Hypothesis Testing

- Chapter 8
- Aplia (week 5 – Sampling distributions)

- Chapter 12
- Aplia (week 7)

- Chapter 9 - section 10
- Aplia (week 6 – Correlation, questions 6 and 7)
Hypothesis Testing

• Testing hypotheses with data

• The case of Madam X
 • professes an ability to predict the future
 • devise a means of testing her ability and deciding whether her claims are valid
Hypothesis Testing

• Logic of hypothesis testing

• Assume some hypothesis is true

 Madam X has no special power

• Establish alternative hypothesis

 Madam X can predict better than chance

• Collect a sample of data and determine whether the observed result is unlikely under the assumed hypothesis (null hypothesis; H_0)

 • if result is unlikely, then reject the null hypothesis and accept the alternative hypothesis (H_1)

 • if result is not unlikely, then …
Hypothesis Testing

• Null hypothesis

• coin flip predictions – series of 12 coin flips
 • distribution of outcomes (number of correct predictions) for a person who is just guessing

\[
p(6) = (924)(0.5)^{12}
\]

\[= 0.2256\]

What kind of result would indicate special powers?

\[
p(12) = (0.5)^{12}
\]

\[= 0.0002\]
Hypothesis Testing

• Normal approximation for the binomial test
 • probability distribution of possible outcomes approximates the normal distribution

• 50 coin-flip predictions
 \[n = \text{number of flips} \]
 \[p = p(\text{correct}) \]
 \[q = p(\text{incorrect}) \]
 \[\mu = np = 50(.5) = 25 \]
 \[\sigma = \sqrt{npq} = \sqrt{50(.5)(.5)} = 3.536 \]
Hypothesis Testing

• Normal approximation for the binomial test
 • probability distribution of possible outcomes approximates the normal distribution

• 50 coin-flip predictions
 - suppose there are 33 correct predictions
 - how likely is this result, or anything more extreme?

\[z = \frac{r-np}{\sqrt{npq}} = \frac{33-25}{3.536} = 2.26 \]

Area in smaller portion = .0119
Hypothesis Testing for a Single Mean

• Testing hypotheses about the value of a population mean by using a sample mean

• Research based on a sample of subjects

• Sample mean is used to test hypotheses
 • need to know what value(s) to expect for the sample mean, assuming H_0 is true
 • what happens when a sample is randomly drawn from a population?
Hypothesis Testing for a Single Mean

• Sample drawn from a population
 • consider distribution of all possible outcomes (sample means) when drawing a sample from a population
 • population: 3, 4, 5, 6 \(\mu = 4.50 \) \(\sigma^2 = 1.25 \)
 • all possible samples of \(N = 2 \) (with replacement)
Hypothesis Testing for a Single Mean

Sample	**M**	**$(M - \mu)^2$**
3, 3 | 3.0 | $(3.0 - 4.5)^2$
3, 4 | 3.5 | $(3.5 - 4.5)^2$
4, 3 | 3.5 | $(3.5 - 4.5)^2$
3, 5 | 4.0 | $(4.0 - 4.5)^2$
5, 3 | 4.0 | $(4.0 - 4.5)^2$
4, 4 | 4.0 | $(4.0 - 4.5)^2$
3, 6 | 4.5 | $(4.5 - 4.5)^2$
6, 3 | 4.5 | $(4.5 - 4.5)^2$
4, 5 | 4.5 | $(4.5 - 4.5)^2$
5, 4 | 4.5 | $(4.5 - 4.5)^2$
4, 6 | 5.0 | $(5.0 - 4.5)^2$
6, 4 | 5.0 | $(5.0 - 4.5)^2$
5, 5 | 5.0 | $(5.0 - 4.5)^2$
5, 6 | 5.5 | $(5.5 - 4.5)^2$
6, 5 | 5.5 | $(5.5 - 4.5)^2$
6, 6 | 6.0 | $(6.0 - 4.5)^2$

$$
\Sigma (M - \mu)^2 = 10
$$

Sample Mean

<table>
<thead>
<tr>
<th>Sample Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
</tr>
<tr>
<td>3.0</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>4.0</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>5.0</td>
</tr>
<tr>
<td>5.5</td>
</tr>
<tr>
<td>6.0</td>
</tr>
<tr>
<td>6.5</td>
</tr>
</tbody>
</table>

