two individuals from Goose
Neck Cove, NewPort, Rhode Island (marine, W.
Krueger collector); three individuals from Mid-
dle Medford, Nova Scotia, Canada (anadro-
mous, D. Blouw collector); four individuals from
Isle Verte, Quebec, Canada (anadromous, G. Rico
collector); three individuals from the North Sea,
Scotland (marine, N. Campbell collector); three
individuals from Fishebackskill, Sweden (ma-
rine, A. Berglund collector); two individuals from
Lehman Lake, Thonon-Les-Bains, France (fresh-
water, P. Taberlet collector).
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RESULTS

We obtained 747 base pairs (bp) of DNA se-
quence from the 5’ end of cytochrome b from 36
individuals of Gasterosteus aculeatus and the two
outgroups (fig. 2). Average sequence divergence
(uncorrected) between G. aculeatus and the out-
groups was 10.3% (from Gasterosteus wheatlan-
di) and 14.2% (from Pungitius pungitius), and it
was 15.8% between the outgroups. The mean
number of substitutions at silent sites between
Pungitius and Gasterosteus was estimated as
0.7407-0.8481.

Substantial intraspecific variation was ob-
served among G. aculeatus. A total of 35 nucle-
otide positions varied (table 1), 29 of which were
third codon positions, and six were first posi-
tions; no variation in second positions was found.
This variation defined 17 distinct haplotypes (A—
Q, table 1) among all fish assayed. The most
divergent haplotypes (C and Q) differed by 23
substitutions (3.08%), 20 of which were transi-
tions and three of which were transversions, with
only two inferred amino-acid replacements. Si-
lent substitution differences ranged from 0.0748
to 0.1007 for haplotypes G-O and B-P, respec-
tively. Only four conservative amino-acid re-
placements (valine for isoleucine or phenylala-
nine) were inferred from the DNA sequences (fig.
2). Based on the cladogram presented in figure
3, a total of 34 transitions and five transversions
are needed to derive the 17 haplotypes from their
common ancestor.

Diversity values broken down by geographic
region are summarized in table 2. Considered
altogether, haplotypic and nucleotide diversities
in the threespine stickleback were 0.935 and
0.007, respectively. Thirteen haplotypes were
found among the Pacific basin samples, and only
4 in the Atlantic. As a consequence, haplotypic
diversity is significantly higher ( = 2.552, P <
0.02) in the Pacific than in the Atlantic. Likewise,
nucleotide diversity is eight times larger in the
Pacific than in the Atlantic. A comparison of
Japanese (N = 9) versus European (N = 6) sam-
ples, which cover comparable geographic areas,
shows a significantly higher ( = 3.527, P < 0.01)
haplotypic diversity in Japan (table 2).

The 17 haplotypes can be divided easily into
two major clades (A-H and I-Q), which differ
by at least 18 substitutions. Figure 3 shows a
consensus tree for the stickleback haplotypes
generated by PAUP. A branch-and-bound search
(all characters unordered, equal weights) gener-
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ated seven shortest trees (length = 192 steps, CI
excluding uninformative sites = 0.80, rescaled
consistency index = 0.87). Monophyly of G. acu-
leatus is well supported (bootstrap value of 100%).
The two major lineages within the threespine
stickleback are defined by nine synapomorphies
each and high bootstrap values (99%). However,
groupings within these lineages are not well sus-
tained, with the exception of a European clade
(haplotypes P and Q) that has a strongly sugges-
tive bootstrap value of 84%. Neighbor-joining
and maximum-likelihood analyses produced
congruent topologies and similar bootstrapping
results.

A striking pattern is revealed when geographic
locality is superimposed on the cladogram (fig.
3). The two major lineages do not correspond to
Atlantic versus Pacific: both of them occur in the
Pacific. They correspond roughly to Japanese
versus Euro-North American, but members of
the two clades are geographically interspersed in
Alaska and British Columbia. The highest local
nucleotide diversity values are found in this area
(table 2), reflecting the presence of haplotypes
from both clades. In contrast, very low diversity
was found among all haplotypes of Atlantic or-
igin, which form a group within the Euro-Amer-
ican clade. Haplotype M from Los Angeles groups
with Atlantic haplotypes (minimum difference
of two substitutions), rather than with other east-
ern Pacific haplotypes (minimum difference of
five substitutions), but this grouping is not well
supported by bootstrap analysis.

