Chi-Square Tests

• Reading: Chapter 19

• Inferential tests used when dependent variable is measured on a nominal scale (scores are not quantitative)
 • dependent measure is a frequency count, not a quantitative variable allowing arithmetic procedures
 • consumer brand preference
 • number of left-handers vs. right-handers in a sample of reading disabled children
 • distribution of male vs. female faculty members across disciplines (sciences, social sciences, humanities)
Chi-Square Tests

• General nature of the chi-square (χ^2) test
 • establish an expected distribution of frequencies across categories based on a null hypothesis
 • measure discrepancy between expected and observed frequencies
 • degree of discrepancy determines decision about H_0

• Two general situations
 • goodness-of-fit (H_0: no preference across 3 brands)
 • independence (H_0: distribution of male vs. female faculty is independent of academic discipline)
Chi-Square Tests

• Goodness-of-fit
 • expected frequency of observations across categories based on H_0

• Which type of social media is deemed most important?
 • texting, Twitter, Facebook, e-mail
 • H_0: each type equally preferred
 • H_1: some types are more preferred
Chi-Square Tests

• Obtain a sample of 80 subjects and ask each person to select one of the four options

• If all options are equally likely to be the most important to a particular person, or if people do not have a preference of one over the others (and so are making an arbitrary [random] choice), what is the expected distribution of choices?

<table>
<thead>
<tr>
<th></th>
<th>Texting</th>
<th>Twitter</th>
<th>Facebook</th>
<th>e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected freq.</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Observed freq.</td>
<td>31</td>
<td>12</td>
<td>22</td>
<td>15</td>
</tr>
</tbody>
</table>

• Are observed frequencies unlikely under H_0?
 • if so, reject H_0
Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Texting</th>
<th>Twitter</th>
<th>Facebook</th>
<th>e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected freq.</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Observed freq.</td>
<td>31</td>
<td>12</td>
<td>22</td>
<td>15</td>
</tr>
</tbody>
</table>

- Quantify degree of discrepancy between expected and observed frequencies
- squared deviation, weighted by expected frequency

\[
\chi^2 = \sum \frac{(O - E)^2}{E}
\]

\[
\chi^2 = \frac{(31 - 20)^2}{20} + \frac{(12 - 20)^2}{20} + \frac{(22 - 20)^2}{20} + \frac{(15 - 20)^2}{20}
\]

\[
= 6.05 + 3.20 + 0.20 + 1.25 = 10.70
\]
Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Texting</th>
<th>Twitter</th>
<th>Facebook</th>
<th>e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected freq.</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Observed freq.</td>
<td>31</td>
<td>12</td>
<td>22</td>
<td>15</td>
</tr>
</tbody>
</table>

$\chi^2 = 10.70$

- How to interpret this value?
 - size of χ^2 should depend on number of categories
 - a family of χ^2 distributions based on null hypothesis
 - degrees of freedom: number of cells whose frequencies are free to vary, given the total number of observations ($k - 1$ for goodness-of-fit test)
Chi-Square Tests

• What is the χ^2 distribution like?
Chi-Square Tests

• How is the χ^2 distribution generated?
 • under H_0, observed frequencies are distributed normally around the expected value
 • consider simple case of two equally likely categories, such as a taste preference between two colas
 • H_0 claims that each person is equally likely to choose either cola (A or B)--like flipping a coin
 • if 20 people are tested, the distribution of possible outcomes, assuming H_0 is true, would be…
Chi-Square Tests

- Binomial distribution
 \[\mu = np = 20(.5) = 10 \quad \sigma = \sqrt{np(1-p)} = \sqrt{20(.5)(.5)} = 2.236 \]

- An observed outcome can be expressed as a z score:
 \[z = \frac{X - np}{\sqrt{np(1-p)}} = \frac{12 - 10}{2.236} = 0.89 \]
Chi-Square Tests

• Now consider squaring the \(z \) score

\[
 z^2 = \frac{(X - np)^2}{np(1-p)}
\]

• Notice how \(z^2 \) fits with \(\chi^2 \)

\[
 \chi^2 = \sum \frac{(O - E)^2}{E}
\]

