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1 Introduction

The past 30 years have seen an increasing recognition that human activities may
have substantial, and possibly even catastrophic, effects on the climate system.
This recognition has highlighted the importance both of understanding the climate
system and of being able to accurately model it. These two goals are made par-
ticularly difficult by the fact that the Earth’s climate system displays substantial
variability on spatial and temporal scales over many orders of magnitude, from tur-
bulent eddies in the ocean surface driven by breaking waves, through mid-latitude
cyclonic storms hundreds of kilometres in extent and lasting for days, to global-
scale millennial rearrangements of ice cover and ocean circulation. Because of the
complexity of the physics underlying the dynamics of the system, there are import-
ant couplings between aspects of climate variability at these different scales. This
coupling of variability across scales poses a significant challenge for any attempt
to quantitatively model the climate system, as in any computationally tractable
climate model there will be a broad range of scales that cannot be explicitly resol-
ved but whose aggregate effect on the resolved scales must be accounted for. The
inability to explicitly represent all potentially relevant processes in climate models
has many sources, including: finite spatial and temporal resolution of numerical
approximations to the underlying differential equations, imposed by computing
limitations; filtering of high-frequency processes out of the original equations of
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motion, also for computational reasons; poor understanding of the basic physical
processes operating on smaller scales, following from a paucity of adequate obser-
vations (especially in the oceans); and (in the case of more conceptual models) the
desire to avoid the problem that deep understanding of climate models tends to
decrease as the number of explicitly resolved processes increases. In any event, for
any climate model there will be a class of processes or scales of variability that may
have an effect on the resolved variables but which are themselves not represented
explicitly (or are simply ignored altogether).

In the construction of a climate model, then, decisions must be made as to which
scales are represented explicitly, and which are to be (in the jargon of modelling)
“parameterised”. How this separation is made depends largely on where the model
falls in the “hierarchy of climate models” [36]. This hierarchy ranges from heuristic
conceptual models designed to capture the essence of important processes in the
climate system, simple enough for their parameter space to be thoroughly inve-
stigated but too simple to be treated as quantitatively accurate, through Earth
System Models of Intermediate Complexity (EMICs) which represent some clima-
te subsystems (e.g. the ocean or the atmosphere) in detail while parameterising
the dynamics of other subsystems [14], to full General Circulation Models (GCMs)
which attempt to represent the climate system in as great detail as computational
and conceptual limitations allow. Models at all levels of this hierarchy play im-
portant roles in the development of our understanding of the climate system. In
particular, the utility of simple heuristic models is (at least) twofold. First, such
models allow the investigation of basic climate processes in a reduced setting, faci-
litating the development of a conceptual vocabulary with which to understand the
dynamics of the climate system, or of its representation by EMICs or GCMs (the
output of which can be almost as complex as that of the climate system itself).
Secondly, simple heuristic models can predict basic phenomena which may then be
sought out in more complex models or in the climate system itself; classic examp-
les of this are the prediction of multiple states of the thermohaline circulation by
Stommel [78] and of the phenomenon of sensitivity to initial conditions by Lorenz
[45]. One of the earliest simple climate models (in the modern sense) was that of
the global atmospheric circulation discussed by Hadley [26]. While wrong in many
details, this model is sufficiently instructive to retain a place of pride in introducto-
ry expositions of the general circulation of the atmosphere. In the development of
our understanding of the climate system, numerical investigations and the creation
of an ever more trustworthy virtual reality and mathematical qualitative research
of reduced models retaining only some aspects of reality have to go hand in hand.

