Topic 4: Probability Theory

Reference: Chapter 4

Objectives:

(i) Alternative definitions of

» O (a priori) Probability
» [ong-Run Relative Frequency
> Probability

(ii) Counting rules — Permutations
-- Combinations
Voda Voad Vaea
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(iii) Probability rules 1

(iv) Demonstrate how probability is used to
assist in measuring “uncertain’” behaviour.
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example. R, C, P and P bar are the ewvents

representing rare, common, pattern and no ’
pattern. Percentages=s in parentheses are ‘

calculated. Mote that three independent
walues are given, so it is possible to
calculate the inwerse tree (see figure
abowe).

(-



Topic 4-ECON 245
Page 3

Consider all possible outcomes of some uncertain situation:

= Event: an event is some subset of all the possible

outcomes in a decision-making situation under conditions
of un
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Example: Toss $2 coin —head / tail
= Do this twice

Qutcomes: { , }{ . HH, T} {T,H}

Event: “Exactly one tail”.
=>{T,HH{H,T} < (2 out of 4 outcomes)
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= Probability: is a number betweenz __and o__ that
Indicates how likely it is that an event will occur.

@® If an event is impossible, its probability is zero.

@® If an event is certain, its probability is one.

A fundamental part of statistical analysis includes finding the
value that represents how likely an event will occur.

= Probability theory provides this.

Example: Toss a coin:

Event 1 Event 2:
“At least one T~ P(E)=1 “No hequ and
head, or one P(E)=0. < | 1O tall_s.”

tail.” 2 (Impossible)

(Certain)
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@® An Experiment: is a situation we can replicate under
essentially conditions.

®:

Different replications of the experiment may result in
different outcomes.

Example: Rolling pair of dice:

%> Each outcome is a “sample point.”

%> Set of all sample points 1s the “sample space.”
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“s*Must be careful to ensure that outcomes are mutually
exclusive and

= Mutually exclusive outcomes have no

= Exhaustive outcomes mean that no possible outcome
IS off the list of outcomes.

Example: Toss two $2 coins:

Sample space is: (H,H) (T,T), (H,T), (T,H).
= All possible events have been accounted.

*khkkhkkkkkkkikkkkkk
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There Is some disagreement about the definitions of
the probability of an event.

“»*Several ways to define probability:

(A) Objective (a priori) Probability:

. # of outcomes in favour
Probability of Event =

# of outcomes in total

“*Determined by objective and would have the
same value regardless of who did the interpretation.

1
-

NN

Eg. P(one head) =



(B) Long-Run

Freg
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uency:

» Replicate experiment many times.
» Keep track of the proportion of favourable outcomes — look

at the limiting

Example: Toss two coins. The probability of exactly one tail:

(H,H) (T.T), (H,T), (T,H), (H,H) (T.T), (H,T), (T,H),(H,H),

0
1

Prob =

0 1 2 2 2
12137475161
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! TEé Relative Frequency

X

;Relalwe frequency is another term for proportion; it is the value calculated by dividing the number of fimes an event occurs by the tofal number of times an experi
Ecarried out. The probability of an event can be thought of as its long-run relative frequency when the experiment is carried out many fimes.

If an experiment is repeated ntimes, and event E occurs rtimes, then the relative frequency of the event E is defined to be
ifo(E) = t/n

Example

Experiment: Tossing a fair coin 50 fimes (n = 50)

Event E = "heads'

. Result: 30 heads, 20 tails, sor=30

L Relative frequency: rfa(E) =1in=30/50=3/5=06

If an experiment is repeated many, many times without changing the experimental conditions, the relative frequency of any particular event will settle down to som
The probability of the event can be defined as the limiting value of the relative frequency:

P(E) = 5 f(E)

E'F(}r example, in the above experiment, the relative frequency of the event 'heads' will seftle down to a value of approximately 0.5 if the experiment is repeated ma
fimes.
Thus, if 1, 15 the total number of trials and »_is the number of tnals where the event xx occurred, the probability P(x) of the event occurring will be approximated by the relative frequency

as follows:

Plr)~—.
)
A further and more controversial claim is that in the “long run,” as the number of tnals approaches infinity, the relative frequency will converge exactly to the prnhahility:“]
. n
P(z)= lm —

nt—20 gy



Topic 4-ECON 245

(C) Subjective Probability:
s Assigns probabilities based on the -maker’s
subjective estimates, using knowledge, information,

and experience as a guide.
“*Subjective (personal) “degree of beliet.”
“*Useful for “once-and-for-all” events.