Frequency

- **Sample Mean**: $\mu = 4.50$
- **Sample Mean Variance**: $\sigma_M^2 = \frac{10}{16} = 0.625$
- **Frequency Distribution**

Note: The frequencies are not explicitly stated in the diagram but can be inferred from the bar heights. The formula for σ_M^2 is derived from the sample variance formula:

$$
\sigma_M^2 = \frac{\sigma^2}{N} = \frac{1.25}{2} = 0.625
$$
Hypothesis Testing for a Single Mean

• Distribution of sample means
 • approximates normal distribution as sample size increases (especially 30 or more), no matter what distribution the original population of scores has
 • always normal if original population is normal
 • mean = population mean \(\mu_M = \mu \)
 • variance = population variance/sample size

\[
\sigma^2_M = \frac{\sigma^2}{N} \quad \sigma_M = \frac{\sigma}{\sqrt{N}}
\] (standard error of the mean)

• Influence of sample size on variance of sample means
Hypothesis Testing for a Single Mean

• Demonstration of sample means with R

```r
x = replicate(10000, runif(1, 1, 100))
hist(x)
means = NULL
means = replicate(5, c(means, mean(runif(5, 1, 100))))
hist(means)
means = NULL
means = replicate(5000, c(means, mean(runif(5, 1, 100))))
hist(means)
means = NULL
means = replicate(10000, c(means, mean(runif(5, 1, 100))))
hist(means)
print(mean(means))
```
Hypothesis Testing for a Single Mean

• Using distribution of sample means to test hypotheses about a population mean
 • mean of random sample taken from a population (distribution of sample means = distribution of all possible outcomes)

• Logic of testing hypotheses about a single population mean using a random sample
 • H_0 specifies a value for μ
 • is the obtained sample mean an unlikely value?
 • among the least likely in the distribution of sample means based on H_0?
Hypothesis Testing for a Single Mean

• Example
 • research hypothesis: experience of a traumatic event influences level of neuroticism
 • in non-traumatized population neuroticism scores are normally distributed with a mean of 12.6 and $\sigma = 3.2$
 • hypotheses for traumatized population:
 \[H_0: \mu = 12.6 \quad H_1: \mu \neq 12.6 \]
 • draw random sample of 20 traumatized people
 • define a result as unlikely if it is among the 5% least likely outcomes
 • suppose for this sample, $M = 13.8$
Hypothesis Testing for a Single Mean

- Where is $M = 13.8$ in the distribution of sample means? (This does not refer to the distribution of raw scores!)
- under H_0, $\mu = 12.6$

\[z = \frac{M - \mu}{\sigma_M} = \frac{13.8 - 12.60}{0.72} = 1.67 \]

\[\sigma_M = \frac{\sigma}{\sqrt{N}} = \frac{3.2}{\sqrt{20}} = 0.72 \]
Hypothesis Testing for a Single Mean

• Summary of hypothesis testing situation
 • one of two possible true states
 • \(H_0 \) is true or \(H_1 \) is true
 • one of two possible decisions
 • reject \(H_0 \) or not reject \(H_0 \)

<table>
<thead>
<tr>
<th>Decision</th>
<th>H₀ true</th>
<th>H₁ true</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject (H₀)</td>
<td>Error (Type I) (\alpha)</td>
<td>Correct decision</td>
</tr>
<tr>
<td>Not reject (H₀)</td>
<td>Correct decision</td>
<td>Error (Type II) (\beta)</td>
</tr>
</tbody>
</table>
Hypothesis Testing for a Single Mean

- z test depends on unrealistic situations in which σ^2 is known

- Implications of not knowing σ^2
 - variability of sample means is not known
 - not known where to place observed sample mean in the distribution of sample means

$H_0: \mu = 40$

$M = 46$

$\sigma_M = ?$

$N = 25$

$\mu = 40$
Hypothesis Testing for a Single Mean

• σ^2 can be estimated from the sample data
 • variance of sample scores is an estimate of σ^2
 • importance of using an unbiased estimate of σ^2

\[s^2 = \frac{\sum (X - M)^2}{N - 1} \]

• estimate σ_M using s \(\rightarrow\)
 \[s_M = \frac{s}{\sqrt{N}} \]
Hypothesis Testing for a Single Mean

