Hypothesis Testing for Means

• Chapter 12 (omit 12.7 - 12.11)

• Testing hypotheses about the value of a population mean by using a sample mean

• Research based on a sample of subjects

• Sample mean is used to test hypotheses
 • need to know what value(s) to expect for the sample mean, assuming H_0 vs. H_1 is true
 • what happens when a sample is randomly drawn from a population?
Hypothesis Testing for Means

• Sample drawn from a normally distributed population
 • consider population of intelligence test scores
 \(\mu = 100 \quad \sigma = 15 \)
 • draw many samples of \(N = 20 \)

• R code

```r
means = NULL
means = replicate(100000, c(means, mean(rnorm(20, 100, 15))))
hist(means, 100)
mean(means)
sd(means)
```

• try with uniform distribution and vary \(N \)
  ```r
  runif(N, min, max)
  ```
Hypothesis Testing for Means

• Distribution of sample means
 • approximates normal distribution as sample size increases (especially 30 or more), no matter what distribution the original population of scores has
 • always normal if original population is normal
 • mean = population mean $\mu_M = \mu$
 • variance = population variance/sample size

\[
\sigma_M^2 = \frac{\sigma^2}{N} \quad \sigma_M = \frac{\sigma}{\sqrt{N}} \quad (standard \ error \ of \ the \ mean)
\]

• Influence of sample size on variance of sample means
Hypothesis Testing for Means

• Using distribution of sample means to test hypotheses about a population mean
 • mean of random sample taken from a population (distribution of sample means = distribution of all possible outcomes)

• Logic of testing hypotheses about a single population mean using a random sample
 • \(H_0 \) specifies a value for \(\mu \)
 • is the obtained sample mean an unlikely value?
 • among the least likely in the distribution of sample means based on \(H_0 \)?
Hypothesis Testing for Means

• Example
 • research hypothesis: children with no siblings have higher intelligence than the population mean
 • in the general population intelligence scores are normally distributed with \(\mu = 100 \) and \(\sigma = 15 \)
 • hypotheses for only-child population:
 \[H_0: \mu = 100 \quad H_1: \mu \neq 100 \]
 • draw random sample of 20 only-child children
 • define a result as unlikely if it is among the 5% least likely outcomes
 • suppose for this sample, \(M = 105.6 \)
Hypothesis Testing for Means

• Where is $M = 105.6$ in the distribution of sample means? (This does not refer to the distribution of raw scores!)

• under H_0, $\mu = 100$

\[
\sigma_M = \frac{\sigma}{\sqrt{N}} = \frac{15}{\sqrt{20}} = 3.35
\]

\[
Z = \frac{M - \mu}{\sigma_M} = \frac{105.6 - 100}{3.35} = 1.67
\]
Hypothesis Testing for Means

- Summary of hypothesis testing situation
 - one of two possible true states
 - H_0 is true or H_1 is true
 - one of two possible decisions
 - reject H_0 or not reject H_0

<table>
<thead>
<tr>
<th>Real Situation</th>
<th>H_0 true</th>
<th>H_1 true</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H_0</td>
<td>Error (Type I) α</td>
<td>Correct decision</td>
</tr>
<tr>
<td>Not reject H_0</td>
<td>Correct decision</td>
<td>Error (Type II) β</td>
</tr>
</tbody>
</table>
Hypothesis Testing for Means

- z test depends on unrealistic situations in which \(\sigma^2 \) is known

- Implications of not knowing \(\sigma^2 \)
 - variability of sample means is not known
 - not known where to place observed sample mean in the distribution of sample means

\[H_0: \mu = 40 \]

\[M = 46 \]

\[\sigma_M = ? \]

\[N = 25 \]

\[\mu = 40 \]
Hypothesis Testing for Means

• σ^2 can be estimated from the sample data
• variance of sample scores is an estimate of σ^2
• importance of using an unbiased estimate of σ^2

$$s^2 = \frac{\sum(X - M)^2}{N - 1}$$
Hypothesis Testing for Means

- Use sample standard deviation to estimate standard error of the mean
- Distribution of sample means is normal or approximates normal with sufficient N
- Estimate σ_M using $s \rightarrow s_M = \frac{s}{\sqrt{N}}$

How do we build a useful translation of the distribution of sample means?

\[
Z = \frac{M - \mu}{\sigma_M}
\]
Hypothesis Testing for Means

• Rather than converting to z scores using σ_M, each sample mean would be converted using its own estimate of σ_M:

$$s_M = \frac{S}{\sqrt{N}}$$

$$t = \frac{M - \mu}{s_M}$$

• Unlike the z score conversion, this conversion will not generate a normal distribution of t, even though distribution of M is normal

• source of the problem: s^2 varies across samples and its distribution is a positive skew
Hypothesis Testing for Means

- Distribution of sample variances – \(\sigma^2 = 25, \ N = 10 \)

