Hypothesis Testing

• Chapter 8
• Aplia (week 5 – Sampling distributions)

• Chapter 12
• Aplia (week 7)

• Chapter 9 - section 10
• Aplia (week 6 – Correlation, questions 6 and 7)
Hypothesis Testing

• Testing hypotheses with data

• The case of Madam X
 • professes an ability to predict the future
 • devise a means of testing her ability and deciding whether her claims are valid
Hypothesis Testing

• Logic of hypothesis testing

• Assume some hypothesis is true

 Madam X has no special power

• Establish alternative hypothesis

 Madam X can predict better than chance

• Collect a sample of data and determine whether the observed result is unlikely under the assumed hypothesis (*null hypothesis*; H_0)

 • if result is unlikely, then reject the null hypothesis and accept the *alternative hypothesis* (H_1)

 • if result is not unlikely, then …
Hypothesis Testing

• Null hypothesis

• coin flip predictions – series of 12 coin flips
 • distribution of outcomes (number of correct predictions) for a person who is just guessing

What kind of result would indicate special powers?

\[p(6) = (924)(.5)^{12} = .2256 \]

\[p(12) = (.5)^{12} = .0002 \]
Hypothesis Testing

• Normal approximation for the binomial test
 • probability distribution of possible outcomes approximates the normal distribution

• 50 coin-flip predictions
 \[n = \text{number of flips} \]
 \[p = p(\text{correct}) \]
 \[q = p(\text{incorrect}) \]
 \[\mu = np = 50(.5) = 25 \]
 \[\sigma = \sqrt{npq} = \sqrt{50(.5)(.5)} = 3.536 \]
Hypothesis Testing

• Normal approximation for the binomial test
 • probability distribution of possible outcomes approximates the normal distribution

• 50 coin-flip predictions
 - suppose there are 33 correct predictions
 - how likely is this result, or anything more extreme?

\[z = \frac{r - np}{\sqrt{npq}} = \frac{33 - 25}{3.536} = 2.26 \]

Area in smaller portion = .0119
Hypothesis Testing for a Single Mean

• Testing hypotheses about the value of a population mean by using a sample mean

• Research based on a sample of subjects

• Sample mean is used to test hypotheses
 • need to know what value(s) to expect for the sample mean, assuming H_0 vs. H_1 is true
 • what happens when a sample is randomly drawn from a population?
Hypothesis Testing for a Single Mean

• Example: ability to mentally represent spatial information---mental rotation test

• Standardized test provides μ and σ for a population

• Sample of subjects given practice on an action video game
 • does this practice improve spatial skills?
Hypothesis Testing for a Single Mean

- Sample drawn from a population
 - consider distribution of all possible outcomes (sample means) when drawing a sample from a population
 - population: 3, 4, 5, 6 \(\mu = 4.50 \) \(\sigma^2 = 1.25 \)
 - all possible samples of \(N = 2 \) (with replacement)
Sample Testing for a Single Mean

<table>
<thead>
<tr>
<th>Sample</th>
<th>M</th>
<th>$(M - \mu)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 3</td>
<td>3.0</td>
<td>$(3.0 - 4.5)^2$</td>
</tr>
<tr>
<td>3, 4</td>
<td>3.5</td>
<td>$(3.5 - 4.5)^2$</td>
</tr>
<tr>
<td>4, 3</td>
<td>3.5</td>
<td>$(3.5 - 4.5)^2$</td>
</tr>
<tr>
<td>3, 5</td>
<td>4.0</td>
<td>$(4.0 - 4.5)^2$</td>
</tr>
<tr>
<td>5, 3</td>
<td>4.0</td>
<td>$(4.0 - 4.5)^2$</td>
</tr>
<tr>
<td>4, 4</td>
<td>4.0</td>
<td>$(4.0 - 4.5)^2$</td>
</tr>
<tr>
<td>3, 6</td>
<td>4.5</td>
<td>$(4.5 - 4.5)^2$</td>
</tr>
<tr>
<td>6, 3</td>
<td>4.5</td>
<td>$(4.5 - 4.5)^2$</td>
</tr>
<tr>
<td>4, 5</td>
<td>4.5</td>
<td>$(4.5 - 4.5)^2$</td>
</tr>
<tr>
<td>5, 4</td>
<td>4.5</td>
<td>$(4.5 - 4.5)^2$</td>
</tr>
<tr>
<td>4, 6</td>
<td>5.0</td>
<td>$(5.0 - 4.5)^2$</td>
</tr>
<tr>
<td>6, 4</td>
<td>5.0</td>
<td>$(5.0 - 4.5)^2$</td>
</tr>
<tr>
<td>5, 5</td>
<td>5.0</td>
<td>$(5.0 - 4.5)^2$</td>
</tr>
<tr>
<td>5, 6</td>
<td>5.5</td>
<td>$(5.5 - 4.5)^2$</td>
</tr>
<tr>
<td>6, 5</td>
<td>5.5</td>
<td>$(5.5 - 4.5)^2$</td>
</tr>
<tr>
<td>6, 6</td>
<td>6.0</td>
<td>$(6.0 - 4.5)^2$</td>
</tr>
</tbody>
</table>