To assay additional fish to determine to which
major clade they belong, a simple restriction en-
zyme test was developed. A diagnostic site was
found at position 255 (see table 1, fig. 3) for Bst
X1 after searching all 17 cytochrome b haplotype
sequences with the computer program
MACVECTOR (International Biotechnologies,
Inc.). A thymine in this position (synapomorphic
for the Euro-American clade) determines a re-
striction site for this enzyme, not present in any
of the Japanese haplotype sequences. Therefore,
digestion of the 831-bp PCR product with Bst
X1 yields two fragments (length 527 bp and 304
bp) for the Euro-American clade, and a single
(uncut) fragment of 831 bp for the Japanese clade
(fig. 4). All additional 19 fish from the Atlantic
basin assayed with Bst XI were identified as be-
longing to the Euro-American clade. Other en-
zymes (not used in this study) having diagnostic
restriction sites present in the Euro-American
clade but absent from the Japanese clade se-
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quences are Nsi I (cuts when there is a guanine
in position 288) and Eag I (cuts when there is a
cytosine in position 294) (see table 2).

DiscussION
Nucleotide Substitution Pattern

Because the mitochondrial cytochrome b gene
has been used widely as a genetic marker, its
evolutionary dynamics are relatively well known
(Irwin et al. 1991; Esposti et al. 1993; Meyer
1993a,b). The pattern of nucleotide substitutions
in Gasterosteus aculeatus agrees with that found
in other fishes (e.g., Smith et al. 1989; Becken-
bach et al. 1990; Meyer and Wilson 1990; Meyer
et al. 1990; Bartlett and Davidson 1991; Carr
and Marshall 1991; McVeigh et al. 1991; Fin-
nerty and Block 1992) and vertebrates (Kocher
et al. 1989; Irwin et al. 1991). The high transi-
tion/transversion ratio (7/1) and the preponder-
ance of third position silent substitutions (83%)
observed is typical for comparisons of closely
related species and populations within species.
Purine transitions and pyrimidine transitions
were equally frequent among the 35 variable sites
surveyed (16 pyrimidine and 15 purine transi-
tions, table 1), in agreement with the pattern ob-
served in cod (Carr and Marshall 1991) but not
with the excess of pyrimidine transitions ob-
served in blue marlin (Finnerty and Block 1992).
The four amino-acid replacements found among
stickleback haplotypes are conservative (Gran-
tham 1974), as are those reported for intraspe-
cific comparisons in cod and trout (Beckenbach
et al. 1990; Carr and Marshall 1991). Overall,
the maximum intraspecific differentiation (3%)
found between stickleback cytochrome b se-
quences exceeds previously published values for
the same gene in cod, Atlantic salmon, blue mar-
lin, four species of tuna, and several cichlid fishes
(Meyer et al. 1990; Bartlett and Davidson 1991;
Carr and Marshall 1991; McVeigh et al. 1991;
Finnerty and Block 1992; Sturmbauer and Meyer
1992). Compared with restriction-fragment-based
values summarized by Avise (1989), the ob-
served high level of intraspecific variation in G.
aculeatus suggests an old age for the vicariant
event separating the major clades.
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FiG. 3. Majority rule bootstrap consensus tree sum-
marizing geographic locations and relationships among
36 individuals of Gasterosteus aculeatus (haplotypes
A-Q) and two outgroups. Lines across branches indi-
cate transition substitutions and ovals transversions,
as reconstructed by PAUP (ACCTRAN option). Num-
bers are bootstrap values computed by 1000 replica-
tions in PAUP, followed by bootstrap values obtained
with 100 replications with the NEIGHBOR program
using maximume-likelihood distances, and by values
using DNAML (PHYLIP, Felsenstein 1991). Asterisks
indicate amino-acid replacements. The synapomor-
phic Bst XI site for the Euro-American clade is indi-
cated by a cross.