\(X \) is observed frequency, \(np \) is expected frequency, so we have

\[
 z^2 = \frac{(X - np)^2}{np(1-p)} = \frac{(O - E)^2}{E(1-p)} = 2\left(\frac{(O - E)^2}{E}\right) = \chi^2
\]

• Thus, under \(H_0 \), computing \(\chi^2 \) is just like computing a \(z \) score from a normal distribution and squaring it
Chi-Square Tests

• What would be generated by squaring z scores randomly selected from a normal distribution?

\[df = 1: \chi^2 = z^2 \]
\[(3.84 = 1.96^2) \]

\[df = 2: \chi^2 = z^2 + z^2 \]

More generally,
\[\chi^2 = \Sigma z^2 \]
(sum of \(k - 1 \) independent squared z scores)

• For this system to work, minimum expected frequency is 5 (for reasonable approximation by the normal distribution)
Chi-Square Tests

\[\chi^2(3) = 10.70 \quad \alpha = .05 \quad \text{critical } \chi^2(3) = 7.82, \text{ reject } H_0 \]

- What if \(\alpha = .01 \)?
Chi-Square Tests

• Assumptions underlying the χ^2 test
 • an adequate expected frequency in each cell to allow the normal distribution to be an accurate model of the data
 • each observation is independent of all other observations (as in a series of independent coin flips)
 • each subject selected into the sample independently of all other subjects
 • only one observation per subject
Chi-Square Tests

• Goodness-of-fit
 • a second example: expected frequencies do not always have to be equal across categories
 • number of left- vs. right-handers in sample of 68 reading disabled children
 • expected freq. based on normal population (15% L)

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected freq.</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected freq.</td>
<td>10.2</td>
<td>57.8</td>
</tr>
<tr>
<td>Observed freq.</td>
<td>14</td>
<td>54</td>
</tr>
</tbody>
</table>

\[\chi^2(1) = \sum \frac{(O - E)^2}{E} = \frac{(14 - 10.2)^2}{10.2} + \frac{(54 - 57.8)^2}{57.8} \]

\[= \frac{14.44}{10.2} + \frac{14.44}{57.8} = 1.67 \]

\[\alpha = 0.05 \]

critical \(\chi^2(1) = 3.84 \), do not reject \(H_0 \)
Chi-Square Tests

• Independence
 • determine whether distribution of frequencies across levels of a categorical variable is independent of a second variable

 H_0: variables are independent
 H_1: variables are not independent

• example: effectiveness of treatment methods for mental disorder
 • variables: treatment condition, mental health status (remission, no remission)

 H_0: remission rate equal for all treatments
 H_1: remission rate not equal for all treatments
Chi-Square Tests

- Sample of 100 subjects assigned to one of three treatment conditions
- no treatment, drug, behavioral therapy
- expected frequencies?

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Remis.</th>
<th>No rem.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>8</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Drug</td>
<td>24</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>Behav.</td>
<td>34</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>34</td>
<td>100</td>
</tr>
</tbody>
</table>
Chi-Square Tests

• Expected frequencies based on H_0 (independence)

• Probability of an observation occurring in a specific cell is the product of the probability of the relevant row and column (multiplication rule of probability)

• None-Rem. cell probability = \(\frac{20}{100} \times \frac{66}{100} = (.20)(.66) \)

\[
\begin{array}{c|cc|c}
\text{Treatment} & \text{Rem.} & \text{No rem.} & \text{Total} \\
\hline
\text{None} & 8 & 12 & 20 \\
\text{Drug} & 24 & 10 & 34 \\
\text{Behav.} & 34 & 12 & 46 \\
\text{Total} & 66 & 34 & 100 \\
\end{array}
\]

\[= .132\]
Chi-Square Tests

• None-Rem. cell probability = \(\left(\frac{20}{100} \right) \left(\frac{66}{100} \right) = (.20)(.66) \)
 \[= .132 \]

