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Topic 5: Discrete Random Variables & Expectations 
Reference Chapter 5 

 

In Chapter 4 we studied rules for associating a probability 

value with a single event or with a subset of events in an 

experiment. 

 

Now we will expand our analysis to consider all possible 

events in an experiment. 

 

A random variable is a ____ which assigns ________ values 

to each possible outcome of an experiment. 

 



Topic 5 Econ 245 

Page 2 

Note: May need to distinguish between the ____ of a random  

          variable, and its value. 

 

Example:{X=x} means “the ______ variable X takes the  

                 value ‘x.’” 

 

Example: Experiment: choose student; ask if he/she is  

                 planning to major in business. 

 

Two discrete outcomes: Yes; No. 

Define random variables: 

 


x

x
x










1

0
0 1

;

;
,

 Yes

 No
indicator variable
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Example: Midterm Test.  Students may get a grade A to F     

                  Define: 

       x 

  X=5;  A 

  X=4;  B 

  X=3;  C 

  X=2;  D 

  X=1;  F 

 

Depending on the context, sample space may be _______ or 

continuous. 

 

If discrete, it may be finite or (countably) _________. 
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Probability Distributions 
 

 

Once an experiment and its outcomes have been clearly 

defined and the random variable of interest has been defined, 

then the probability of the occurrence of any _____ of the 

random variable can be specified. 

 

I.e.  Can now specify the probability of each value of the 

random variable occurring. 
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Example: There are 5 projects to be done.  Twenty-five 

government workers are to be allocated to “teams” (varying 

size) to work on them: 
 

Outcome 

Project 

# of 

Employees 

Value of X 

(x) 

 

Prob(X=x) 

1  1 5/25 

2  2 10/25 

3  3 1/25 

4  4 3/25 

5  5 6/25 

 25  1.0 

 

                                                                                                                  Probability Distribution 
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Can also depict graphically: 
 

P(X) 

 

     10
25  __ 

 

 

 

    

     5
25   __ 

 

 

 

 

 

 

 

         0         1       2      3        4       5          X 
 

The table or graph represent the probability distribution of 

X: Each value of X and its __________of occurrence. 

 

Similar to our earlier notion of “frequency distribution,” 

but now relates to all possible situations that can occur. 
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We can use probability distribution to determine  

         probabilities of interesting events: 

 

For Example: 
 

P x P( ) ( 

    

2 assigned to project 2 or 3 or 4 or 5)

             = P(x = 2) + P(x = 3) + P(x = 4) + P(x = 5)

             =
10

25

1

25

3

25

6

25

20

25

4

5
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Definitions: 

 

If the individual values assigned to the random variable can 

be _______, it is called a discrete random variable. 

 

 In this case, its probability distribution is called a   

     probability mass function, ______. 

 

Note: Defining Characteristics of P.M.F.: 

 

                       

( ) ( )

( ) ( )

i P X x

ii P X x
x

0 1

1

  

   
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In the same manner, we can define the cumulative ____ 

function (c.m.f.): 

 

F X P X x P x
x x

( ) ( ) ( )* *

*

  



 

 

 
The value of c.m.f. at any point x is usually denoted 
F(x*), where it is the ___ of all values of the p.m.f. 
for all the values of the random variable x that are 
 x*. 
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Example: 

Long-term experience suggests the following p.m.f. for sales 

of flu medication in January: 

 

Type X #  P(X) F(X) 

Aspirin for Flu 1  0.10 0.10 

Tylenol Flu 2  0.50 0.60 

Benadryl 3  0.40 1.00 

  1000 1.00  

 

F(2) =P(x=1 or x=2)=P(Aspirin or Tylenol) 

 

If a customer buys flu medicine in January, the probability it 

is not Benadryl is 0.60. 
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P(x>1)=1-P(x1)=1-P(x=1)=1 - 0.10 =0.9 

 

P(1<x3)=P(x=3)+P(x=2)=0.9 

                =F(3)-F(1)=1-0.10=0.9 

   

P(2<x3)=P(x=3)=0.4 

                =F(3)-F(2)=1-0.60=0.4 
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When we previously considered data distributions, we looked 

at “summary measures” such as the mean, variance, etc.. 
 

►A ___________ distribution is just a special type of data 

distribution – same motivation here to evaluate such 

measures. 