Estimates of sequence divergence based on re-
striction enzymes and on DNA sequences may
differ because of several factors (e.g., Wilson et
al. 1985; Thomas and Beckenbach 1989; Taber-
let et al. 1992; Meyer 1993a,b). A comparison
of our results with those of a concurrent analysis
using 10 restriction endonucleases (O’Reilly et
al. 1993) is possible because both studies sur-
veyed the same populations in the Queen Char-
lotte Islands, British Columbia. O’Reilly et al.

—

Fic. 2. Consensus sequence of 747 bp from the 5’ end of cytochrome b for 36 individuals of Gasterosteus
aculeatus (Gac), a single individual of Gasterosteus wheatlandi (Gwh), and a single individual of Pungitius
pungitius (Ppu). The 35 variable positions in the G. aculeatus sequences are shown bold and underlined (symbols
follow IUB code: R = G/A; Y = C/T; W = A/T; M = A/C; S = C/G; H = A/C/T). The inferred amino-acid
sequence of G. aculeatus is presented below its nucleotide sequence, and the variable sites are shown bold and

underlined.
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TaBLE 2. Haplotype diversity (%) and nucleotide di-
versity (II) values for Gasterosteus aculeatus samples
grouped by locality, where N is sample size.

Num-

ber Nucleo-

of Haplotype tide
haplo- diversity diversity

Locality* N types (h £ SD) (14}
Japan 9 6 0.8889 + 0.0553 0.0012
Alaska 5 4 0.9000 + 0.0888 0.0068
B. Columbia 9 5 0.8056 = 0.0774 0.0033
W. Atlantic 4 2  0.5000 = 0.1687 0.0003
Europe 6 2 0.3333 £ 0.1475 0.0002
Pacific 26 13 0.9138 + 0.0217 0.0075
Atlantic 10 4 0.7111 = 0.0764 0.0009
Total 36 17 0.9349 + 0.0130 0.0071

* The Los Angeles sample was not treated as a single locality
because it included only three fish from a single watershed.

found a maximum divergence of 2.46% between
Rouge Lake (BC1) and Drizzle Lake (BC3) hap-
lotypes, very close to the 2.68% sequence diver-
gence found for cytochrome b between BC1 and
BC3. Likewise, similarly low divergence (1.15%)
between north Pacific and Atlantic sticklebacks
estimated with restriction-sites analyses agrees
with the 0.4%-1.2% sequence difference found
between haplotypes J-P and L-O, respectively.
These results suggest that the restriction enzymes
used did not disproportionately sample the rap-
idly evolving control region. In a similar com-
parison in birds, Taberlet et al. (1992) used 17
restriction enzymes and 903 bp of cytochrome b
but found a somewhat larger discrepancy in di-
vergence values (0.55%-0.66% based on DNA
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sequences versus 1.13% =+ 0.53% based on re-
striction enzymes).

mtDNA and Electrophoretic Data

A global phylogenetic analysis of allozyme
variation in threespine stickleback (Haglund et
al. 1992) produced results roughly congruent with
ours. That study recognized two primary clades
within G. aculeatus: (1) a basal Japanese clade,
and (2) a group consisting of North American,
European, and some Japanese populations. A
striking difference between these results and ours
is the relation between eastern and western Pa-
cific populations. Some Japanese populations
showed allozyme characters that resembled North
American stickleback populations, but popula-
tions resembling Japanese allozyme profiles were
absent from North America. In contrast, samples
from North America (Alaska and British Colum-
bia) contained Japanese mtDNA haplotypes, but
North American haplotypes were absent in Ja-
pan. Sampling may, in part, account for these
differences. The nine Japanese sticklebacks (from
six populations) used in this study were part of
the samples used by Haglund et al. (1992). Al-
though we assayed mtDNA from five Alaskan
(n = 5) and three British Columbian (n = 9)
populations, among which only three (AK 1, AK2,
and BC1) contained Japanese haplotypes, Hag-
lund et al. (1992) surveyed only allozymes from
one freshwater population in Alaska. This single
population sampled could have been composed
of sticklebacks from the Euro-American clade.
Also, the discrepancy may be caused by the dif-