Central issues in climate modelling are thus which processes to represent explicitly
and which to parameterise, and how to construct accurate parameterisations. The
traditional approach to the solution of the parameterisation problem represents
those terms in the dynamical equations associated with unresolved phenomena by
deterministic functions of the resolved variables, introducing new parameters (e.g.
eddy diffusivities, bulk transfer coefficients, etc.) whose numerical values are de-



termined from observational data, from theory, or by being tuned until the model
behaves “realistically”. A theoretical justification for this approach to the parame-
terisation problem follows from an analogy to the connection between statistical
mechanics and thermodynamics. An ideal gas is characterised by variability both
on the molecular microscale, and on the macroscale on which it is sensible to de-
fine quantities such as pressure and entropy. The aggregate effect of essentially
random molecular motion on the microscale is to produce essentially deterministic
dynamics on the macroscale. In the climate system, it is argued, if the (generally
turbulent) unresolved scales are in statistical equilibrium with the resolved scales,
then the parameterisation of their effects on the resolved variables by deterministic
functions of the resolved variables is appropriate (e.g. [29], [39]). However, an es-
sential difference between a typical statistical mechanical system and the climate
system is that, in the former, there is an effectively infinite separation of scales
between the micro and the macro (i.e., there is a “thermodynamic limit”), while
no such clear separation of scales obtains in the climate system. Consequently, it
is not a priori obvious that the aggregate effect of the turbulent, unresolved sca-
les on the resolved scales is, and can be modelled by, a deterministic function of
the resolved variables. Instead, the appropriate solution to the parameterisation
problem may involve an element of randomness.

The parameterisation by stochastic processes of variability not resolved explicitly,
first suggested in the seminal paper of Hasselmann [27], has recently been argued
for on basic theoretical grounds (e.g. [59], [73]). It has demonstrated considerable
success in the study of, for example, the dynamics of El Nino and the Southern
Oscillation [62], decadal variability of the thermohaline circulation [71], upper tro-
pospheric dynamics [15], the dynamics of baroclinic waves [16], interannual varia-
bility of open ocean deep convection [43], and glacial climate variability [21]. This
list is merely a sampling of the work that has been carried out incorporating the
representation of unresolved variability by stochastic processes, and is not by any
means exhaustive. The field of “stochastic climate models” is diverse and growing.

From July 9 through July 11, 2001, 50 researchers from the mathematics and
climate communities met in Chorin, Germany to discuss the idea of stochastic
representation of unresolved variability in climate models. The foundation of sto-
chastic climate models through stochastic reduction of multi-scale deterministic
processes describing climate phenomena was one of the main focal points of the
forerunner meeting in Chorin in June 1999. Its importance was underlined by the
fact that a whole chapter in [35] was devoted to it under the name The emergence
of randomness: chaos, averaging, limit theorems. This special issue of Stochastics
and Dynamics collects some papers presented at this second meeting on Stochastic
Climate Models, all dealing with reduced stochastic models of climate phenomena.



2 Simple stochastic climate models in theory

The paradigm of stochastically reduced climate models designed to increase the
conceptual physical and mathematical understanding of highly complex phenome-
na is heuristically deduced in Hasselmann’s visionary paper [27]. Its mathematical
underpinning was postulated in [35] and named Hasselmann’s program after Ar-
nold’s article [2]. The realisation of Hasselmann’s program would allow the rigorous
deduction of the noise terms used to close deterministic equations leading to sto-
chastic conceptual models, such as the ones presented in Olbers’ gallery [57]. These
conceptual models have the advantage of easier analytical tractability, due to the
arsenal of methods of the mathematical areas of stochastic analysis and random
dynamical systems. An idealised formulation of Hasselmann’s idea involves proces-
ses on (at least) two scales, typically a fast one (the weather scale) and a slow one
(the climate scale). In reality, the fast scale may be on the order of several days,
while the slow one may be on the order of years or more. Mathematically, one can
introduce a scaling parameter €, corresponding to the ratio of the (response) time
scales of the slow and fast variables, and write an idealised GCM system composed
of slow (x) and fast (y) component by the equations

T = f(a?,y),
y = %g(%y)-

The passage to statistical dynamical models (SDM) involves the mathematical
technique of averaging out the fast variables while the slow ones are frozen. Defining
u = (x), the average of x taken with respect to an invariant measure of the system,
and F'(z) = (f(x,y)), the corresponding SDM states

= F(u).