 

To do this, we define: 
 

The E_______ Value: of the random variable X is: 

 

   













E x x P x
x

( ) ( )

a weighted average

of all values with

probabilities as 

weights.
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The expected value of a _______ random variable X is found 

by multiplying each value of the random variable by its 

probability and then summing all these products. 

 

The letter E usually denotes an e________ value. 

 

The expected value of X is the balancing point for the p.m.f.. 
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Example: Marks obtained by students: 

Marks X 

(midpoint) 

P(x) xP(x) 

0 x<20 10  1 

20 x< 40 30  6 

40 x< 60 50  20 

60 x<80 70  14 

80x<100 90  9 

  1.0 µ=E(X)=50 
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Sometimes we want to work out the expected value of some 

f_______ of a random variable. 

 

For instance, instead of finding the mean of the random 

variable X, we might be interested in determining the 

expected _____ of X2, or Log X, or of ex. 

 

If X is a random variable, then these functions of X are also 

_______ variables, and their expected values can be 

determined. 

 

The expected value of g(x): 

                                                  

                                       E g x g x P x
all x

( ) ( ) ( ) 
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Examples: 

 

 E x x P x
x

2 2  ( ) ( )
    

 E x x P x
x

log( ) log( ) ( ) 
  

 E x x P x
x

( ) ( ) ( )  2 2
 

(Watch the units.) 
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Example: Expected compounded return on stocks over 3 

years: 

Stock 1-Yr. 

Return 

(x) 

P(x) x3 P(x) 

A 1.15  0.6084 

B 1.10  0.6655 

C 1.05  0.1158 

   E(x3)=1.3897 

 

Expected return over 3 years is 38.97%. 
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The expectation “operator”, E(·), can be used to help us 

define the v________ of a random variable. 

 

Recall, the variance of a frequency distribution was: 

 

   

1

N
(x ) f

i

2

i
 

           (Average of (xi-µ)2 values.) 

 

 So, the _______ of a random variable, X, is:                                               

                   

 V x x P x x P x( ) ( ) ( ) ( )      2 2 2 2
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Example: Volatility of Stock returns over one year:  

                   µ =E(x)=11.5% 

 

Stock Return 

(x) 

P(x) ( ) ( )x P x  2  

A 15%  4.900 

B 10%  1.125 

C 5%  4.225 

   10.25 
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Rules of “Expectation”:        E x xP x
x

( ) ( )   

 

1) The E(c)=c, where c is a constant. 

        E c cP c c c( ) ( )    1   

eg.    E(10)=____ 
 

 

2) V(c)=0; The variance of a constant is zero. 

        Recall: V(x)=E(x-µ)2; 

 

                     V(c)=E(c-µ)2=E(c-c)2=E(0)2=0 
 

 

 

 

 

                                                           X 

                        C 
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3) E(aX)=aE(X): Multiply X by a constant: 
 

    
E ax axP x a xP x aE x

xx

( ) ( ) ( ) ( )  
 

eg. E(10x)=10E(x) 

  

4) E(x+b)=E(x)+b: Add a constant 

             

E x b

x b P x

xb P x b P x

E x b P x

E x b

P x

x

x x

x

( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( ) .



 

 

 

 





 



since 
x

1
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5) V(ax)=a2V(x): 
 

        Recall V(x)=E(x-µ)2; 
  

V(ax)=E(ax-E(ax))2 

               =E(ax-aE(x))2 

            =E(a(x-E(x)))2 

         =E(a2(x-E(x))2 ) 

V(ax)=a2 E(x-E(x))2=a2V(x) 
 

Example: V(120x)=________ 
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6) V(x+b)=V(x) 

 

V(x+b)=E((x+b)-E(x+b))2  

            =E(x+b-E(x)-b)2  

            =E(x-E(x))2 =V(x) 
 

E(ax±b)=aE(x) ±b 

V(ax±b)=_______ 

 

Examples:  

V(x+10)=_____ 

V(x-20)=V(x) 

 

                          *************************** 
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One advantage of knowing these rules is to speed up 

calculations. 

 

Example: Data in U.S. $: expected value=U.S. $10 and 

standard deviation =U.S. $2.   What about the results in  

$ CAN? 