$\Sigma (M - \mu)^2 = 10$

$\mu_M = \mu = 4.50$

$\sigma_M^2 = \frac{10}{16} = 0.625$

$\sigma^2 = \frac{\sigma^2}{N} = \frac{1.25}{2} = 0.625$
Hypothesis Testing for a Single Mean

• Distribution of sample means
 • approximates normal distribution as sample size increases (especially 30 or more), no matter what distribution the original population of scores has
 • always normal if original population is normal
 • mean = population mean \(\mu_M = \mu \)
• variance = population variance/sample size

\[\sigma^2_M = \frac{\sigma^2}{N} \quad \sigma_M = \frac{\sigma}{\sqrt{N}} \quad (\text{standard error of the mean}) \]

• Influence of sample size on variance of sample means
Hypothesis Testing for a Single Mean

• Using distribution of sample means to test hypotheses about a population mean
 • mean of random sample taken from a population (distribution of sample means = distribution of all possible outcomes)

• Logic of testing hypotheses about a single population mean using a random sample
 • H_0 specifies a value for μ
 • is the obtained sample mean an unlikely value?
 • among the least likely in the distribution of sample means based on H_0?
Hypothesis Testing for a Single Mean

• Example
 • research hypothesis: experience of a traumatic event influences level of neuroticism
 • in non-traumatized population neuroticism scores are normally distributed with a mean of 12.6 and $\sigma = 3.2$
 • hypotheses for traumatized population:
 \[H_0: \mu = 12.6 \quad H_1: \mu \neq 12.6 \]
 • draw random sample of 20 traumatized people
 • define a result as unlikely if it is among the 5% least likely outcomes
 • suppose for this sample, $M = 13.8$
Hypothesis Testing for a Single Mean

• Where is \(M = 13.8 \) in the distribution of sample means? (This does not refer to the distribution of raw scores!)

• under \(H_0, \ \mu = 12.6 \)

\[
\sigma_M = \frac{\sigma}{\sqrt{N}} = \frac{3.2}{\sqrt{20}} = 0.72
\]

\[
z = \frac{M - \mu}{\sigma_M} = \frac{13.8 - 12.6}{0.72} = 1.67
\]
Hypothesis Testing for a Single Mean

- Summary of hypothesis testing situation
 - one of two possible true states
 - H_0 is true or H_1 is true
 - one of two possible decisions
 - reject H_0 or not reject H_0

<table>
<thead>
<tr>
<th>Real Situation</th>
<th>H_0 true</th>
<th>H_1 true</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H_0</td>
<td>Error (Type I) α</td>
<td>Correct decision</td>
</tr>
<tr>
<td>Not reject H_0</td>
<td>Correct decision</td>
<td>Error (Type II) β</td>
</tr>
</tbody>
</table>
Hypothesis Testing for a Single Mean

- z test depends on unrealistic situations in which σ^2 is known

- Implications of not knowing σ^2
 - Variability of sample means is not known
 - Not known where to place observed sample mean in the distribution of sample means

$H_0: \mu = 40$
Hypothesis Testing for a Single Mean

- σ^2 can be estimated from the sample data
- variance of sample scores is an estimate of σ^2
- importance of using an unbiased estimate of σ^2

$$s^2 = \frac{\sum (X - M)^2}{N - 1}$$

- estimate σ_M using s -> $s_M = \frac{s}{\sqrt{N}}$
Hypothesis Testing for a Single Mean

• Rather than converting to z scores using σ_M, each sample mean would be converted using its own estimate of σ_M:

$$s_M = \frac{s}{\sqrt{N}}$$

$$t = \frac{M - \mu}{s_M}$$

• Unlike the z score conversion, this conversion will not generate a normal distribution of t, even though distribution of M is normal.