In this framework, Hasselmann’s idea may be paraphrased by postulating that
there is a realm between GCMs and SDMs populated by stochastic climate models
which are stochastic differential equations (ordinary or partial) for the error in
averaging, i.e. for the appropriately normalized deviation of the solution z¢ of the
slow component from the average u. The Khasminskii deviation

converges to a linear stochastic differential equation with state vector, say v, in the
small noise limit, as has been well known since 1966. In contrast to Khasminskii’s
deviation, Hasselmann’s deviation leading to the non-linear stochastic differenti-
al equations uses, on the same time ranges, a diffusion approximation based on
strong limit theorems rather than an approximation corresponding to the central
limit theorem. Under highly simplified conditions, i.e. with an underlying ergodic
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Markovian motion in its invariant law playing the role of the fast variable, Kifer
[40] has recently derived a Hasselmann type equation expressed in a state vector,
say w. The comparison of v and w shows that the respective approximations v°¢
and w* are on different scales: for some v > 0 one has

V¢ —w ~ €,

with v # % Of course, different deviations on different time scales, in particular
those including large deviations for the response times, could also be of great
relevance. To reduce a supposedly chaotic or well mixing fast component to a
tame ergodic Markov process as in the outset of Kifer’s work in concrete situations
remains, despite some recent progress made by Péne [61], the greatest obstacle to
the verification of the decay of correlations of the fast variables.

In addition to these primary problems, the lack of sufficient numerical evidence
makes substantial theoretical progress in the mathematical foundation of Hassel-
mann’s program in the short run unlikely. This makes the consideration of simple
case studies by means of numerical simulations a high priority. Hasselmann’s pro-
gram has to be verified in a number of numerical case studies, before work on a
more conceptual level may be started. The program comprises the following steps:

1. study of the system after freezing the fast variables; investigation of attractors
and invariant measures

2. averaging of the slow equation using the results of the previous step
3. investigation of the averaged equation, in particular of its local attractors

4. proving decay of correlations; computation of the diffusion matrix of the
(linear) central limit approximation

5. study of the (non-linear) diffusion approximation; investigating whether it
provides a better approximation than the linear one

6. study of the equation by the large deviations theory by Y. Kifer [40]; cal-
culation of the action functional; comparison with results of the diffusion
approximation.

To gain numerical evidence case studies were carried out with models based on work
by Monahan [53]. In particular, the Maas-Lorenz model studied by Wu [88] is a
simple coupled ocean-atmosphere model describing the angular momentum of an
ocean in a rectangular basin. It is subject to thermal and mechanical forcing from a
Lorenz model atmosphere. Based on deterministic bifurcation studies by van Veen
[84], Monahan’s simulations exhibit a complex spectrum of invariant structures and
attractors including limit cycle regimes and chaotic behaviour. It is this interplay
of multiple regimes with essentially different (fast) invariant structures triggered
by variations of the slow variables which complicates matters considerably. Wu's



[88] numerical simulations clearly exhibit parameter ranges for the Maas-Lorenz
model for which Hasselmann’s nonlinear reduction with white noise forcing is in
very good accordance with the full deterministic model. On the other hand, there
seem to be regimes for which even a numerical decay of correlations for the Lorenz
component does not hold. In any case, it is evident that more case studies need to
be investigated before the full scale program of stochastic reduction following scale
separation according to Hasselmann may be tackled mathematically.

A different approach of stochastic climate models and their effective reduction was
made by Majda, Timofeyev and Vanden-Eijnden ([47], [48], [49]). Their approach
consists of systematic strategies to reduce stochastic equations to a small set of re-
solved variables by eliminating a (typically) large number of unresolved ones from
a complex nonlinear system with many degrees of freedom. Again, the correlation
times between the resolved and unresolved quantities play a crucial role: the ap-
proach is mathematically rigorous if the correlation decays, but agreement can be
good for even rather large ratios of correlation times.

