PSYCHOLOGY 300B
Statistical Methods in Psychology: II

• Professor
 Dr. Michael Masson
 Office: Cornett A183 (enter through A177)
 Office hours: Tuesday 11 AM–12:30 PM, or by appointment
 Phone: 250-721-7536
 e-mail: mmteach@uvic.ca
 web site: web.uvic.ca/psyc/masson
 • lecture slides and audio recordings of lectures
 • web link to text-related resources (e.g., stat tables)

• Teaching Assistants
 Max Pittman (mpittman@uvic.ca)
 Myles Maillet [tutorials] (maillet1@uvic.ca)
• **Lectures**
 Monday & Thursday, 11:30 a.m. – 12:50 p.m.
 Cornett B108

• **Tutorials**
 • expect 7 or 8 tutorials, announced in class or on web site
 • Tuesday 9:30 AM – 10:20 AM – Clearihue A212
 • Friday 11:30 AM – 12:20 PM – Cornett A128
• **Text Book** (optional)

Aplia (supplemental exercises)

Suggested on-line text book

http://onlinestatbook.com

• **Objectives**

 • develop understanding of some basic statistical analyses applied in psychological research
 • understand logic and theory behind each analysis, its computational procedures, circumstances of it use, and interpretation of its results
 • examinations will test this understanding
 • classroom lectures are the *essential* component
• **Study Groups**

 • formation of study groups is recommended
 • e-mail professor if interested (mmteach@uvic.ca)
 • deadline: January 14

• **Evaluation**

 Examination 1: Thursday, January 31 (20%)
 Examination 2: Thursday, March 7 (25%)
 Final examination: April 8 - 27 (35%)
 Research proposal: Thursday, February 28 (5%)
 Research report: Monday, March 25 (15%)
• Schedule of Topics

 Review of essential concepts
 Testing hypotheses about two population means
 Power to detect an effect

{Examination 1}

 Analysis of variance: Hypotheses about more than two population means
 Analysis of variance: Two independent variables and the concept of interaction

{Examination 2}

 Analysis of variance: Repeated measurement of subjects
 Analysis of frequencies (nominal measurement scale)
 Introduction to Bayesian analysis
Review of Essential Concepts

• Random sampling and random assignment

• Inferring cause and effect
 • can a correlation imply a causal influence?

• z score transformations
 • what result is obtained when z score transformation is applied to a uniform distribution?

\[z = \frac{X - M}{s} \]

• a bimodal distribution?
Review of Essential Concepts

• Standard normal distribution \[z = \frac{X - M}{S} \]

• Problem: what is the probability of randomly drawing a z score greater than or equal to 1.0?
 • a z score between –1 and –2, inclusive, or between 0 and 1, inclusive?
 • a z score of 0.75 or greater?
Review of Essential Concepts

<table>
<thead>
<tr>
<th>z</th>
<th>Mean to z</th>
<th>Larger Portion</th>
<th>Smaller Portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>.73</td>
<td>0.2673</td>
<td>0.7673</td>
<td>0.2327</td>
</tr>
<tr>
<td>.74</td>
<td>0.2704</td>
<td>0.7704</td>
<td>0.2296</td>
</tr>
<tr>
<td>.75</td>
<td>0.2734</td>
<td>0.7734</td>
<td>0.2266</td>
</tr>
<tr>
<td>.76</td>
<td>0.2764</td>
<td>0.7764</td>
<td>0.2236</td>
</tr>
<tr>
<td>.77</td>
<td>0.2794</td>
<td>0.7794</td>
<td>0.2206</td>
</tr>
</tbody>
</table>
• Distribution of sample means

• consider a simple population of 8 scores
 1 2 3 4 5 6 7 8

• how many different samples of $N = 4$ can be drawn (without replacement) from this population?

