PSYCHOLOGY 300B
Statistical Methods in Psychology II

• Lectures
 Monday & Thursday, 11:30 a.m. – 12:50 p.m.
 Cornett A221

• Professor
 Dr. Michael Masson
 Office: Cornett A183 (enter through A177)
 Office hours: Wednesday 11 AM–12:30 PM, or by appointment
 Phone: 250-721-7536
 e-mail: mmteach@uvic.ca
 web site: web.uvic.ca/psyc/masson
 • lecture slides and audio recordings of lectures
 • web link to text-related resources (e.g., stat tables)
• **Text Book** (optional)

• earlier edition on 2-hr reserve in library

• **Objectives**

• develop understanding of some basic statistical analyses applied in psychological research
• understand logic and theory behind each analysis, its computational procedures, circumstances of its use, and interpretation of its results
• examinations will test this understanding
• classroom lectures are the *essential* component
• Study Groups
 • formation of study groups is recommended
 • e-mail professor if interested (mmteach@uvic.ca)
 • deadline: January 12

• Prerequisites and Registration
 • at least C in PSYC 300A or declared major/honours in Linguistics
 • must register by add deadline (January 21)

• Evaluation
 Examination 1: Thursday, January 29 (25%)
 Examination 2: Thursday, March 5 (25%)
 Final examination: April 7-22 (40%)
 Research proposal: Thursday, February 26 (2%)
 Research report: Monday, March 23 (8%)
Schedule of Topics

Review of essential concepts
Testing hypotheses about two population means
Power to detect an effect

{Examination 1}
Analysis of variance: Hypotheses about more than two population means
Analysis of variance: Two independent variables and the concept of interaction

{Examination 2}
Analysis of variance: Repeated measurement of subjects
Analysis of frequencies (nominal measurement scale)
Alternative to significance testing
Review of Essential Concepts

- Random sampling and random assignment

- Inferring cause and effect
 - can a correlation imply a causal influence?

- \(z\) score transformations
 - what result is obtained when \(z\) score transformation is applied to a uniform distribution?

- a bimodal distribution?
Review of Essential Concepts

• Standard normal distribution \[z = \frac{X - M}{S} \]

![Diagram of standard normal distribution with marked areas: 34%, 14%, 2%]

• Problem: what is the probability of randomly drawing a z score greater than or equal to 1.0?
• a z score between –1 and –2, inclusive, or between 0 and 1, inclusive?
• a z score of 0.75 or greater?
Review of Essential Concepts

<table>
<thead>
<tr>
<th>z</th>
<th>Mean to z</th>
<th>Larger Portion</th>
<th>Smaller Portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>.73</td>
<td>0.2673</td>
<td>0.7673</td>
<td>0.2327</td>
</tr>
<tr>
<td>.74</td>
<td>0.2704</td>
<td>0.7704</td>
<td>0.2296</td>
</tr>
<tr>
<td>.75</td>
<td>0.2734</td>
<td>0.7734</td>
<td>0.2266</td>
</tr>
<tr>
<td>.76</td>
<td>0.2764</td>
<td>0.7764</td>
<td>0.2236</td>
</tr>
<tr>
<td>.77</td>
<td>0.2794</td>
<td>0.7794</td>
<td>0.2206</td>
</tr>
</tbody>
</table>
Review of Essential Concepts

• Distribution of means

 • consider a simple population of 8 scores
 1 2 3 4 5 6 7 8

 • how many different samples of \(N = 4 \) can be drawn (without replacement) from this population?

\[
\begin{align*}
_8C_4 &= \frac{8!}{(8-4)!4!} \\
&= \frac{8(7)(6)(5)}{4!} = 70
\end{align*}
\]

Draw an arbitrary sample of \(N = 4 \) and compute \(M \)
Review of Essential Concepts

• Distribution of sample means
 • consider a population of 100 scores
 • how many different samples of $N = 4$ can be drawn (without replacement) from this population?

$$\binom{100}{4} = 3,921,225$$
Review of Essential Concepts

• Distribution of sample means

$\mu_M = \mu$

$\sigma_M = \frac{\sigma}{\sqrt{N}}$

All possible samples of $N = 1$

All possible samples of $N = 50$

Frequency

Frequency

Frequency
Review of Essential Concepts

• Logic of hypothesis testing for a population mean
• construct a model of all possible outcomes

Population of raw scores

\[\sigma = 15 \]

All samples of \(N = 40 \)

Distribution of sample means

\[\sigma_M = 2.37 \]

Expected sample mean

Reminder

\[\sigma_M = \frac{15}{\sqrt{40}} \]

NOTE: If there are 500 scores in this population, then there are \(2.24 \times 10^{59} \) possible samples of size 40 (a trillion is only \(10^{12} \))
Review of Essential Concepts

• Logic of hypothesis testing for a population mean
 • construct a model of all possible outcomes

Population of raw scores

Population of raw scores

100
σ = 15

Distribution of sample means

Distribution of sample means

100
σM = 2.37

• If an unlikely sample mean is obtained
 • just a fluke?
 • reason to reject H₀
Review of Essential Concepts

• Hypothesis testing: single population mean
• Headstart program may improve intelligence test scores of young children
 \[\mu = 100 \quad \sigma = 15 \]
• directional or nondirectional hypothesis?
• \(H_0 : \mu = 100 \quad H_1 : \mu > 100 \)
• use .05 significance level: critical \(z = 1.65 \)

\(N = 40 \quad M = 105 \)

\[z = \frac{M - \mu}{\sigma_M} = \frac{105 - 100}{2.37} = 2.11 \]

\(p = .0174 \quad p < .05 \)
Review of Essential Concepts

• Hypothesis testing: single population mean
 • use of the t distribution when σ is not known
 • $H_0 : \mu = 100 \quad H_1 : \mu > 100$
 • $N = 40 \quad M = 105 \quad s = 18$ (estimate of σ)

$$s_M = \frac{18}{\sqrt{40}} = 2.85 \quad \text{(estimate of } \sigma_M)$$

$$t = \frac{M - \mu}{s_M} = \frac{105 - 100}{2.85} = 1.75$$

\[t \quad df = 39 \quad 0.05 \]
Review of Essential Concepts

• Evolution of the t distribution

<table>
<thead>
<tr>
<th>Normal</th>
<th>t ($df = 40$)</th>
<th>t ($df = 10$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review of Essential Concepts

• \(H_0 : \mu = 100 \) \(H_1 : \mu > 100 \)

• \(N = 40 \) \(M = 105 \) \(s = 18 \) (estimate of \(\sigma \))

Directional (one-tailed) test

\[
t = \frac{105 - 100}{2.85} = 1.75
\]

\(p = .044 \)

Nondirectional (two-tailed) test

\[
t = \frac{105 - 100}{2.85} = 1.75
\]

\(p = .088 \)