3 Some simple stochastic climate models in prac-
tice

Though it is a vital issue for stochastic climate modelling, strategies of model re-
duction play a relatively minor role in this volume. The focus instead is on the
treatment with methods from stochastic analysis and stochastic dynamics of re-
duced models with heuristically justified noise forcing. Given the range of reduced
climate models parameterising unresolved scales by stochastic variability, it is im-
possible to thoroughly review this entire field; we proceed to discuss a few problems
that have been found to be mathematically interesting. Extended discussions of
simple models of the climate system can be found in Ghil and Childress [22] and
in the recent monograph by Saltzman [72].

3.1 Energy Balance Models

One of the simplest and earliest applications of ideas from the field of stochastic
analysis to models of the climate system goes back to the energy-balance models
considered in Nicolis [56] and Benzi et al. [3]. These analyses attempted to provide
a qualitative explanation of Quaternary (the last ~ 2 million years) glacial cycles
based on a deterministic differential equation for the global mean temperature des-
cribing a balance between the absorbed shortwave and emitted longwave radiative
energies. It is heuristically reasonable that colder globally-averaged temperatures
will be associated with greater ice extent on the earth’s surface, and consequently
with a reduced absorbed solar radiation due to the high albedo of ice (the so-called
“ice-albedo feedback”). The absorbed solar radiation is therefore modelled as a
(nonlinear) function of globally-averaged temperature. A periodic external forcing



arises from slow periodic variations in solar insolation (Milankovitch cycles) caused
by gravitational interactions with other planets in the solar system (e.g. [28]). Only
the addition of a stochastic term as a second forcing makes spontaneous transitions
between the otherwise isolated metastable states of temperature possible. The re-
sulting stochastically and periodically perturbed differential equation was capable
of describing at least one characteristic aspect of experience: the typically short and
abrupt transitions, observed before by Kramers [42] in reaction-diffusion phenome-
na. While these models are not presently considered to provide a comprehensive
descriptions of Quaternary glacial cycles (although they have seen something of a
renaissance in recent debates over the “snowball earth” hypothesis [75]), the under-
lying concepts brought to light the phenomenon of stochastic resonance. Roughly,
a system subject to a periodic modulation, and to random perturbations of in-
tensity e, is in stochastic resonance if € is tuned in such a way that the randomly
periodic output is optimal in the sense that the periodicity of the random output
closely resembles that of the input signal. A very lively research field has develo-
ped around this concept, drawing examples from a wide spectrum of areas such as
the bistable ring laser from optical systems, the analog electronic simulator from
electronic systems, and the crayfish experiments by Moss et al. from biological and
neuronal systems. See Gammaitoni et al. [20] for a review.

3.2 Thermohaline Circulation

Another physically important problem that has been a rich source of reduced cli-
mate models involves the thermohaline circulation (THC) of the world ocean. This
collection of slow currents, driven by gradients in the density of seawater, domina-
tes the deep circulation of the World Ocean and is believed to play a significant role
in climate variability on timescales of decades and longer (e.g. [8], [13], [68], [76]).
In its present configuration, the THC is associated with a net transport of warm
surface water to the North Atlantic ocean and a net transport of cold deep water
away from this region, thereby (it is believed) warming North Europe relative to
other regions at this latitude [69]. A significant result from an early simple con-
ceptual model due to Stommel [78], in which sea surface salinity and temperature
differences between high- and low-latitudes are nonlinearly coupled, suggested that
the present configuration of the THC may not be the only one it can take, but that
for a broad range of surface buoyancy forcings a weaker circulation associated with
a dramatic reduction in poleward heat transport is also dynamically permitted.
Subsequent investigations with EMICs and GCMs (e.g. [30], [50], [66]) confirmed
the existence of these multiple circulation states; these results have also been found
to be broadly consistent with paleoclimatic data (e.g. [8], [13], [21], [77]). Parame-
terisation of high-frequency “weather” variability by stochastic processes in simple
models of the THC leads to models characterised by spontaneous rapid transitions
between metastable states of ocean circulation (e.g. [11], [24], [44], [54], [79], [82]).
Because ocean temperature is actively coupled to the temperature of the air above,