$$8 \binom{4}{8} = \frac{8!}{(8 - 4)!4!} = \frac{8(7)(6)(5)}{4!} = 70$$

Draw an arbitrary sample of $N = 4$ and compute M
Review of Essential Concepts

• Distribution of sample means
 • consider a population of 100 raw scores
 • how many different samples of $N = 4$ can be drawn (without replacement) from this population?

\[100C_4 = 3,921,225 \]
Review of Essential Concepts

• Distribution of sample means

\[\mu_M = \mu \]
\[\sigma_M = \frac{\sigma}{\sqrt{N}} \]
Review of Essential Concepts

• Logic of hypothesis testing for a population mean
 • construct a model of all possible outcomes

Population of raw scores

Distribution of sample means

100
\(\sigma = 15 \)

All samples of N = 40

100
\(\sigma_M = 2.37 \)

Reminder

\[\sigma_M = \frac{15}{\sqrt{40}} \]

NOTE: If there are 500 scores in this population, then there are \(2.24 \times 10^{59} \) possible samples of size 40 (a trillion is only \(10^{12} \))
Review of Essential Concepts

• Logic of hypothesis testing for a population mean
 • construct a model of all possible outcomes

Population of raw scores

Distribution of sample means

100
\(\sigma = 15 \)

All samples of \(N = 40 \)

100
\(\sigma_M = 2.37 \)

• If an unlikely sample mean is obtained
 • just a fluke?
 • reason to reject \(H_0 \)
Review of Essential Concepts

• Hypothesis testing: single population mean
 • Headstart program may improve intelligence test scores of young children
 \(\mu = 100 \quad \sigma = 15 \)
 • directional or nondirectional hypothesis?
 • \(H_0 : \mu = 100 \quad H_1 : \mu > 100 \)
 • use .05 significance level: critical \(z = 1.65 \)

\[N = 40 \quad M = 105 \]

\[Z = \frac{M - \mu}{\sigma_M} = \frac{105 - 100}{2.37} = 2.11 \]

\[p = .0174 \quad p < .05 \]
Review of Essential Concepts

• Hypothesis testing: single population mean
 • use of the \(t \) distribution when \(\sigma \) is not known
 • \(H_0: \mu = 100 \quad H_1: \mu > 100 \)
 • \(N = 40 \quad M = 105 \quad s = 18 \) (estimate of \(\sigma \))

\[
s_M = \frac{18}{\sqrt{40}} = 2.85 \quad \text{(estimate of } \sigma_M)\]

\[
t = \frac{M - \mu}{s_M} = \frac{105 - 100}{2.85} = 1.75
\]

\[
t \quad \text{df} = 39
\]

\[
0 \quad 1.685 \quad .05
\]
Review of Essential Concepts

• Evolution of the t distribution
Review of Essential Concepts

- $H_0: \mu = 100 \quad H_1: \mu > 100$
- $N = 40 \quad M = 105 \quad s = 18$ (estimate of σ)

Directional (one-tailed) test

$$t = \frac{105 - 100}{2.85} = 1.75$$

$p = .044$

Nondirectional (two-tailed) test

$$-1.75 \quad 1.75$$

$p = .088$
Review of Essential Concepts

• Related-samples t test

• drug expected to reduce symptoms of anxiety

• $H_0: \mu_1 = \mu_2 \quad H_1: \mu_1 > \mu_2 \quad (1 = \text{placebo}, \ 2 = \text{drug})$

<table>
<thead>
<tr>
<th>Subj</th>
<th>Place.</th>
<th>Drug</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

$M_D = 3.2 \quad s_D = 5.7$

$$\begin{align*}
S_{MD} &= \frac{s_D}{\sqrt{N}} = \frac{5.7}{\sqrt{20}} = 1.27 \\
t &= \frac{M_D - 0}{s_{MD}} = \frac{3.2 - 0}{1.27} = 2.52
\end{align*}$$

Critical t ratio for a one-tailed test:

$t_{\text{crit}}(19) = 1.729$

Reject $H_0 \quad t(19) = 2.52, \ p < .05$