 

Suppose C$1 =U.S. $.996 (U.S. $1 =C$1.004) 

 

E(ax)=aE(x); a =1.004 

So, expected value C$ (10 × 1.004)= C$10.04 

 

V(ax)= a2 V(x); a= 1.004 

Std. deviation (ax)=|a| S.D. (X) 
                             =C$(2 × 1.004)=C$2.008 
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Example:  F=random variable of temperature (ºF) 

                  E(F)= 72.4ºF; V(F)=64(ºF)2. 

 

What is E(C) and V(C), where C is temperature (ºC)? 

                        

F C

C
F

F

 




  

32 9
5

32

9
5

17 778 05556

;

. .  

And since E(ax+b)=aE(x)+b: 
 

E C E F
b a

( ) . . ( ) .   17 778 05556 22 44  
 

V C V F
a

( ) ( . ) ( ) . 05556 19 752

    
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Note: these expectation and variance rules also enable us to 

standardize random variables for comparison purposes: 

 

E(x)= ; V(x)=σ2; S.D.(x)=σ. 

                Then let:  
Z

X
X

a b








 













 





1

 

E Z E X

V Z V X

( ) ( )

( ) ( )

 



















 









 





















  

1

1
0

1

1
1

2

2

2

2

2























 

So: E(Z)=0;        

       V(Z)=1 
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Bivariate Probability Distributions: 

 

In many situations, an experiment may involve outcomes 

that are related to ____or more random variables 

 

This section considers probability functions that involve 

more than one variable: such functions are called 

multivariate probability functions 
 

We will only deal with the case of bivariate (two variables) 

probability functions. 

 

When a sample space involves two or more random variables, 

the function describing their combined probability is called a  

 j_____probability function. 
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Example: Behaviour of Households: 

 

 X=Income of the oldest member of the household 

 Y= Years work experience of this member 

 

By looking at P(X=x and Y=y) for all x, y values, we get the 

JOINT PROBABILITY DISTRIBUTION. 

   X  

   Income 

($) 

 

Experience  25,000 30,000 50,000 

(Years) ____ 0.20 ____ 0.01 

Y ____ 0.05 ____ 0.09 

 ____ 0.10 ____ 0.20 

Entries in the table are j____ probabilities! 



Topic 5 Econ 245 

Page 29 

Two properties for Joint Probability Functions: 

 

                        

( ) ( , )

( ) ( , )

i P x y

ii P x y
yx

0 1

1

 


       

where P(x,y)=P(X=x and Y=y). 

 

This joint distribution also helps us with calculation of 

conditional probabilities. 
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   X   

   Income 

($) 

  

Experience  25,000 30,000 50,000 P(y) 

(Years) ____ 0.20 0.05 0.01 ____ 

Y ____ 0.05 0.20 0.09 ____ 

 ____ 0.10 0.10 0.20 ____ 

 P(x) 0.35 0.35 0.30 1.00 
 

P x P X x P y
y

( ) ( ) ( )    



 X x and Y

       "marginal probability of X"
 

P y P Y y P y
x

( ) ( ) ( )    



 X x and Y

       "marginal probability of Y"  
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A marginal probability for any value of Y may be found by 

summing all the ____ probabilities involving that value of Y. 

 

The table depicts joint probability distributions of X and Y.   

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When we discussed “events,” we had: 

 

P(A|B)
P(A B)

P(B)
.

 



Joint

Marginal  

Conditional 

 

P(X = x|Y = y)
P(X = x and Y = y)

P(Y = y)
.  

or 

 

P(x|y)
P(x,y)

P(y)
.
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From the last example: 

 

(i) P($25,000 and 5 years experience)=___ 

 

(ii) P($25,000)=____; 

      P(5Years)=0.26 

 

(iii) P($25,000| 5 years experience)= 

0.2

0.26
. 0 7692.
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Independence 

 

As with events, two random variables are in_________ if: 

 
P(x|y) P(x) for all x and y. 



P(x,y)=P(x)P(y); for all x and y 

 

If the knowledge of a certain _________ on one variable 

does not affect the probability of the occurrence of values of 

the other random variable, then the two variables are 

independent. 

 

I.e. X and Y are independent if the conditional probability of 

X given Y is the same as the marginal probability of X. 
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If X and Y are independent, the P(x,y)=___ ∙____. 