it adjusts on much faster timescales than salinity; heuristic scaling arguments then
boil these simple models of the THC down to one-dimensional multistable stocha-
stic differential equations ([54], [82]). In [52], Monahan considers versions of the
simple Stommel box model of the THC perturbed by random noise, in particular
for parameter combinations for which the stationary probability density function
is bimodal. A discussion of the phenomenon of stabilisation by noise (well known
from mechanical problems) leads to the problem of stochastic reduction effects of
hysteresis loops and stochastic perturbation of bifurcation scenarios, analysed in
detail in, for example, Berglund and Gentz [5].

3.3 Quaternary Climate Variability

Over the last few decades, our understanding of global climate variability throug-
hout the Quaternary has increased dramatically, due largely to the analysis of
paleoclimate proxy data from ice cores and ocean sediments (e.g.[7], [36], [64],
[70]). In particular, we now have very good evidence that the last 400,000 years
have seen four alternations between cold glacial (ice-age) conditions and warm in-
terglacial (resembling the present-day) conditions. The 100,000 year period of these
glacial /interglacial oscillations matches very well the timescale of the Milankovitch
cycle associated with variations in the Earth’s eccentricity. Furthermore, it has be-
come clear that while the climate system is relatively stable during interglacials, as
in the present Holocene (the last ~ 10,000 years) the glacial climate is characterised
by abrupt millennial-scale fluctuations between cold stadial and warm interstadial
states; these have come to be known as Dansgaard-Oeschger (D/O) events. The
realisation that the THC may be subject to abrupt and radical changes, coupled
with the recognition of its importance in the global transport of energy, have led
to its implication as a key player in these dramatic and rapid shifts in the clima-
te system (e.g. [8], [76]). The existence of multiple stable or metastable states in
the climate system plays a central role in various mechanisms proposed to explain
glacial /interglacial cycles or D/O oscillations (e.g. [21], [58], [74]), although this
is not the case in all proposed mechanisms (e.g. [23]). Ganopolski and Rahmstorf
have recently brought the phenomenon of stochastic resonance home to climate re-
search in this context, proposing that the D/O oscillations arise as a stochastically
resonant response to an as-yet-unspecified 1500-year cyclic forcing [21]. Simple re-
duced climate models have played a central role in interpreting the paleoclimate
record (e.g. [22], [23], [58], [72]) and will undoubtedly continue to do so; paramete-
risation of unresolved variability by stochastic fluctuations will presumably figure
prominently in these studies.

3.4 ENSO

The time-mean state of the tropical Pacific ocean is characterised by an east-west
(zonal) gradient in sea surface temperature (SST), with warm waters in the west



