PSYCHOLOGY 300B
Statistical Methods in Psychology II

• Professor
 Dr. Michael Masson
 Office: Cornett A183 (enter through A177)
 Office hours: Wednesday 11 AM–12:30 PM, or by appointment
 Phone: 250-721-7536
 e-mail: mmteach@uvic.ca
 web site: web.uvic.ca/psyc/masson
 • lecture slides and audio recordings of lectures
 • web link to text-related resources (e.g., stat tables)

• Teaching Assistant
 Myles Maillet
 e-mail: maillet1@uvic.ca
• Lectures
 Monday & Thursday, 11:30 a.m. – 12:50 p.m.
 Cornett B143

• Tutorials
 • expect 7 or 8 tutorials, announced in class or on web site
 • Tuesday 10:30 – 11:20 AM – Cornett A129
 • Wednesday 1:30 – 2:20 PM – Cornett A125
• **Text Book** (optional)

• copy on 2-hr reserve in library

Suggested on-line text book
http://davidmlane.com/hyperstat/index.html

• **Objectives**

 • develop understanding of some basic statistical analyses applied in psychological research
 • understand logic and theory behind each analysis, its computational procedures, circumstances of it use, and interpretation of its results
 • examinations will test this understanding
 • classroom lectures are the *essential* component
• **Study Groups**
 - formation of study groups is recommended
 - e-mail professor if interested (mmteach@uvic.ca)
 - deadline: January 13

• **Evaluation**

 Examination 1: Monday, January 30 (22%)
 Examination 2: Monday, March 6 (23%)
 Final examination: April 7-25 (40%)
 Research proposal: Thursday, February 27 (5%)
 Research report: Monday, March 23 (10%)
• **Schedule of Topics**

 Review of essential concepts
 Introduction to Bayesian analysis
 Testing hypotheses about two population means
 Power to detect an effect

{Examination 1}
 Analysis of variance: Hypotheses about more than two population means
 Analysis of variance: Two independent variables and the concept of interaction

{Examination 2}
 Analysis of variance: Repeated measurement of subjects
 Analysis of frequencies (nominal measurement scale)
Review of Essential Concepts

• Random sampling and random assignment

• Inferring cause and effect
 • can a correlation imply a causal influence?

• z score transformations
 • what result is obtained when z score transformation is applied to a uniform distribution?

\[z = \frac{X - M}{S} \]

• a bimodal distribution?
Review of Essential Concepts

• Standard normal distribution

\[z = \frac{X - M}{s} \]

- Problem: what is the probability of randomly drawing a z-score greater than or equal to 1.0?
- a z-score between –1 and –2, inclusive, or between 0 and 1, inclusive?
- a z-score of 0.75 or greater?
Review of Essential Concepts

<table>
<thead>
<tr>
<th>z</th>
<th>Mean to z</th>
<th>Larger Portion</th>
<th>Smaller Portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>.73</td>
<td>0.2673</td>
<td>0.7673</td>
<td>0.2327</td>
</tr>
<tr>
<td>.74</td>
<td>0.2704</td>
<td>0.7704</td>
<td>0.2296</td>
</tr>
<tr>
<td>.75</td>
<td>0.2734</td>
<td>0.7734</td>
<td>0.2266</td>
</tr>
<tr>
<td>.76</td>
<td>0.2764</td>
<td>0.7764</td>
<td>0.2236</td>
</tr>
<tr>
<td>.77</td>
<td>0.2794</td>
<td>0.7794</td>
<td>0.2206</td>
</tr>
</tbody>
</table>
Review of Essential Concepts

• Distribution of sample means

 • consider a simple population of 8 scores
 1 2 3 4 5 6 7 8

 • how many different samples of \(N = 4 \) can be drawn (without replacement) from this population?

\[
8 \binom{4}{4} = \frac{8!}{(8-4)!4!} = \frac{8(7)(6)(5)}{4!} = 70
\]

Draw an arbitrary sample of \(N = 4 \) and compute \(M \)
Review of Essential Concepts

• Distribution of sample means
 • consider a population of 100 scores
 • how many different samples of \(N = 4 \) can be drawn (without replacement) from this population?

\[_{100}C_4 = 3,921,225\]
Review of Essential Concepts

• Distribution of sample means

\[\mu_M = \mu \]
\[\sigma_M = \frac{\sigma}{\sqrt{N}} \]
Review of Essential Concepts

• Logic of hypothesis testing for a population mean
• construct a model of all possible outcomes

NOTE: If there are 500 scores in this population, then there are 2.24×10^{59} possible samples of size 40 (a trillion is only 10^{12})
Review of Essential Concepts

• Logic of hypothesis testing for a population mean
 • construct a model of all possible outcomes

- Population of raw scores
 - $\sigma = 15$

- Distribution of sample means
 - $\sigma_m = 2.37$
 - Anomalous sample mean

- If an unlikely sample mean is obtained
 • just a fluke?
 • reason to reject H_0
Review of Essential Concepts

• Hypothesis testing: single population mean
 • Headstart program may improve intelligence test scores of young children
 \(\mu = 100 \quad \sigma = 15 \)
 • directional or nondirectional hypothesis?
 • \(H_0: \mu = 100 \quad H_1: \mu > 100 \)
 • use .05 significance level: critical \(z = 1.65 \)

\[N = 40 \quad M = 105 \]

\[z = \frac{M - \mu}{\sigma_M} = \frac{105 - 100}{2.37} = 2.11 \]

\[p = .0174 \quad p < .05 \]
Review of Essential Concepts

- Hypothesis testing: single population mean
- Use of the t distribution when σ is not known
 - $H_0 : \mu = 100$ $H_1 : \mu > 100$
 - $N = 40$ $M = 105$ $s = 18$ (estimate of σ)

$$s_M = \frac{18}{\sqrt{40}} = 2.85 \quad \text{(estimate of} \sigma_M)$$

$$t = \frac{M - \mu}{s_M} = \frac{105 - 100}{2.85} = 1.75$$

$df = 39$
Review of Essential Concepts

• Evolution of the t distribution

Normal

t (df = 40)

t (df = 10)
Review of Essential Concepts

- $H_0: \mu = 100 \quad H_1: \mu > 100$
- $N = 40 \quad M = 105 \quad s = 18$ (estimate of σ)

Directional (one-tailed) test

$$t = \frac{105 - 100}{2.85} = 1.75$$

$$p = .044$$

Nondirectional (two-tailed) test

$$t = -2.023$$

$$p = .088$$
Review of Essential Concepts

• Related-samples \(t \) test
 • drug expected to reduce symptoms of anxiety
 • \(H_0: \mu_1 = \mu_2 \quad H_1: \mu_1 > \mu_2 \) (1 = placebo, 2 = drug)

<table>
<thead>
<tr>
<th>Subj</th>
<th>Place.</th>
<th>Drug</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>−1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

\[M_D = 3.2 \quad s_D = 5.7 \]

\[s_{M_D} = \frac{s_D}{\sqrt{N}} = \frac{5.7}{\sqrt{20}} = 1.27 \]

\[t = \frac{M_D - 0}{s_{M_D}} = \frac{3.2 - 0}{1.27} = 2.52 \]

Critical \(t \) ratio for a one-tailed test:
\[t_{\text{crit}}(19) = 1.729 \]

Reject \(H_0 \) \(t(19) = 2.52, p < .05 \)