• source of the problem: s^2 varies across samples and its distribution is a positive skew
Hypothesis Testing for a Single Mean

• Distribution of sample variances – $\sigma^2 = 25$, $N = 10$

![Histogram showing the distribution of sample variances with a median of $s^2 = 23.2$ and a mean of $s^2 = 25.0$.](image)
Hypothesis Testing for a Single Mean

- Distribution of sample variance is positively skewed
 - s^2 is smaller than σ^2 (and s is smaller than σ) for most samples, especially when N is small

- Converting sample means to t values based on sample-specific s generates a non-normal distribution of t

$$t = \frac{M - \mu}{s_M}$$

More area in the tails of the t distribution--upper .05 of t is further out from the mean
Review of Essential Concepts

• Evolution of the t distribution

Normal

$t \ (df = 40)$

$t \ (df = 10)$
Review of Essential Concepts

• Evolution of the t distribution
Hypothesis Testing for a Single Mean

• What does this mean?
 • a completely new table
 • a separate t distribution for each value of df

\[
t = \frac{M - \mu}{S_M}
\]

\[
df = N - 1
\]
Hypothesis Testing for a Single Mean

- What does this mean?
 - a completely new table
 - a separate t distribution for each value of df

$$t = \frac{M - \mu}{\frac{S}{\sqrt{n}}}$$

$df = 9$

t-distribution with $df = 9$
Hypothesis Testing for a Single Mean

• What does this mean?
 • a completely new table
 • a separate t distribution for each value of df

$$t = \frac{M - \mu}{S_M}$$

$t = 1.660$ for $df = 100$ at 0.05 level of significance.
$t = 2.364$ for $df = 100$ at 0.01 level of significance.
Hypothesis Testing for a Single Mean

• Example: level of dopamine is different in individuals with schizophrenia

 • mean level among unaffected individuals is 36 units

 \[H_0: \mu = 36 \quad H_1: \mu \neq 36 \quad (\alpha = .05) \]

 • random sample of 30 individuals with schizophrenia

 \[M = 40.2, \quad s = 10.2 \]

\[
s_M = \frac{s}{\sqrt{N}} = \frac{10.2}{\sqrt{30}} = 1.86
\]

\[
t = \frac{M - \mu}{s_M} = \frac{40.2 - 36}{1.86} = 2.26
\]

Reject \(H_0 \)

\[t(29) = 2.26, \quad p < .05 \]
Hypothesis Testing for a Single Mean

• Hypothesis: Victims of bullying develop lower than normal levels of self esteem
 • mean score among general population is 84
 \[H_0: \mu = 84 \quad H_1: \mu < 84 \quad (\alpha = .05) \]
 • random sample of 26 individuals with a history of victimization
 \[M = 78.3, \quad s = 16.5 \]

\[
S_M = \frac{s}{\sqrt{N}} = \frac{16.5}{\sqrt{26}} = 3.24
\]

\[
t = \frac{M - \mu}{S_M} = \frac{78.3 - 84}{3.24} = -1.76
\]

Reject \(H_0 \)
\[t(25) = -1.76, \quad p < .05 \]
Confidence Intervals

• Estimating a population mean
 • point estimate: sample mean, M
 • interval estimate: confidence interval
 • based on the fact that a known percentage of sample means fall within a specific distance of μ

Probability that a sample mean will be within one σ_M of μ?

Within two σ_M of μ?
Confidence Intervals

• Confidence interval
 • consider an interval extending one σ_M on each side of M
 • does this interval contain μ?

With a random sample, what is the probability that M is within one σ_M of μ?
Confidence Intervals

- Confidence interval of arbitrary size
- 95% confidence interval
Confidence Intervals

• Confidence interval of arbitrary size
• 95% confidence interval

Confidence interval is

\[M \pm z_{\text{crit}}(\sigma_M) = M \pm 1.96(\sigma_M) \]
Confidence Intervals

• Example
 • confidence interval for estimating mean level of neuroticism in population of individuals who have suffered a trauma
 • in population of non-traumatized people, $\sigma = 3.2$
 • draw random sample of 20 traumatized people

$$\sigma_M = \frac{3.2}{\sqrt{20}} = 0.72 \quad M = 13.9$$

95% CI = $M \pm 1.96(\sigma_M) = 13.9 \pm 1.96(0.72)$

= 13.9 ± 1.41

95% CI lower limit = 12.49, upper limit = 15.31
Confidence Intervals

- Various levels of confidence

\[\sigma_M = \frac{3.2}{\sqrt{20}} = 0.72 \]

99% CI = \[M \pm 2.58(\sigma_M) = 13.9 \pm 1.86 \Rightarrow 12.04 - 15.76 \]