![Histogram showing the distribution of sample variances with the median of \(s^2 = 23.2 \) and the mean of \(s^2 = 25.0 \).]
Hypothesis Testing for Means

• Distribution of sample variance is positively skewed
 • s^2 is smaller than σ^2 (and s is smaller than σ) for most samples, especially when N is small

• Converting sample means to t values based on sample-specific s generates a non-normal distribution of t

$$ t = \frac{M - \mu}{s_M} $$

More area in the tails of the t distribution--upper .05 of t is further out from the mean
Hypothesis Testing for Means

• Evolution of the t distribution

Normal

z

t ($df = 40$)

t ($df = 10$)
Hypothesis Testing for Means

• Evolution of the t distribution
Hypothesis Testing for Means

• What does this mean?
 • a completely new table (Table E.6)
 • a separate t distribution for each value of df

$$ t = \frac{M - \mu}{S_M} $$

$df = N - 1$

<table>
<thead>
<tr>
<th>df</th>
<th>.20</th>
<th>.10</th>
<th>.05</th>
<th>.025</th>
<th>.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.078</td>
<td>6.314</td>
<td>12.706</td>
<td>31.821</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.886</td>
<td>2.920</td>
<td>4.303</td>
<td>6.965</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.638</td>
<td>2.353</td>
<td>3.182</td>
<td>4.541</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.533</td>
<td>2.132</td>
<td>2.776</td>
<td>3.747</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.476</td>
<td>2.015</td>
<td>2.571</td>
<td>3.365</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.323</td>
<td>1.721</td>
<td>2.080</td>
<td>2.518</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.321</td>
<td>1.717</td>
<td>2.074</td>
<td>2.508</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.319</td>
<td>1.714</td>
<td>2.069</td>
<td>2.500</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.318</td>
<td>1.711</td>
<td>2.064</td>
<td>2.492</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.316</td>
<td>1.708</td>
<td>2.060</td>
<td>2.485</td>
<td></td>
</tr>
</tbody>
</table>
Hypothesis Testing for Means

• What does this mean?
 • a completely new table
 • a separate t distribution for each value of df

$$t = \frac{M - \mu}{s_M}$$

<table>
<thead>
<tr>
<th>df</th>
<th>.05</th>
<th>.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1.833</td>
<td>2.822</td>
</tr>
</tbody>
</table>
Hypothesis Testing for Means

• What does this mean?
• a completely new table
• a separate t distribution for each value of df

$$t = \frac{M - \mu}{s_M}$$

$df = 100$

0.05 and 0.01 critical values for t distribution with $df = 100$.
Hypothesis Testing for Means

- Example: level of dopamine is different in individuals with schizophrenia
 - mean level among unaffected individuals is 36 units
 - \(H_0: \mu = 36 \quad \text{H}_1: \mu \neq 36 \quad (\alpha = .05) \)
 - random sample of 30 individuals with schizophrenia
 \(M = 40.2, \quad s = 10.2 \)

\[
\begin{align*}
\hat{s}_M &= \frac{s}{\sqrt{N}} = \frac{10.2}{\sqrt{30}} = 1.86 \\
t &= \frac{M - \mu}{s_M} = \frac{40.2 - 36}{1.86} = 2.26
\end{align*}
\]

Reject \(H_0 \)

\[
t(29) = 2.26, \quad p < .05
\]
Hypothesis Testing for Means

• Hypothesis: Victims of bullying develop lower than normal levels of self esteem
 • mean score among general population is 84
 \[H_0: \mu = 84 \quad H_1: \mu < 84 \quad (\alpha = .05) \]
 • random sample of 26 individuals with a history of victimization
 \[M = 78.3, \quad s = 16.5 \]

\[
s_M = \frac{s}{\sqrt{N}} = \frac{16.5}{\sqrt{26}} = 3.24
\]

\[
t = \frac{M - \mu}{s_M} = \frac{78.3 - 84}{3.24} = -1.76
\]

Reject \(H_0 \)

\[t(25) = -1.76, \quad p < .05 \]
t test for Related Samples

• Chapter 13 (omit sections 13.5 – 13.7)

• t test for difference between means from related populations
 • repeated measures (Stroop task)
 • each subject has two scores
 • null hypothesis: no difference between the two conditions, so mean of difference scores \textit{in the population} is 0
 • test H_0 using one-sample t test, but based on difference scores
t test for Related Samples

Condition 1

Condition 2

Difference scores $(X_1 - X_2)$

$\sigma^2_{X_1 - X_2} = \sigma^2_1 + \sigma^2_2 - 2\rho \sigma_1 \sigma_2$
t test for Related Samples

- **Model of all possible results**

 Difference scores ($X_1 - X_2$)

 Sample means (M_D)

 ![Diagram showing normal distributions](image)

 When σ_D is unknown, use s_D and t distribution with
 $df = N - 1$

 Normal shape, standard deviation
 $\sigma_{M_D} = \frac{s_D}{\sqrt{N}}$
t test for Related Samples