• to get expected frequency, multiply probability by total number of observations: \(.132(100) = 13.2\)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rem.</th>
<th>No rem.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>8</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Drug</td>
<td>24</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>Behav.</td>
<td>34</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>34</td>
<td>100</td>
</tr>
</tbody>
</table>

• more simply,

 \[E = \left(\frac{R}{N} \right) \left(\frac{C}{N} \right) N = \frac{RC}{N} \]

 \[E = \frac{20(66)}{100} = 13.2 \]
Chi-Square Tests

- Applying RC/N to each cell yields the following

<table>
<thead>
<tr>
<th>Observed</th>
<th>Treatment</th>
<th>Rem.</th>
<th>No rem.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>8</td>
<td>12</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Drug</td>
<td>24</td>
<td>10</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Behav.</td>
<td>34</td>
<td>12</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>34</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expected</th>
<th>Treatment</th>
<th>Rem.</th>
<th>No rem.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>13.2</td>
<td>6.8</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Drug</td>
<td>22.4</td>
<td>11.6</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Behav.</td>
<td>30.4</td>
<td>15.6</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>34</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Chi-Square Tests

• Compute χ^2 as before

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th></th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>8</td>
<td>12</td>
<td>None</td>
</tr>
<tr>
<td>Drug</td>
<td>24</td>
<td>10</td>
<td>Drug</td>
</tr>
<tr>
<td>Behav.</td>
<td>34</td>
<td>12</td>
<td>Behav.</td>
</tr>
</tbody>
</table>

$\chi^2 = \sum \frac{(O - E)^2}{E} = \frac{(8 - 13.2)^2}{13.2} + \ldots + \frac{(12 - 15.6)^2}{15.6}

= 2.05 + \ldots + 0.83 = 7.62$
Chi-Square Tests

• How many \(df \) ?

\[
df = (r - 1)(c - 1) = (3 - 1)(2 - 1) = 2
\]

• number of cells free to vary, given row and column totals

\[
\begin{array}{ccc}
66 & 34 & 20 \\
34 & 46 &
\end{array}
\]
Chi-Square Tests

• $df = 2 \quad \chi^2(2) = 7.62 \quad \alpha = .05 \quad \text{critical} \quad \chi^2(2) = 5.99$

=> reject H_0

• treatments affect remission rate

• could follow up with pairwise comparison
 • e.g., None vs. Drug $[\chi^2(1) = 5.01]$

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rem.</th>
<th>No rem.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>8</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Drug</td>
<td>24</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>Behav.</td>
<td>34</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>34</td>
<td>100</td>
</tr>
</tbody>
</table>
Chi-Square Tests

• Working with proportions or percentages
 • if data are presented as proportions or percentages convert to frequencies and compute χ^2 as usual
 • treatment of delinquents and subsequent arrest

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Arrest</th>
<th>No arr.</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. serv.</td>
<td>32%</td>
<td>68%</td>
<td>81</td>
</tr>
<tr>
<td>Detention</td>
<td>58%</td>
<td>42%</td>
<td>105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Arrest</th>
<th>No arr.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. serv.</td>
<td>26</td>
<td>55</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>(37.9)</td>
<td>(43.1)</td>
<td></td>
</tr>
<tr>
<td>Detention</td>
<td>61</td>
<td>44</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>(49.1)</td>
<td>(55.9)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>99</td>
<td>186</td>
</tr>
</tbody>
</table>

$$E = \frac{RC}{N} = \frac{81 \times 87}{186} = 37.9$$

etc.
Chi-Square Tests

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Arrest</th>
<th>No arr.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. serv.</td>
<td>26</td>
<td>55</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>(37.9)</td>
<td>(43.1)</td>
<td></td>
</tr>
<tr>
<td>Detention</td>
<td>61</td>
<td>44</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>(49.1)</td>
<td>(55.9)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>99</td>
<td>186</td>
</tr>
</tbody>
</table>

\[
\chi^2(1) = \frac{(26 - 37.9)^2}{37.9} + \frac{(44 - 55.9)^2}{55.9}
\]

\[
= 12.44
\]

Critical \(\chi^2(1) = 3.84\)

Reject H_0

Conceptual conclusion?