95% CI = \[M \pm 1.96(\sigma_M) = 13.9 \pm 1.41 \Rightarrow 12.49 - 15.31 \]

90% CI = \[M \pm 1.65(\sigma_M) = 13.9 \pm 1.19 \Rightarrow 12.71 - 15.09 \]

Principle: higher confidence => wider interval

Distribution of sample means

Principle: higher confidence => wider interval
Confidence Intervals

• Impact of sample size on CI

\[\sigma_M = \frac{3.2}{\sqrt{20}} = 0.72 \]
\[\sigma_M = \frac{3.2}{\sqrt{40}} = 0.51 \]
\[\sigma_M = \frac{3.2}{\sqrt{60}} = 0.41 \]

\(N = 20: \) 95% CI = \(M \pm 1.96(\sigma_M) = 13.9 \pm 1.41 \)
\(N = 40: \) 95% CI = \(M \pm 1.96(\sigma_M) = 13.9 \pm 1.00 \)
\(N = 60: \) 95% CI = \(M \pm 1.96(\sigma_M) = 13.9 \pm 0.80 \)

Principle: larger \(N \) \(\Rightarrow \) smaller interval
Confidence Intervals

• Confidence intervals when \(\sigma^2 \) is not known
 • variability of distribution of sample means estimated using \(s_M \)

\[t = \frac{M - \mu}{s_M} \]

\[N = 30 \]
\[df = 29 \]

| Level of Significance for One-Tailed Test |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| \(\cdot .15 \) | \(.10 \) | \(.05 \) | \(.025 \) | \(.01 \) |

|LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST|
|-----------------|-----------------|-----------------|-----------------|-----------------|
| \(df = .30 \) | \(.20 \) | \(.10 \) | \(.05 \) | \(.02 \) |

\(df = 26 \)	\(1.058 \)	\(1.315 \)	\(1.706 \)	\(2.056 \)	\(2.479 \)
\(df = 27 \)	\(1.057 \)	\(1.314 \)	\(1.703 \)	\(2.052 \)	\(2.473 \)
\(df = 28 \)	\(1.056 \)	\(1.313 \)	\(1.701 \)	\(2.048 \)	\(2.467 \)
\(df = 29 \)	\(1.055 \)	\(1.311 \)	\(1.699 \)	\(2.045 \)	\(2.462 \)
\(df = 30 \)	\(1.055 \)	\(1.310 \)	\(1.697 \)	\(2.042 \)	\(2.457 \)
Confidence Intervals

- Confidence intervals when σ^2 is not known
 - variability of distribution of sample means estimated using s_M

Sample data: $N = 30$, $M = 78.3$, $s = 17.8$

$$s_M = \frac{17.8}{\sqrt{30}} = 3.25$$

95% CI: $M \pm t_{crit} (s_M)$

$$= 78.3 \pm 2.045(3.25)$$

$$= 78.3 \pm 6.65$$

71.65 to 84.95
Confidence Intervals

• A note about interpreting confidence intervals
 • a procedure for generating intervals such that 95% of them will contain μ
 • once an interval is constructed from an obtained sample, we cannot make valid claims about how likely it is that μ is in that particular interval
Significance Test for r

- Section 9.10 in the Howell text book

- Population parameter ρ null hypothesis: $\rho = 0$
 - even if ρ is 0, it is likely that a (random) sample will produce $r \neq 0$

- Consider a small population of scores with $\rho = 0$
Significance Test for r

• Section 9.10

• Population parameter ρ null hypothesis: $\rho = 0$
 • even if ρ is 0, it is likely that a (random) sample will produce $r \neq 0$

• Consider a small population of scores with $\rho = 0$
Significance Test for r

- Population parameter ρ null hypothesis: $\rho = 0$
 - is the observed value of r among the least likely expected under the null hypothesis?

- what does the distribution of sample values of r look like under the null hypothesis?
 - roughly normal, depending on sample size
 - as sample size increases, variability of r values decreases

![Graphs showing $N = 8$ and $N = 40$](image)
Significance Test for r

- Table of critical values for r (Table E.2 in textbook)
 - depends on sample size and significance level
 - degrees of freedom: $df = N - 2$
 - significance level usually .05 (least likely values)
 - two-tailed p values