- Sample of subjects with alcohol dependency
 - hypothesize a heightened sensitivity to alcohol-related concepts
 - this sensitivity can be revealed in a Stroop task

- Stroop color-naming task with color carried by neutral vs. alcohol-related words

\textbf{WINE} \quad \textbf{DESK} \quad \textbf{LOG} \quad \textbf{BEER} \quad \textbf{CANDLE} \quad \textbf{VODKA}

- obtain mean color-naming time for neutral and for alcohol-related words for each subject and compute difference score (alcohol-related – neutral)

$H_0: \mu_D = 0 \quad H_1: \mu_D > 0 \quad \alpha = .05$

- random sample of 12 alcohol-dependent subjects
t test for Related Samples

• Color-naming times (milliseconds)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>689</td>
<td>701</td>
<td>−12</td>
</tr>
<tr>
<td>2</td>
<td>743</td>
<td>694</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>859</td>
<td>793</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>597</td>
<td>592</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>712</td>
<td>784</td>
<td>−72</td>
</tr>
<tr>
<td>6</td>
<td>852</td>
<td>648</td>
<td>204</td>
</tr>
<tr>
<td>7</td>
<td>634</td>
<td>594</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>821</td>
<td>793</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>932</td>
<td>872</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>743</td>
<td>720</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>840</td>
<td>721</td>
<td>119</td>
</tr>
<tr>
<td>12</td>
<td>750</td>
<td>702</td>
<td>48</td>
</tr>
</tbody>
</table>

* M 764.3 718.8 46.5

$r = .74$
t test for Related Samples

- Color-naming times (milliseconds)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>689</td>
<td>701</td>
<td>-12</td>
<td></td>
</tr>
<tr>
<td>743</td>
<td>694</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>859</td>
<td>793</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>597</td>
<td>592</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>712</td>
<td>784</td>
<td>-72</td>
<td></td>
</tr>
<tr>
<td>852</td>
<td>648</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>634</td>
<td>594</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>821</td>
<td>793</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>932</td>
<td>872</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>743</td>
<td>720</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>840</td>
<td>721</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>702</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

For difference scores:

\[M_D = 46.50, \ s_D = 67.93 \]

\[s_{M_D} = \frac{s_D}{\sqrt{N}} = \frac{67.93}{\sqrt{12}} = 19.61 \]

\[t = \frac{M_D - 0}{s_{M_D}} = \frac{46.50 - 0}{19.61} = 2.37 \]

Critical \(t \) ratio for a one-tailed test:

\(t_{\text{crit}}(11) = 1.796 \)

\(t(11) = 2.37, \ p < .05 \)
t test for Related Samples

• Using R for a related-samples t test

> dat=read.table(file.choose(new=T),header=T)
> mean(dat$alc)
[1] 764.3333
> mean(dat$neut)
[1] 717.8333
> t.test(datalc,datneut,paired=T)

Paired t-test
data: dat$alc and dat$neut
t = 2.3713, df = 11, p-value = 0.03706
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 3.340329 89.659671
sample estimates:
mean of the differences
 46.5
t test for Related Samples

- Analysis can be extended to cases in which pairs of related subjects are tested (matched pairs)
 - twins
 - pairs of subjects matched on some relevant variable e.g., match on intelligence when testing the effect of an educational program
t test for Related Samples

- Relevance of correlation between pairs of scores

<table>
<thead>
<tr>
<th>Drug</th>
<th>Placebo</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

$M_D = 4.0, s_D = 0.82$

$s_{M_D} = \frac{s_D}{\sqrt{N}} = \frac{0.82}{\sqrt{4}} = 0.41$

$t = \frac{M_D - 0}{s_{M_D}} = \frac{4.0 - 0}{0.41} = 9.76$

$t_{crit}(3) = \pm 3.182$

$r = .97$
t test for Related Samples

- Relevance of correlation between pairs of scores

<table>
<thead>
<tr>
<th></th>
<th>Drug</th>
<th>Placebo</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>-2</td>
</tr>
</tbody>
</table>

M

- **Drug:** 8.5
- **Placebo:** 4.5
- **Diff.:** 4.0

Correlation Coefficient

\[r = -0.13 \]

Hypothesis Testing

- **H₀:** \(\mu_D = 0 \)
- **H₁:** \(\mu_D \neq 0 \)

Sample Mean and Standard Deviation

- \(M_D = 4.0 \)
- \(s_D = 4.24 \)

Standard Error of the Mean Difference

\[s_{M_D} = \frac{s_D}{\sqrt{N}} = \frac{4.24}{\sqrt{4}} = 2.12 \]

t-Statistic

\[t = \frac{M_D - 0}{s_{M_D}} = \frac{4.0 - 0}{2.12} = 1.89 \]

Critical t-Value

\[t_{\text{crit}}(3) = \pm 3.182 \]