 

An example of not independent from the last example: 

 

P(x=$25,000 and y=5 years)=____ 

P(x=$25,000)= ____ 

P(y=5 years) =0.26 

 

However: (0.35)(0.26) ≠ 0.20.   

 

Years of experience and income are “dependent” random 

variables. 
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Expectations of Combined Random Variables: 

 

When dealing with the joint probability distribution of X and 

Y, the rule for finding expectations is similar to the rule for 

finding the expected value of a function. 

 

Basic rule:  E g x g x P x
all x

( ) ( ) ( ) 
 

 

 

If we combine two random variables together into h(X,Y), 

then: 

 

 E h X Y h x y P x y
yx

( , ) ( , ) ( , ) 
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Example: Selling items of different value: 

                     
 E XY xy P x y

yx

  ( ) ( , )
 

 

   X   

   Quantity   

Price  1 2 3 P(y) 

($) ____ 0.00 _____ 0.03 0.05 

Y ____ 0.05 _____ 0.10 0.35 

 ____ 0.10 _____ 0.30 0.60 

 P(x) 0.15 0.42 0.43 1.00 

 E XY xy P x y
yx



         

        

        

 ( ) ( , )

[( ) ( . ) ( . )

( . ) ( . ) ( . )

( . ) ( . ) ( . ) $ .

 

1 4 0 2 4 0 02 3 4 0 03

1 5 0 05 2 5 0 2 3 5 0 10

1 6 0 10 2 6 0 20 3 6 0 3 12 67
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Covariance of X and Y 
 

When we have 2 random variables it is interesting to measure 

the extent to which their random behaviours are related. 
 

The covariance, C(X,Y), measures how much the two 

random variables ____ with each other, (how they co-vary). 
 

Look at the variation of each random variable relative to its 

respective _____. 
 

   
   

Let E X

E Y

Cov X Y E x y

x y P x y

y

 

                =

x

x y

x y
yx





 

 





  

 

( )

( ):

( , )

( , )

 

Cov X Y E X Y E X E Y( , ) ( , ) ( ) ( )   
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Note: if X and Y are independent: P(X,Y)=P(X) * P(Y) 

   

   

   

   

Cov X Y x y P x y

x P x y P y

x P x P x y P y P y
x y

( , ) ( , )

( ) ( )

( ) ( ) ( ) ( )

) ( )

=

                 =

                 =

                 = E(x) E(y) - = 0

                 = (  

x y
yx

x
x

y
y

x
x

y
y

x y

x x y y

 










 



















 










 

   



 

 

 

 

 

 

   0 0

 



Topic 5 Econ 245 

Page 40 

If high values of X (relative to μx) tend to be associated with high 

values of Y (relative to μy) then C(X,Y) will be a large ________ 

number. 

 

If low values of one variable tend to be associated with high values 

of the other, then C(X,Y) will be a large ________ number. 
 

Example continued: 

   X   

   Quantity   

Price  1 2 3 P(y) 

($) 4 0.00 ____ 0.03 0.05 

Y 5 0.05 ____ 0.10 0.35 

 6 0.10 ____ 0.30 0.60 

 P(x) 0.15 0.42 0.43 1.00 
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 E Quantity X X P X
x

( ) ( )

[( . ) ( . ) ( . ) .

 

      


 

              1 0 15 2 0 42 3 0 43 2 28  

 

 E Y P
y

Price Price price

              

 

( ) ( )

[( . ) ( . ) ( . ) .

 

      



4 0 05 5 0 35 6 0 60 5 55
 

 
 Cov X Y x y P x y

x

x y

Y

, ( )( ) ( , )

[( . )( . )( )] [( . )( . )( . )

[( . )( . )( . )] . .

  

      

   

   
 

                 

                  

1 2 28 4 5 55 0 1 2 28 5 5 55 0 05

3 2 28 6 5 55 0 3 0 016
 

or: 

COV x y E XY E X E Y( , ) ( ) ( ) ( ) 

                   = [12.67 - (2.28)(5.55) = 0.016  
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One limitation of the covariance measure is that it depends on 

u____ of the data, and it can take any positive or negative 

value. 

 

To compensate for both of these failings, especially when 

wanting to _______ across different data sets, consider the 

following measure: 


 



 

xy

x y

x

x

Cov X Y
correlation

where

E x










 

  

.( , )

( )

 is the standard deviation of X,

variance(x)
x

2
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We callxy the simple correlation between the random 

variables X and Y. 