<table>
<thead>
<tr>
<th>df</th>
<th>$p = .10$</th>
<th>$p = .05$</th>
<th>$p = .025$</th>
<th>$p = .01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.805</td>
<td>0.878</td>
<td>0.924</td>
<td>0.959</td>
</tr>
<tr>
<td>4</td>
<td>0.729</td>
<td>0.811</td>
<td>0.868</td>
<td>0.917</td>
</tr>
<tr>
<td>5</td>
<td>0.669</td>
<td>0.755</td>
<td>0.817</td>
<td>0.875</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.211</td>
<td>0.250</td>
<td>0.285</td>
<td>0.325</td>
</tr>
<tr>
<td>120</td>
<td>0.150</td>
<td>0.178</td>
<td>0.203</td>
<td>0.232</td>
</tr>
<tr>
<td>200</td>
<td>0.116</td>
<td>0.138</td>
<td>0.158</td>
<td>0.181</td>
</tr>
<tr>
<td>500</td>
<td>0.073</td>
<td>0.088</td>
<td>0.100</td>
<td>0.115</td>
</tr>
</tbody>
</table>
Significance Test for \(r \)

- Reporting significance test for \(r \)
 - \(N = 70 \quad r = .30 \)
 - \(r(68) = .30, \ p < .05 \)

<table>
<thead>
<tr>
<th>(df)</th>
<th>(p = .10)</th>
<th>(p = .05)</th>
<th>(p = .025)</th>
<th>(p = .01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.805</td>
<td>0.878</td>
<td>0.924</td>
<td>0.959</td>
</tr>
<tr>
<td>4</td>
<td>0.729</td>
<td>0.811</td>
<td>0.868</td>
<td>0.917</td>
</tr>
<tr>
<td>5</td>
<td>0.669</td>
<td>0.755</td>
<td>0.817</td>
<td>0.875</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>60</td>
<td>0.211</td>
<td>0.250</td>
<td>0.285</td>
<td>0.325</td>
</tr>
<tr>
<td>120</td>
<td>0.150</td>
<td>0.178</td>
<td>0.203</td>
<td>0.232</td>
</tr>
<tr>
<td>200</td>
<td>0.116</td>
<td>0.138</td>
<td>0.158</td>
<td>0.181</td>
</tr>
<tr>
<td>500</td>
<td>0.073</td>
<td>0.088</td>
<td>0.100</td>
<td>0.115</td>
</tr>
</tbody>
</table>
Significance Test for r

- **Using R to test significance of r**

```r
> dat=read.table(file.choose(new=T),header=T)
> plot(dat)
> head(dat)
   X  Y
1  33 81
2  38 64
3  30 76
4  41 74
5  38 66
6  38 63
```
Significance Test for r

- Using R to test significance of r

```r
> cor.test(dat$X, dat$Y)

Pearson's product-moment correlation

data:  dat$X and dat$Y
t = -3.1535, df = 38, p-value = 0.003147
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:  
  -0.6716504  -0.1677122
sample estimates:  
  cor
-0.4554282
```
Significance Test for r

- Test of r by conversion to t ratio
 - degrees of freedom: $df = N - 2$

$$t = r \sqrt{\frac{N - 2}{1 - r^2}}$$
Significance Test for r

- $X =$ treatment, $Y =$ cog. latency
- cell phone use & simulated driving

X Y
1 484
1 512
1 402
1 387
1 431
1 469
0 352
0 401
0 358
0 336
0 379
0 397

$r = .73$

$t = r \sqrt{\frac{N - 2}{1 - r^2}}$

$= .73 \sqrt{\frac{12 - 2}{1 - .73^2}}$

$= 3.38$

$t_{crit}(10) = \pm 2.228$

$H_0: \rho = 0$

$H_1: \rho \neq 0$
Significance Test for r

- $X = $ treatment, $Y = $ cog. latency

H_0: $\rho = 0$

H_1: $\rho \neq 0$

$N = 12$

$r = .73$

From Table E.2

$df = 10$, critical $r = \pm .576$

Table E.2

Significant Values of the Correlation Coefficient

<table>
<thead>
<tr>
<th>df</th>
<th>$p = .10$</th>
<th>$p = .05$</th>
<th>$p = .025$</th>
<th>$p = .01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.805</td>
<td>.878</td>
<td>.924</td>
<td>.959</td>
</tr>
<tr>
<td>9</td>
<td>.521</td>
<td>.602</td>
<td>.667</td>
<td>.735</td>
</tr>
<tr>
<td>10</td>
<td>.498</td>
<td>.576</td>
<td>.640</td>
<td>.708</td>
</tr>
<tr>
<td>11</td>
<td>.476</td>
<td>.553</td>
<td>.616</td>
<td>.684</td>
</tr>
</tbody>
</table>

$r(10) = .73$, $p < .01$