Eg. P(earthquake during the next exam)

\o“?(:}[

) fﬂ*é\ié
y Update: New quakes today off Vancouver Island

] 'v Five more earthquakes registered off B.C. coast.
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However probability is defined, it satisfies:
(1) 0<P(E) <L, AllE insample space(sS).
(ii) Y P(E,) =P(S) = P(E,) + P(E,)+...= 1
All events are exclusive and exhaustive.
Independent probability [ed]
Fowo events, A and B are independent then te juint pobatiy s
P(4and B)= PANB) = PA)P(B),
forexample, v cin e ippe he chace of bt bengheas s 1 X 3 = 71
Mutually exclusive [edit]

If either event A or event B or bath events accur on a single performance of an experiment this is called the union of the events A and B denoted as P(-l U B) Iftwo events
are mutually exclusive then the prabability of either accuming is

Christiaan Huygens &
published the first book on BENOERESG P(rl or B) = P(AU B) = P(;‘l)‘l‘ P(B)
probability Carl Friedrich Gauss &

For example, the chance of rolling a 1 or 2 on a six-sided die is P(l or 2) = Pm -I-Pm = %+ % = %
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To compute probabilities we need to be able to define the

sample space, S, properly. This requires us to determine all
outcomes.

= Need to understand certain “counting rules.”

Counting Rules

@® Most experiment involve several steps, each involving
several possible outcomes:

D A |
p-q-r-.
Are the choices ™|
independent of ‘
Yes each other? :_"':>' ‘
/ eeeeeeeeeee
Are you
’ makinga s =L
quenceof e —
cccccccc Are you selecting al
f the objects, or ju
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Example: Select 3 students: (Business / Economics)

/\E

/*i E
ARATLER

= Eight outcomes in this sample space.

[# of outcomes =(2)(2)(2)=8]
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“*1f business/economics equally likely at each step, then each
outcome has probability of .

Probability of Event= Sum of Probability of related outcomes.

Example: P[2 ] =P(O,0r0,0r0,) = (% + % + é) - g
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Permutations and Combinations:

In some probability problems where we have a set of
distinguishable objects, we may want to know how many
different ways there are of these objects.

Example:

# Brands of squash shoes: Nike (n), Reebok (R) and Addidas

(A)
= Can choose most In 3 ways
= Can choose In 2 ways
= Can choose last in 1 way.

So, the number of orderings is (3x 2x 1)=6
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669

In general, if you have “n” such items, the number of distinct
arrangements Is:

n(n—-1)(n-2)..3x2x1=n!
Sn f ’

(Note: 0!=1 by definition)

In the above example, the 6 orderings are:

(N, R, A) (N, A,R) (R, A, N)
(R, N, A) (A, R, N) (A, N, R)

Another name for such orderings Is “p 7

=(N, R, A) is one of the 6 possible permutations.
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@® Sometimes we are interested in taking just a subset of the
total number of items, and considering permutations of
them.

For example: 4 brands of shoes — want to choose just 2, and
order them:

= Can choose 1% in 4 ways.
=>Can choose 2" in 3 ways.

So, number of permutations is (4)(3)=12

For all 4, # of permutations=41=24
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Notation:

nPx=(# of permutations of n items taken X at a time).

For the last example: nPx=n(n-1)(n-2) ... (n - x + 1)

Note:

n! n(n-1)(n-2)-- (3)(2)(1)
(n-x)! [ (n-2)(n-x-1)--(3)(2)(1)_
n(in-1)(n-2)---(n-x+1)

NPX
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Example: 10 job applicants; 2 positions (select 2 people from
10).

Number of Permutations:(10)(9)=__ P_.

In evaluating permutations, the order of the items

For example, for 3 brands of squash shoes, the permutations
of all 3 were:

(N,R,A) (N, AR
(R,N,A) (A,R, N
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Also for this problem choosing 2 shoes:
# = 3P2=(3)(2)=6.

(N,R) (A,R) (R, A)
(R, N) (N, A) (A, N,)

AArhkkAkkkkkkkkkkkikk

In some situations, the IS not relevant.

For example, when choosing 2 people from 10 applicants,
you just want a team of 2 (no need to rank).

C of objects are groupings in which order is
Irrelevant.
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Notation: nCx = (# of combinations of n items, X at a time).

For a fixed n and X, nCx < nPx.

In fact:

nCXx

NP X

X!

n!

) (n - x)Ix!
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Example: Choose 2 people for jobs from 4 applicants.