1 2 3 4 56 7 8 9 10 111213

Size
Standard

872bp —
603 bp —=

310bp —=

FiG. 4. Restriction fragment patterns for polymerase chain reaction (PCR) amplified DNA digested with Bst
XI. Lanes 8-13 are undigested controls. Lane 7, $X 174 RF DNA/Hae I1I size standard showing 1353bp, 1078bp,
872bp, 603bp, 310bp, 281bp, 234bp, 194bp, and 118bp fragments. Lanes 1-3 are Euro-American haplotypes
(Q, M, and F, respectively) showing two restriction fragments (527bp and 304bp) and lanes 4-6 are Japanese
haplotypes (G, F, and E, respectively) uncut by the enzyme.
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ferent properties of allozymes and mitochondria
or to differences in analytical approach. Phylo-
genetic treatment of electrophoretic data is not
without problems (e.g., Buth 1984; Murphy et
al. 1990). Only charge differences distinguish al-
lozymes of a given locus, and electrophoretic mo-
bility will often be a composite character rather
than a discrete synapomorphy (Avise 1989). For
intraspecific studies, recombination and natural
selection can blur the historical record of allo-
zyme markers. Karl and Avise (1992) have sug-
gested that contradictory results obtained with
allozyme markers and mtDNA in a geographic
survey of oyster populations were likely caused
by balancing selection acting on protein electro-
phoretic characters. They emphasized the need
for caution in interpreting results that rely on
assumptions of selective neutrality for allozyme
markers. Mitochondrial DNA haplotypes differ-
ing by neutral substitutions, however, provide
unambiguous information directly interpretable
as gene genealogies. It should be noted, however,
that sound inferences about organismal geneal-
ogy would be better if based on more than a single
gene (Karl and Avise 1992).

Age of the Atlantic Basin Colonization

The significantly higher mtDNA diversity
found in the Pacific, reflecting the presence of
the two major clades, suggests that most of the
evolutionary history of threespine sticklebacks
occurred in this oceanic basin. The fossil record
seems to support this notion, because Gaster-
osteus has been reported from Pacific basin de-
posits at least 11 my old (or possibly even 16
my old), whereas the oldest Atlantic basin fossil
sticklebacks date back to only 1.9 my (Bell 1993).
Atlantic mtDNA haplotypes of G. aculeatus form
a derived clade within the Euro-American clade,
closely related to eastern Pacific forms (fig. 3).
All fish assayed with Bst XI were also assigned
to the Euro-American clade, as did three fish
examined by O’Reilly et al. (1993). A total of 32
Atlantic basin stickleback (from nine localities)
surveyed by this and the previous study strongly
suggests the absence of Japanese mtDNA hap-
lotypes in this basin. This finding is also in agree-
ment with allozyme data based on 240 individ-
uals from six populations (Haglund et al. 1992).
All Atlantic basin sticklebacks sequenced here
contained only four distinct haplotypes, with
maximum sequence divergence of 0.5%. The low
level of genetic variation found among Atlantic
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samples (table 2) is consistent with a recent col-
onization but could also be a consequence of
severe bottlenecks in Atlantic populations during
Pleistocene glaciation. A similarly low pattern of
genetic variation in Atlantic sticklebacks was also
observed in the allozyme study of Haglund et al.
(1992). These authors estimated genetic diver-
gence between Atlantic North American and Eu-
ropean populations (Fgr = 0.199) of the same
magnitude as that found among samples from
Pacific North America alone (Fsy = 0.163), and
much smaller than Pacific North American plus
some Japanese populations (Fg; = 0.408). Small
allozyme variation was also reported among ma-
rine and freshwater populations of eastern Eu-
rope (Rafinski et al. 1989).

Interestingly, mtDNA lineage sorting between
oceans is not complete (see fig. 3): the Los An-
geles haplotype (M) is in the same clade with the
Atlantic lineages (N—Q). Phylogenetic partitions
are sometimes expected to lack concordance with
population subdivision when the separation event
is recent (Tajima 1983; Avise et al. 1984; Neigel
and Avise 1986; Pamilo and Nei 1988; Avise
and Ball 1990). In expanding populations, lin-
eage extinction is dramatically slowed, therefore
extending the time for lineage sorting further
(Avise et al. 1984). Stickleback populations col-
onizing the Atlantic must have experienced pro-
nounced range expansions, which might have fa-
vored the survival of ancestral Pacific mtDNA
lineages. Recency of interoceanic common an-
cestry is strongly suggested by incomplete lineage
sorting.