• Rather than converting to z scores using σ_M, each sample mean would be converted using its own estimate of σ_M:

$$s_M = \frac{s}{\sqrt{N}}$$

$$t = \frac{M - \mu}{s_M}$$

• Unlike the z score conversion, this conversion will not generate a normal distribution of t, even though distribution of M is normal

• source of the problem: s^2 varies across samples and its distribution is a positive skew
Hypothesis Testing for a Single Mean

- Distribution of sample variances – \(\sigma^2 = 25, \ N = 10 \)
Hypothesis Testing for a Single Mean

- Distribution of sample variance is positively skewed
 - s^2 is smaller than σ^2 (and s is smaller than σ) for most samples, especially when N is small

- Converting sample means to t values based on sample-specific s generates a non-normal distribution of t
 \[
t = \frac{M - \mu}{s_M}
\]

More area in the tails of the t distribution--upper .05 of t is further out from the mean
Review of Essential Concepts

- Evolution of the t distribution

Normal

t ($df = 40$)

t ($df = 10$)
Review of Essential Concepts

• Evolution of the t distribution
Hypothesis Testing for a Single Mean

- What does this mean?
- a completely new table
- a separate t distribution for each value of df

$$t = \frac{M - \mu}{s_M}$$

$df = N - 1$
Hypothesis Testing for a Single Mean

- What does this mean?
- a completely new table
- a separate t distribution for each value of df

$$t = \frac{M - \mu}{S_M}$$

![Diagram showing a normal distribution with $df = 9$, critical values 1.833 and 2.822, and significance levels 0.05 and 0.01.]}
Hypothesis Testing for a Single Mean

- What does this mean?
 - a completely new table
 - a separate \(t \) distribution for each value of \(df \)

\[
t = \frac{M - \mu}{S_M}
\]

\(df = 100 \)
Hypothesis Testing for a Single Mean

• Example: level of dopamine is different in individuals with schizophrenia
 • mean level among unaffected individuals is 36 units
 \(H_0: \mu = 36 \quad H_1: \mu \neq 36 \quad (\alpha = .05) \)
 • random sample of 30 individuals with schizophrenia
 \(M = 40.2, \quad s = 10.2 \)

\[
 s_M = \frac{s}{\sqrt{N}} = \frac{10.2}{\sqrt{30}} = 1.86
\]

\[
 t = \frac{M - \mu}{s_M} = \frac{40.2 - 36}{1.86} = 2.26
\]

Reject \(H_0 \)

\[
t(29) = 2.26, \quad p < .05
\]
Hypothesis Testing for a Single Mean

- Hypothesis: Victims of bullying develop lower than normal levels of self esteem
- mean score among general population is 84
 \[H_0: \mu = 84 \quad H_1: \mu < 84 \quad (\alpha = .05) \]
- random sample of 26 individuals with a history of victimization
 \[M = 78.3, \quad s = 16.5 \]

\[
S_M = \frac{s}{\sqrt{N}} = \frac{16.5}{\sqrt{26}} = 3.24
\]

\[
t = \frac{M - \mu}{S_M} = \frac{78.3 - 84}{3.24} = -1.76
\]

Reject \(H_0 \)

\[t(25) = -1.76, \quad p < .05 \]
Confidence Intervals

- Estimating a population mean
 - point estimate: sample mean, M
 - interval estimate: confidence interval
 - based on the fact that a known percentage of sample means fall within a specific distance of μ

Probability that a sample mean will be within one σ_M of μ?

Within two σ_M of μ?
Confidence Intervals

• Confidence interval
 • consider an interval extending one σ_M on each side of M
 • does this interval contain μ?

With a random sample, what is the probability that M is within one σ_M of μ?
Confidence Intervals

- Confidence interval of arbitrary size
- 95% confidence interval

$z = 1.96$
$z = -1.96$

M
μ
$z = 1.96$

95%
Confidence Intervals

- Confidence interval of arbitrary size
- 95% confidence interval

Confidence interval is $M \pm z_{\text{crit}}(\sigma_M) = M \pm 1.96(\sigma_M)$
Confidence Intervals

• Example
 • confidence interval for estimating mean level of neuroticism in population of individuals who have suffered a trauma
 • in population of non-traumatized people, $\sigma = 3.2$
 • draw random sample of 20 traumatized people

\[
\sigma_M = \frac{3.2}{\sqrt{20}} = 0.72 \quad M = 13.9
\]