(A) Order Matters: number of ways = P_=(4)(3)=12
(A, B) (B,A) (A QO (C, A
(A, D) (D, A) (B, C) (C, B)
(B, D) (D, B) (C, D) (D, C)

(B) Order Irrelevant: disregard
(A, B) (A, C)
(A, D) (B, C)
(B, D) (C, D)

P, 12
# of ways = ,C, = = — = 0.
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More Examples:

Select code for a gadget, by setting 9 switches to
66_|_97 ()I' 66_66.

If you forget the code, how many attempts are needed?

#=(2)(2)-(2) =2° =512

What Is the probability of being correct on the first attempt?

_ %12 & same on any attempt.
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Example #2:

Can order pizza with none or up to 8 toppings. How many
combinations of toppings are possible? For each topping,
either “yes” or “no.” (2 possibilities)

# Possibilities=(2) (2) ...(2)=2%=___.

Example #3:

The professor gives you _ sample questions, 2 of which will
be chosen randomly for the mid-term test. You only have

time to study 2 questions:
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Sample space: (1, 2) (1, 3) (1, 4) (1, 5) (2, 3)
(2,4)(2,5) (3,4 (3,5) (4,5)

(No replacement ; order irrelevant)

o!
#:5C2 = ﬁ:

' 5x 4|

2 x 1

=10

What is the probability you study the correct 2 questions?

Suppose she has already chosen the 2 questions.

This fixed combination is just one of 10 possibilities.

You have a 10% probability of choosing correctly.
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Probability Rules:

We know the probability of an IS the sum of the
probabilities of outcomes making up that event.

Can often evaluate the probability of an event from
probabilities of other events.

|.e. We can often determine the probability of an event from
the knowledge about the probability of one or more other
events in the sample space.

Recall: An event is a set -- a subset of the sample space.
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Example: Toss 2 coins.
S={(H,H) (T, T) (H, T) (T, H)}

E={exactly ___ head} ={(T, H) (H, T)}

and clearly E c S .

_2 1
So = P(E)_4:2'
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If Eisthec of E, then:

=P(E) = 1- P(E) | because P(S)=1 and (EUE)=s.

(Note: E and E are mutually exclusive and exhaustive
events.)
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Probability Rules: Basic Definitions:

If we let A and B represent two events of interest in a
particular experiment:

(1) P(A )=Probability that A does not occur in one trial of the
experiment.

P(A ) = probability of the of A.

(2) P(A|B)=Prob A occurs given that B has taken place.

(14

probability”
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(3) P(A NB) = Probability that both A and B occur in one
trial of the experiment.

Intersection or probability of A and B.

(4) P(AU B) =Probability that either A or B or both occur In
one trial of the experiment.

Probability of the of A and B.
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Conditional Probability

P(A( B)

P(A| B) = o(B)

We want to consider the probability of some event occurring,
given that (conditional on) some other event has occurred
(will occur).

Let A and B represent events.

P(A|B)=P(Event A given Event B)
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Example: Revenue Canada conducts an audit of certain type of
firms in 2 provinces. Thereare ,  firms in total,
12,000 in Quebec and 8,000 in Alberta. Suppose 2000
Quebec firms and _ Alberta firms “avoid” tax.

Revenue Canada samples a firm for audit. What is the
probability it Is a tax avoider, given that it is a Quebec

firm?
2000 1
PAAIR) = 15000~ &
2000
20,000
P(A|Q) = ( / )

12,ooy
20,000

P(Aand Q) P(ANQ)
P(Q) P(Q)
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Where P(Q) is the conditional probability

S=All firms=20,000

1 1
Compare: P(tax avoiding firm) = P(A) 20.000 gi g
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Example: Business/Economics from before:
) ¢
57 NE
%\E ﬂE
/ / A I \
1
8

1
8 8

1
P(choosing 2 business)= 5
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P(choosing 2 business | first choice is business) = P[(BBE) or

(BEB)= ;- ,

P(AﬂB)_% 4 1

Rule: PIAIB) = P(B)

P(2 Business|Business First) =

P(2 Business(] Business first)

P(Business First)
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Example: Box contains 1 nickel, 2 and 1 .
Select 2 coins. What is the probability of a dime and quarter?
P(Dime and Quarter)?