The time scale for the colonization of the At-
lantic by Pacific sticklebacks may be estimated
using molecular rates of evolution (e.g., Brown
etal. 1979; Ferris et al. 1983; Wilson et al. 1985,
1987; DeSalle et al. 1987; Avise 1989; Avise et
al. 1992). Although careful calibration for mo-
lecular rates of evolution within specific groups
is desirable (e.g., Hillis and Moritz 1990), only
a single significant date from the stickleback fos-
sil record is available (Bell 1993). The oldest
Pungitius fossils are from the Pacific (no fossil
record exists for this genus in the Atlantic) and
date back to 7 my, suggesting a minimum age of
divergence from Gasterosteus of around 10 my
(Bell 1994; see above). With this date and the
estimated 0.74-0.85 divergence at silent sites be-
tween Pungitius and G. aculeatus, the silent di-
vergence rate for cytochrome b in gasterosteid
fishes is 7.4%—8.5% per million yr. This value is
lower than the 10% rate estimated for cyto-
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chrome b of mammals by Irwin et al. (1991), but
higher than the 2.5% value for fourfold degen-
erate sites reported for bonnet-head sharks (Mar-
tin et al. 1992). Using this crude calibration, the
0.76%-1.91% silent divergence observed be-
tween Los Angeles and Atlantic sticklebacks
would represent approximately 90,00 to 260,000
yr.
The Pacific stickleback lineage that colonized
the Atlantic must have been dwelling in the north
Pacific (close to the Bering Strait) at the time of
colonization (assuming trans-Arctic migration).
The Bering Seaway opened about 3.5 mya, al-
lowing a great faunal interchange between the
North Pacific and Arctic-Atlantic basins for a
variety of marine organisms (Herman and Hop-
kins 1980; Vermeij 1991). A strong bias of move-
ment in the direction of the Atlantic was reported
based on recent and fossil geographic distribu-
tions (Durham and MacNeil 1967; Athaniasiadis
1990; Maggs 1990; Vermeij 1991). Dunton (1992)
presents a brief description of the process by
which unidirectional movement of marine or-
ganisms occurred. Our findings agree with this
hypothesis about the direction of trans-Arctic
migration, but the mtDNA data suggest that col-
onization of the Atlantic has been more recent.
The fossil record of Atlantic sticklebacks from
Plio-Pleistocene deposits (Bell 1994) dates the
transition to the Atlantic about 2 mya, in contrast
with the estimated 90,000 to 260,000 yr based
on mtDNA. A possible explanation for this dis-
crepancy could be an overestimation of the silent
substitution rate for cytochrome b, because it is
based on a minimum divergence date for Gas-
terosteus and Pungitius (see above). Older fossils
of Gasterosteus and Pungitius would suggest a
lower divergence rate for stickleback mtDNA,
and thus an older colonization of the Atlantic.
But to account for a 2-my-old presence of Gas-
terosteus in the Atlantic in terms of mtDNA di-
vergence, it is necessary to postulate a silent di-
vergence rate at least eightfold slower that the
one estimated here. This higher rate, in turn,
would push back the divergence between the two
genera to the Cretaceous (80 mya), an unlikely
event because the Gasterosteiformes are first
known from the lower Eocene (Lauder and Liem
1983). We suggest that a recent replacement of
mitochondrial lineages might have occurred in
the Atlantic as a consequence of severe bottle-
necks or even extinction of early northern At-
lantic populations during the late Pleistocene,
followed by reinvasion from the Pacific. Alter-
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natively, early records of fossil Gasterosteus from
Europe may have been misdated.