95% CI = $M \pm 1.96(\sigma_M) = 13.9 \pm 1.96(0.72) = 13.9 \pm 1.41$

95% CI lower limit = 12.49, upper limit = 15.31
Confidence Intervals

• Various levels of confidence

\[\sigma_M = \frac{3.2}{\sqrt{20}} = 0.72 \]

99% CI = \(M \pm 2.58(\sigma_M) = 13.9 \pm 1.86 \Rightarrow 12.04 - 15.76 \)

95% CI = \(M \pm 1.96(\sigma_M) = 13.9 \pm 1.41 \Rightarrow 12.49 - 15.31 \)

90% CI = \(M \pm 1.65(\sigma_M) = 13.9 \pm 1.19 \Rightarrow 12.71 - 15.09 \)

Principle: higher confidence => wider interval
Confidence Intervals

• Impact of sample size on CI

\[\sigma_M = \frac{3.2}{\sqrt{20}} = 0.72 \quad \sigma_M = \frac{3.2}{\sqrt{40}} = 0.51 \quad \sigma_M = \frac{3.2}{\sqrt{60}} = 0.41 \]

\(N = 20 \): 95% CI = \(M \pm 1.96(\sigma_M) = 13.9 \pm 1.41 \)
\(N = 40 \): 95% CI = \(M \pm 1.96(\sigma_M) = 13.9 \pm 1.00 \)
\(N = 60 \): 95% CI = \(M \pm 1.96(\sigma_M) = 13.9 \pm 0.80 \)

Principle: larger \(N \) \(\Rightarrow \) smaller interval
Confidence Intervals

• Confidence intervals when σ^2 is not known
 • variability of distribution of sample means estimated using s_M

$$t = \frac{M - \mu}{s_M}$$

$N = 30$
$df = 29$

<table>
<thead>
<tr>
<th>df</th>
<th>.30</th>
<th>.20</th>
<th>.10</th>
<th>.05</th>
<th>.025</th>
<th>.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>1.058</td>
<td>1.315</td>
<td>1.706</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.057</td>
<td>1.314</td>
<td>1.703</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.056</td>
<td>1.313</td>
<td>1.701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.055</td>
<td>1.311</td>
<td>1.699</td>
<td>2.045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.055</td>
<td>1.310</td>
<td>1.697</td>
<td></td>
<td>2.042</td>
<td></td>
</tr>
</tbody>
</table>

Level of Significance for One-Tailed Test

Level of Significance for Two-Tailed Test

.05
Confidence Intervals

- Confidence intervals when σ^2 is not known
- Variability of distribution of sample means estimated using s_M

Sample data: $N = 30$, $M = 78.3$, $s = 17.8$

\[
s_M = \frac{17.8}{\sqrt{30}} = 3.25
\]

95% CI: $M \pm t_{\text{crit}} (s_M)$
\[
= 78.3 \pm 2.045(3.25)
= 78.3 \pm 6.65
= 71.65 \text{ to } 84.95
Confidence Intervals

• A note about interpreting confidence intervals
 • a procedure for generating intervals such that 95% of them will contain μ
 • once an interval is constructed from an obtained sample, we cannot make valid claims about how likely it is that μ is in that particular interval
Significance Test for r

- Section 9.10 in the Howell text book

- Population parameter ρ null hypothesis: $\rho = 0$
 - even if ρ is 0, it is likely that a (random) sample will produce $r \neq 0$

- Consider a small population of scores with $\rho = 0$

![Diagram](image_url)
Significance Test for r

- Section 9.10

- Population parameter ρ null hypothesis: $\rho = 0$
 - even if ρ is 0, it is likely that a (random) sample will produce $r \neq 0$

- Consider a small population of scores with $\rho = 0$
Significance Test for r

- Population parameter ρ null hypothesis: $\rho = 0$
- is the observed value of r among the least likely expected under the null hypothesis?
- what does the distribution of sample values of r look like under the null hypothesis?
 - roughly normal, depending on sample size
 - as sample size increases, variability of r values decreases

$N = 8$

$N = 40$

N increases
Significance Test for r

- Table of critical values for r (Table E.2 in textbook)
 - depends on sample size and significance level
 - degrees of freedom: $df = N - 2$
 - significance level usually .05 (least likely values)
 - two-tailed p values