P(Q)=0.2
25
P(D)=2/7 \ P(N)=1/3 P(N)=1/ P(Q=1/3 P(Q)=1/3 \P(D)=2/3
P(D)=1/3
4+ +++ * 7

*

(Order does not matter.)
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__~P(Q.,D) = P(D|Q) x P(Q)

S NEIE
P(D,Q) = P(Q|D) x P(D)
3-)-3

P(Q and D) SN
an =—+ —=—,
6 6 3

So, P(Quarter and dime)=

P(DMNQ) = P(DIQ)P(Q) + P(Q|D)P(D)



Two S
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pecial Probabilities

From the definition of conditional probability we have:

P(A|B

P(A() B)
P(B) Re-arrange this expression:

) =

(i) P(ANB)=P(A|B)P(B) P(ANB) = P(BNA)

SO,

P(A () B) also equals P(B|A)P(A).




(ii) Consider P(A U B):
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- P(AUB) = P(A) + P(B) - P(ANB)

Avoid double counting!!

(A=

ANB
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Example: Firm Auditing (previous)

P(Avoids tax and in Quebec):
=P(Avoids|Quebec) * P(Quebec)

1V( 12 2000 1
une-(J2)- 221
(ANQ) 6/\ 20 20,000 10

I
( 2000 j(lz,oooj
12,000/\ 20,000
P(Avoids or in Quebec):

=P(Avoids)+P(Quebec)-P(Avoids and Quebec)

2500 12,000 1 12,500
P(AUQ) = + - ==
20,000 20,000 10 20,000

= 0.625

Page 40
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Some Special Cases:

@ Suppose A and B are mutually exclusive (so (anB)=2).
Generally: PCAUB) = P(A) + P(B) — (AN B).

In this case: P(AUB) = P(A) + P(B) because P(ANB) = 0.

©@

|Two events are mutually exclusive if they cannot occur at the same time.
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(i1) “Independent” Events:

If P(A) Is un by the knowledge of B, and vice versa,
then A and B are said to be statistically “independent” events.

If A and B are independent, then:

P(AB)=_
P(BIA)=___

So, In this special case:
b(vUB) = b(V| B)b(B) = b(V¥) x b(B)
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Example: Auditing Firms: To determine whether Avoidance
and Quebec are independent event:

1
P(Avoid|Quebec)= g = 91067

2500
P(Avoid)= 20,000

0125

These 2 events are __ independent (and not M.E. either).
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Note: Independence and mutually exclusive are not the
same thing.

(1) Mutually exclusive =

(i) Not mutually exclusive: could be independent or
dependent.

(i11) Independent = be mutually exclusive.

P(A|B) = P(AN B) = L;& P(A)
- P(B) P(B)

Exclusive = dependent
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Mutually exclusive implies dependence, and independence
Implies not mutually exclusive, but no other simple
Implications among these conditions holds true.

Example:

A= You are employed by Western Forest Products

B= You are not employed by Western Forest Products
C=The softwood tariff has decreased

D=My shoe size is 17

_and _ are mutually exclusive and dependent; only one can
occur at a time.

A and _ are dependent and not M.E.; both can happen.
A and _are not M.E. and independent.
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Marginal Probabilities:

In many circumstances, it is convenient to assume that a
single event always occurs jointly with other events:

Consider the situation:
B.Sc B.A B.Ed.

Male
Female |8 20 20

100= total #




Convert to Probabilities:

Marginal
probability

— \
B.Sc B.A. B.Ed. |P(Gender)|
Male
Female 0.08 0.20 0.20 ]0.48
P(Degree) |0.18 0.32 0.50 [1.00

P(B.A.)=P(B.A. and Male) + P(B.A. and Female)

=0.12 + 0.20 =0.32

Topic 4-ECON 245
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P(Male)=P( Male NBSc.)+ P(Male N B.A.) +P(Male N B.Ed.)

=0.52
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Notice that:

P(Male N BSc.)=P(Male| B.Sc) P(B.Sc),

—> SO0, P(I\/Iale):/

A
—

;(Male|B.Sc)P(B.Sc) + P(Male|B.A.)P(B.A.) +P(Male|B.Ed.)P(B.Ed.)

P(Male) =Y P(Male() Degree)
=Y P(Male|Degree)P(Degree)

P(Male)= P(Male|B.Sc)P(B.Sc) + P(Male|B.A.)P(B.A.)
+P(Male|B.Ed.)P(B.Ed.)
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_|_|\/IﬂBSC—| | M N BA | | M N B.Ed |
_L o, J(BSC)+L A J(BA)+L 5 E J(B.Ed)

{g 12}(0 18) + {8;2}(0 32) + {g zg}(O 50) = 0.52

Let A represent an event, such that one of the mutually
exclusive events E1, Eo, ..., Exk always must occur jointly with

any occurrence of A:

Maraginal probability:

P(A) = Z PCAN Ei) = Z P(Ei)P(Al Ei)

=1

= P(E,)P(A| E,) + P(E,)P(A| E,)+ P(E,)P(A| E,)
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Baves’ Rule

An application of the rules of probability theory involves
estimating unknown probabilities and making decisions on
the basis of _ sample information.