and cool waters in the east. Surface winds generally blow from east to the west
(the trade winds), with surface convergence and rising air in the western Pacific,
and surface divergence and sinking air in the eastern Pacific [65]. The coupled
atmosphere-ocean system in the equatorial Pacific is highly variable around this
time-mean state, characterised by dramatic warmings and coolings of the central
and eastern equatorial Pacific, referred to respectively as El Nino and La Nina
events. During an El Nino (La Nina), trade winds slacken (intensify), and con-
vection and precipitation in the western Pacific decrease (increase). El Ninos (La
Ninas) tend to be phase-locked to the annual cycle, achieving their peak intensities
around December or January, and occur irregularly with a typical recurrence time
of 3-5 years, with successive events usually (but not always) separated by a La Nina
(El Nino) event [12]. The atmospheric component of this variability is known as
the Southern Oscillation, and the variability of the whole system is generally refer-
red to by the acronym ENSO (El Nino and the Southern Oscillation). Changes in
the intensity and location of atmospheric convection are associated with droughts
and floods, and can have serious social and economic impacts, as can impacts on
fisheries associated with changes eastern Pacific SST and thermocline depth.
Simple conceptual models have played a central role in the development of our
understanding of ENSO. A large number of low-dimensional deterministic and
stochastic models have been designed to describe its dynamics and predict its oc-
currence. These include multivariate Ornstein-Uhlenbeck processes (e.g. [38], [55],
[62]), deterministic nonlinear differential equations (e.g. [37], [83]), deterministic
delay-differential equations (e.g. [80], [86]), and stochastic differential equations
with nonlinear drifts (e.g. [85]). These various studies have been able to address,
with varying degrees of success, such aspects of ENSO as its characteristic recur-
rence timescale, its phase-locking to the annual cycle, and its irregularity. The
relative merits of these different models have been a subject of debate; in particu-
lar, there was a controversy in the 1990’s as to whether ENSO variability was best
described as chaotic, as a perturbed limit cycle, or as a stable fixed point driven by
stochastic fluctuations. Recent studies tend to support the hypothesis that to first
order ENSO is best described as a multivariate Ornstein-Uhlenbeck process (e.g.
[63], [81]), although variability in the tropical Pacific does not appear to be strictly
linear (e.g. [10], [51]). Simple conceptual models have recently been employed to
describe observed decadal-scale modulations of ENSO (e.g. [25], [87]); these stu-
dies have so far been deterministic, but unresolved high-frequency variability may
conceivably play a role in this interdecadal variability.

3.5 Multistable Systems

A common mathematical structure behind many of these reduced climate models is
stochastic (partial) differential equations with non-linear drift and relatively simple
stochastic forcing. Often either additional external periodic forcing, or autonomous
periodic forcing through limit cycles or delay is present. The effect of the non-linear



drift on the system may be pictured in terms of white noise driven particles moving
on a complex potential landscape, the minima of which provide finitely many me-
tastable states (attractor basins), to be interpreted as climate states in our setting.
The effective dynamics is roughly governed by Markovian transitions (hopping)
between climates happening at time scales characterized by the geometry of the
potential. Tools for the mathematical treatment of these models are found in the
arsenal of random dynamical systems and ergodic theory (see Arnold [1]), stocha-
stic (partial) differential equations (see Zabczyk [89]), large deviations (Freidlin
and Wentzell [19]), and the spectral theory of linear operators.

These mathematical tool boxes have been opened in a number of papers dealing
with climate models of the type just sketched. To explain stochastic resonance in
a general potential landscape with finitely many minima, Freidlin [18] goes as far
as large deviations’ theory can take. In the absence of periodic external forcing,
the exponential order of times at which successive transitions between metastable
states happen corresponds to the work to be done against the potential gradient to
leave a well divided by noise intensity (Kramers’ time). The attractor basins are
subdivided into a hierarchy of cycles with main states corresponding to the deepest
among the cycle states. In the presence of periodic forcing with period time scale
e, where € denotes the noise intensity, in the limit € — 0 transitions between (the
main states of) cycles with critical hopping work close to a will be periodically
observed. Transitions with smaller critical work may happen, but are negligible
in the limit. Those with larger critical work are forbidden, this way creating the
hierarchy of decoupling/coupling of states encountered in Fischer et al. [17] and
Huisinga et al. [31]. In the simplest case of two minima of potential depth % and
5, v <V, the role of which switches periodically at time 7', for T" larger than ee
the diffusion will be close to the deterministic periodic function jumping between
the locations of the deepest wells. As T exceeds this exponential order, many short
excursions to the wrong well during one period will occur. They will not count on
the exponential scale, but trajectories will look less and less periodic. It therefore
becomes clear that the physicists’ quality measures of goodness for tuning cannot
be explained by large deviations alone. The thesis by I. Pavljukevich [60], and
the related papers ([33], [34]) deal with a mathematical foundation of the physical
paradigm of stochastic resonance. As opposed to Berglund and Gentz [4] the main
subject of their studies are - in the physical jargon - measures of quality of tuning of
the output to the periodic input. The physicists’ preferred measure, spectral power
amplification, is extensively studied by means of spectral theory of the associated
infinitesimal generator, and by comparison with the reduced dynamics of a Markov
chain on the finite state space consisting only of the metastable states. Surprisingly,
the reduced dynamics cannot capture the transition characteristics responsible for
resonance phenomena of the diffusion, due to the importance of small fluctuations
in the bottoms of the potential wells.