A similar pattern of disagreement between fos-
sil evidence and mtDNA variation was observed
in sea urchins from the northern Atlantic and
Pacific (Palumbi and Kessing 1991). Extirpation
of Atlantic populations was also postulated and
attributed to harsher Plio-Pleistocene environ-
mental fluctuations in the Atlantic than in the
northwestern Pacific (cf. Palumbi and Kessing
1991; Vermeij 1989). Other marine species
showing small interoceanic genetic distances in-
clude tuna, blue marlin, and green sea turtles,
but for these eurythermic species, unlike stick-
lebacks, occasional contemporary gene flow
through southern oceans is possible (Graves et
al. 1984; Graves and Dizon 1989; Bowen et al.
1992; Finnerty and Block 1992). Large genetic
distances observed between subspecies of cod and
sister species of herring in different oceans (Grant
and Utter 1984; Grant 1986; Grant and Stihl
1988) were attributed to divergence since the
opening of the Bering Strait (3-3.5 mya).

Pleistocene Refugia

Several Pleistocene ice-free refugia for fresh-
water and coastal fishes during the last (Wiscon-
sin) glaciation have been postulated for the North
Pacific region (McPhail and Lindsey 1970, 1986;
Crossman and McAllister 1986; Lindsey and
McPhail 1986). Particularly interesting is the
suggestion that the climate probably was not
much cooler than it is now in some parts of Alas-
ka around Bristol Bay and Cook Inlet, where
coastal and freshwater sticklebacks could have
survived during the last ice age (McPhail and
Lindsey 1970, 1986). Although geological evi-
dence indicates effectively full glacial inundation
of the Queen Charlotte Islands (British Colum-
bia) during the Wisconsin (Blaise et al. 1990),
stratigraphic evidence (Warner et al. 1982), glob-
ally disjunct plant distributions (Ogilvie 1989;
Schofield 1989), and endemism in vertebrates
(Foster 1965) and beetles (Kavanaugh 1980) cu-
mulatively support the possibility of a Pleisto-
cene glacial refugium in the vicinity of the Queen
Charlotte Islands.

Therefore, the finding of a highly divergent
mtDNA haplotype in Rouge Lake sticklebacks
(in the Queen Charlotte Islands) led O’Reilly et
al. (1993) to suggest a refugial origin for this
freshwater population. With sampling localities
restricted to British Columbia only, these au-
thors found it difficult to explain the high mtDNA
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divergence found between marine sticklebacks
and this unique freshwater population, and pos-
tulated an extended preglacial history of isolation
in freshwater habitats of the Queen Charlotte
Islands during most of the Pleistocene. However,
this same haplotype (A, sample BC1) is shown
here to be widespread in Japanese marine pop-
ulations (samples JA1-JA3) and to belong to a
clade mostly restricted to Japan (figs. 1, 3). In-
terestingly, closely related Japanese mtDNA
haplotypes were also found in Alaskan lakes north
of Cook Inlet (samples AK1 and AK2 from the
Mat-Su Valley), likewise close to a putative re-
fugium. But populations with Japanese haplo-
types were absent from lakes on the Kenai Pen-
insula (AK3-AKS5) that is closer to the sea. The
global perspective on mtDNA variation in G.
aculeatus presented here (fig. 3) allows the dis-
tinction of two allopatric and highly divergent
clades found to coexist only in freshwater habi-
tats close to putative refugial areas in the north-
ern Pacific. This pattern of phylogenetic discon-
tinuity, not associated with spatial separation,
has been attributed to secondary admixture zones
(phylogeographic category II sensu Avise et al.
1987). On the basis of the silent divergence rate
for cytochrome b (see above), these two clades
are estimated to have diverged 0.9-1.3 mya, dur-
ing the mid-Pleistocene and are not likely the
product of vicariant events caused by the most
‘recent glaciation. Blue tits exhibiting this phy-
logeographic pattern in the Grenoble region of
France have been suggested to be postglacial col-
onizers coming from different refugia (Taberlet
et al. 1992). Among threespine sticklebacks, a
most significant aspect of this secondary contact
area is the fact that the Japanese mtDNA hap-
lotypes occur only in freshwater lakes, whereas
marine sticklebacks always belong to the Euro-
American clade. O’Reilly et al. (1993) surveyed
mtDNA restriction profiles from 21 fish from
marine localities from British Columbia, all of
which can be safely assigned to our Euro-Amer-
ican clade (because the BC1-BC3 samples were
shared by both studies). Therefore, this and the
previous study failed to show the presence of
Japanese mtDNA haplotypes among a total of
25 northern Pacific anadromous or marine stick-
lebacks assayed (four localities, from British Co-
lumbia to Alaska).