Bayesian approach calculates conditional probabilities:
P(Ei|A), where A Is some new information.

Hence, Bayes’ Rule Is concerned with determining the

probability of an event given certain new information: A way
of updating probabilities.

P(E| A) = PCE))PCAIE)) _ PC(E)DPCAIE) _  P(E)PCAIE)
T > P(ANE) > P(E)P(A|E))

where the Ei’s are mutually exclusive and exhaustive.
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Question 3.39: Consider two types of economic stabilization
policies — fiscal and monetary policy. Assume that the policy
decisions made by these two institutions are of
one another and that the action of either group is correct 80%
of the time. Finally, assume that the probabilities that the
economy follows a generally stable growth pattern due to
theses policy actions are:

P(Stable growth | Neither acting correctly =0.
P(Stable growth | Both acting correctly) =0.
P(Stable growth | Only 1 acting correctly) =0._

A) Use the independence assumption to calculate:
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() P(Neither acting correctly)

P(Neither correct) = P(Mont. NOT Correct) x (Fiscal NOT Correct)
= (0.2) x (0.2) = 0.04
rule: P(AN B) = P(A) x P(B)

(1) P(Both acting correctly)

P(Both correct) = P(Mont. Correct) x (Fiscal Correct)
= (0.8) x (0.8) = 0.64
rule: P(AMN B) = P(A) x P(B)

(I11)  P(Only 1 acting correctly)
P(One correct) = P(Mont. NOT Correct) x (Fiscal Correct) + P(Mont. Correct) x (Fiscal NOT Correct)

= (0.2)(0.8) x (0.8)(0.2) = 0.32
rule: P(A N B) + P(A( B)
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B) You are given the sample information that growth is
stable for a particular period. Use Bayes’ rule to
calculate:

(1) P(Only 1 acting correctly | Stable growth)

~ P(Growth|One correct) x P(One correct)
- P(Growth)
~ P(Growth|One correct) x P(One correct)
~ P(G|0)P(0) + P(G|1)P(1) + P(G[2)P(2)
- (0.7)(0.32)
(0.4)(0.04) + (0.7)(0.32) + (0.99)(0.64)

= 0.2564
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(11) P(Both acting correctly| Stable growth)

P(Growth|Both correct) x P(Both correct)
P(Growth)
P(Growth|Both correct) x P(Both correct)
P(G|0O)P(0) + P(G|1)P(1) + P(GJ|2)P(2)
B (0.99)(0.64)
~ (0.4)(0.04) + (0.7)(0.32) + (0.99)(0.64)

= 0.7253
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(1) P(Neither acting correctly| Stable growth)

P(Growth|Neither correct) x P(Neither correct)
P(Growth)
P(Growth|Neither correct) x P(Neither correct)
P(G|0)P(0) + P(G|1)P(1) + P(G|2)P(2)
~ (0.4)(0.04)
~(0.4)(0.04) + (0.7)(0.32) + (0.99)(0.64)

= 0.0183
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For general events
Bayes' theorem may be derived from the definition of conditional probability:
P(AN B)
P(B)
P(AnN B)
P(BIA) = 55—
— P(AN B) = P(A|B)

P(
— P(A|B) = (BJL(‘)E) (A

P(A|B) =

,)B) P(B|A) P(A).
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Simple example

An entomologist spots what might be a rare subspecies of beetle, due to the pattern on its back. In the rare subspecies, 36% have the
pattern. In the commaon subspecies, 5% have a similar pattern, but he cannot distinguish these from memaory. The rare subspecies accounts

for only 0.1% of the population. How likely is the beetle to be rare?

From the extended form of Bayes' theorem,

P(Pattern|Rare) P(Rare)
P(Pattern|Rare) P(Rare) + P(Pattern|/Common)P(Common)

P(Rare|Pattern) =

B 0.98 x 0.001
~0.98 x 0.001 + 0.05 x 0.999

=1.9%
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Bayes' theorem (also known as Bayes' rule) is a useful tool for calculating conditional probabilities.
Bayes' theorem can be stated as follows:

Unless you are a world-class statiscian, Bayes' theorem (as expressed above) can be intimidating.