For parametrized deterministic dynamical systems passing through a pitchfork
bifurcation point, the relaxation of solutions to stable equilibria are known to
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happen after well known delays. In [4], [5] and [6], Berglund and Gentz exploit this
observation to derive pathwise estimates of the trajectories of noisy perturbations
of these systems. These results are applied to situations in which the parameter
moves the system in hysteresis loops back and forth through bifurcation points, for
example in periodically changing double well potentials. The papers thus clarify
questions concerning the trajectory-wise behaviour in the context of stochastic
resonance, and shed new light on the stochastic perturbations of hysteresis cycles
in one-dimensional stochastic differential equations, encountered for instance in
Stommel models of the thermohaline circulation [52].

4 Overview of the Contributions to this Volume

The seven contributions to this special issue of Stochastics and Dynamics represent
the range of topics that were discussed at the second meeting on Stochastic Climate
Models in Chorin.

Berglund and Gentz go “beyond the Fokker-Planck equation” to investigate the
properties of sample paths in multistable models of the kinds typically encountered
in simple climate models, subject to slow external forcing. In the limit that the
dynamical relaxation timescale 7,, the timescale of the forcing 7, and the Kramers
time 7x are well separated:

Tr << T << Tk

asymptotic results are obtained concerning the deviations of sample paths of the
systems away from the corresponding trajectories in the deterministic limit. Par-
ticular attention is paid to stochastic resonance, to the the structure of random
hysteresis loops, and to the effect of noise on bifurcation delay.

The study of Duan, Gao, and Schmalfuss considers the stochastic dynamics of
a zonally-averaged dynamic/thermodynamic ocean model coupled to a stochastic
energy-balance atmosphere model. The existence of a finite-dimensional random
attractor is rigorously proven, as is the ergodicity of the system. Bounds on the ma-
gnitude of the solution process are obtained, and are related to physical parameters
such as the Prandtl and Rayleigh numbers.

Egger addresses the problem of determining the stochastic dynamics of a system
from observational data. Using meteorological data obtained from a valley-wind
field campaign in the Himalayas, he estimates the parameters of a Master equation
for the joint evolution of the along-valley pressure gradient and wind. This analysis
demonstrates the existence of a distinct diurnal cycle in the relationship between
these variables which cannot be captured by a traditional simple regression model.
Farrell and IToannou investigate the dynamics of linear systems in which the ope-
rator is uncertain, with uncertainty represented as stochastic fluctuations. Two
relevant timescales are identified, associated with the mean operator and the de-
cay timescale of the fluctuations, and three characteristic regimes are distinguished
based on the relative sizes of these timescales.

11



Fraedrich considers the scaling behaviour of surface air and soil temperature time
series, and finds long-term memory behaviour inconsistent with a system driven by
white noise. A stochastic partial differential equation including Fickian diffusion
as well as random fluxes is constructed and is demonstrated to reproduce the long-
term memory characterising the observations.

Herrmann and Imkeller aim at a mathematically rigorous understanding of the
interspike distributions in problems of stochastic resonance. A double well situation
is considered, with the diffusion approximated by a two state Markov chain. The
interspike distribution for the chain is given by a geometric law, the parameters of
which can be identified from the system parameters.

Finally, Monahan extends an earlier study [52] in which variability in ocean mi-
xing and surface fluxes are parameterised in a Stommel-type model of the THC
by stochastic processes. The effects of correlations between, and of autocorrelati-
ons within, the stochastic processes on the number of THC regimes, and on the
partitioning of probability mass between these regimes, are investigated using a
combination of analytic and numerical approaches.
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