<table>
<thead>
<tr>
<th>df</th>
<th>$p = .10$</th>
<th>$p = .05$</th>
<th>$p = .025$</th>
<th>$p = .01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.805</td>
<td>0.878</td>
<td>0.924</td>
<td>0.959</td>
</tr>
<tr>
<td>4</td>
<td>0.729</td>
<td>0.811</td>
<td>0.868</td>
<td>0.917</td>
</tr>
<tr>
<td>5</td>
<td>0.669</td>
<td>0.755</td>
<td>0.817</td>
<td>0.875</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>60</td>
<td>0.211</td>
<td>0.250</td>
<td>0.285</td>
<td>0.325</td>
</tr>
<tr>
<td>120</td>
<td>0.150</td>
<td>0.178</td>
<td>0.203</td>
<td>0.232</td>
</tr>
<tr>
<td>200</td>
<td>0.116</td>
<td>0.138</td>
<td>0.158</td>
<td>0.181</td>
</tr>
<tr>
<td>500</td>
<td>0.073</td>
<td>0.088</td>
<td>0.100</td>
<td>0.115</td>
</tr>
</tbody>
</table>
Significance Test for r

- Reporting significance test for r
 - $N = 70 \quad r = .30$
 - $r(68) = .30, \ p < .05$

<table>
<thead>
<tr>
<th>df</th>
<th>$p = .10$</th>
<th>$p = .05$</th>
<th>$p = .025$</th>
<th>$p = .01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.805</td>
<td>0.878</td>
<td>0.924</td>
<td>0.959</td>
</tr>
<tr>
<td>4</td>
<td>0.729</td>
<td>0.811</td>
<td>0.868</td>
<td>0.917</td>
</tr>
<tr>
<td>5</td>
<td>0.669</td>
<td>0.755</td>
<td>0.817</td>
<td>0.875</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.211</td>
<td>0.250</td>
<td>0.285</td>
<td>0.325</td>
</tr>
<tr>
<td>120</td>
<td>0.150</td>
<td>0.178</td>
<td>0.203</td>
<td>0.232</td>
</tr>
<tr>
<td>200</td>
<td>0.116</td>
<td>0.138</td>
<td>0.158</td>
<td>0.181</td>
</tr>
<tr>
<td>500</td>
<td>0.073</td>
<td>0.088</td>
<td>0.100</td>
<td>0.115</td>
</tr>
</tbody>
</table>
Significance Test for r

- **Using R to test significance of r**

```r
> dat=read.table(file.choose(new=T),header=T)
> plot(dat)
> head(dat)
  X  Y
1 33 81
2 38 64
3 30 76
4 41 74
5 38 66
6 38 63
```
Significance Test for r

- Using \textbf{R} to test significance of r

```r
> cor.test(dat$X, dat$Y)

Pearson's product-moment correlation

data:  dat$X and dat$Y
t = -3.1535, df = 38, p-value = 0.003147
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
  -0.6716504  -0.1677122
sample estimates:
  cor
-0.4554282
```
Significance Test for r

- Test of r by conversion to t ratio
 - degrees of freedom: $df = N - 2$

$$t = r \sqrt{\frac{N - 2}{1 - r^2}}$$
Significance Test for r

- $X =$ treatment, $Y =$ cog. latency
- cell phone use & simulated driving

\[r = .73 \]

H_0: $\rho = 0$

H_1: $\rho \neq 0$

\[t = r \sqrt{\frac{N - 2}{1 - r^2}} \]

\[= .73 \sqrt{\frac{12 - 2}{1 - .73^2}} \]

\[= 3.38 \]

$t_{crit}(10) = \pm 2.228$
Significance Test for r

- $X =$ treatment, $Y =$ cog. latency

$H_0: \rho = 0$

$H_1: \rho \neq 0$

$N = 12$

$r = .73$

From Table E.2

$df = 10,$

critical $r = \pm .576$

Table E.2

Significant Values of the Correlation Coefficient

<table>
<thead>
<tr>
<th>df</th>
<th>Two-Tailed Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p = .10$</td>
</tr>
<tr>
<td>3</td>
<td>.805</td>
</tr>
<tr>
<td>...</td>
<td>....</td>
</tr>
<tr>
<td>9</td>
<td>.521</td>
</tr>
<tr>
<td>10</td>
<td>.498</td>
</tr>
<tr>
<td>11</td>
<td>.476</td>
</tr>
</tbody>
</table>

$r(10) = .73, p < .01$