Sampling error could account for the absence
of Japanese haplotypes in marine samples in the
northern Pacific, if these haplotypes were cur-
rently present in low frequency or geographically
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restricted. However, the close affinity among
Rouge Lake, Japanese, and Alaskan freshwater
sticklebacks does suggest wide distribution of this
clade in the Pacific. Genetic flow to the eastern
Pacific from the west seems plausible by the oc-
currence of sticklebacks in the open North Pa-
cific, some 900 km from land (Quinn and Light
1988). Furthermore, allozyme data demonstrate
minimal population substructuring in marine
habitats (Withler and McPhail 1985). Another
alternative and more likely explanation is that
this clade could have been abundant in the north-
ern Pacific before the onset of the Wisconsin gla-
ciation, and that advance of the Wisconsin ice
sheet could account for its displacement out of
the area, except from ice-free freshwater refugia
near Cook Inlet, the Queen Charlotte Islands,
and possibly elsewhere. A more extensive sam-
pling of northern Pacific localities might confirm
this hypothesis if Japanese haplotypes were found
to occur only in freshwater localities close to pu-
tative refugia.

Systematics of the Gasterosteus aculeatus
Superspecies

The use of subspecies for G. aculeatus based
on morphological variation has generated much
controversy and is considered at best dubious
(see Wootton 1976). Gasterosteus aculeatus con-
stitutes a cohesive taxonomic unit (Bell 1976),
albeit with a division of standing mtDNA vari-
ation into two divergent clades. An ancestral vi-
cariant event in the Pacific must have caused
early divergence of these two clades. Subsequent
range expansions and contractions of stickleback
populations caused by successive advances and
retreats of Pleistocene glaciations have originat-
ed secondary admixture zones in the northern
Pacific. The presence of halotypes of both clades
in some lakes of the Queen Charlotte Islands
(O’Reilly et al. 1993) suggests that admixture of
these two clades has been common, at least after
the last glaciation. On the basis of their global
allozyme survey, Haglund et al. (1992) advocat-
ed taxonomic recognition for a distinct subset of
Japanese populations, forming the sister group
of G. aculeatus Linneaus. This distinction is not
warranted by the mtDNA phylogeny presented
here, because all Japanese fish belong to the same
clade.

Samples of an undescribed species of Gaster-
osteus, the “white stickleback,” reproductively
isolated from and sympatric with “typical” G.
aculeatus in Nova Scotia (Blouw and Hagen 1984,
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1990), were also included in our study (samples
WA3 and WA4). Very small (0.1%) or no genetic
divergence was detected between “white stick-
leback” and other western Atlantic sticklebacks,
in agreement with a previous allozyme study
(Haglund et al. 1990) and the postulated recency
of the Atlantic lineage. A very recent origin of
reproductive isolation between these forms is ap-
parent.

With a global perspective of the distribution
of genetic variation as a framework, meaningful
comparisons at a smaller scale will now be pos-
sible. For example, it would be interesting to
identify genetic affinities of morphologically de-
rived populations in Alaska, and of sympatric
species pairs of sticklebacks that coexist in sev-
eral lakes in British Columbia (McPhail 1984,
1994; Schluter and McPhail 1992). Mitochon-
drial DNA could be used to test the hypothesis
of repeated, consecutive colonizations from dif-
ferent marine haplotypes to lakes where sym-
patric species pairs occur (McPhail 1984). Hap-
lotypes from both major clades were found to
coexist in stickleback populations in lakes in the
Queen Charlotte Islands (O’Reilly et al. 1993).
Mitochondrial genes and morphology clearly
evolve at different rates. Highly morphologically
derived “giant stickleback” (sample BC3 from
the Queen Charlotte Islands) are reproductively
isolated from parapatric “typical” stream stick-
lebacks (Moodie 1972; Moodie and Reimchen
1976; Reimchen et al. 1985), but show very little
mtDNA divergence (fig. 3, O’Reilly et al. 1993).
We anticipate that mtDNA will be a useful mark-
er to test hypotheses about speciation and iso-
lating mechanisms, morphological divergence,
and post-glacial distributions in this widely stud-
ied species.
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