 

( )

( )

i

ii

correlation is unitless.

  1 1  

 

   X   

   Quantity   

Price  1 2 3 P(y) 

($) 4 0.00 ____ 0.03 0.05 

Y 5 0.05 ____ 0.10 0.35 

 6 0.10 ____ 0.30 0.60 

 P(x) 0.15 0.42 0.43 1.00 
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 E Quantity X X P X
x

( ) ( ) .  
 

2 28
 

 

 E Y P YPrice Y
 y

( ) ( ) .   5 55
 

 

COV x y E XY E X E Y( , ) ( ) ( ) ( )  = 0.016  
 

 E XY xy P x y
yx

  ( ) ( , ) $ .
 

12 67
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 E Quantity X X P X
x

( ) ( )

[( . ) ( . ) ( . ) .

2 2

2 2 21 0 15 2 0 42 3 0 43 5 7

 

      


 

               

 

 E Y P Y
y

Price Y

              

2

 

( ) ( )

[( . ) ( . ) ( . ) .

2

2 2 24 0 05 5 0 35 6 0 60 3115

 

      



 

 

VAR x E X E x( ) ( ) [ ( )]

.

 



2 2

0 5016             = 5.7 - [2.28]2  

 

 x  0 7082.  
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VAR Y E y E y

y

( ) ( ) [ ( )]

.

.

 





2 2

0 3475

0 5895

             = 31.15 - [5.55]2


 

 


 

x y

x y

COV x y
,

( , ) .
. .

.
.

. 


 
0 016

0 7082 0 5895

0 016

0 3552
0 04504

 

 

____ positive correlation between x and y. 
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Linear Combinations of Random Variables 

 

In general, we had: 

       
 E h X Y h x y P x y

yx

( , ) ( , ) ( , ) 
 

 

 

Now consider the expectation of the weighted sum of: 

   

              h(X,Y)=aX +bY 

 

where a and b are constants:  
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i) 

 

E(aX bY) aX bY

aX) P(x,y

a

a

a

   

   










 











 

 





 

 

( ) P(x, y)

( ) (bY) P(x, y)

x P(x, y) b y P(x, y)

xP(x) b yP(y)

E(X) bE(Y)

yx

yx

yx xy

x y
 

 

 



Topic 5 Econ 245 

Page 49 

More directly: 

E(aX +bY) =E(aX) +E(bY) 
                    =a E(X) + b E(Y) 
(ii)  

    

  

 

   

 

Var(aX bY)

E aX bY E aX bY

E aX aE(X) bY bE(Y)

E a(X E(X)) b(Y E(Y))

E a (X E(X)) E b (Y E(Y))

E 2ab(X E(X))(Y E(Y))

a V(X) b V(Y) 2abCov.(X,Y)

2

2

2

2 2 2 2

2 2



   

   

   

   

  

  
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   X   

   Quantity   

Price  1 2 3 P(y) 

($) 4 0.00 ____ 0.03 0.05 

Y 5 0.05 ____ 0.10 0.35 

 6 0.10 ____ 0.30 0.60 

 P(x) 0.15 ____ 0.43 1.00 

 

 E Quantity X( ) . 2 28  

 E YPrice( ) . 5 55  

COV x y( , ) = 0.016  

 E XY  $ .12 67  
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 E Quantity X( ) .2 5 7  

 E YPrice( ) .2 3115  

VAR x( ) . 0 5016  
 

 x  0 7082.  
 

VAR Y

y

( ) .

.





0 3475

0 5895  

 

x y, . 0 04504  
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Let R=3X+7Y.  What is the expected value and the standard 

deviation of R? 

 

E(R)=3E(x) + 7E(y) 

          3(2.28)+7(5.55)=45.69 

 

V(R)=V(3x+7y) 

         =9V(x)+49V(y)+2(3)(7)Cov(x,y)              

         =(9)(0.5016)+(49)(0.3475)+(2)(3)(7)(0.016) 

          =4.5144+17.0275+0.672=22.2139 

 

Std. Dev.=________ 



Topic 5 Econ 245 

Page 53 

 



Topic 5 Econ 245 

Page 54 

Discrete Probability Distributions 
 

While it is often useful to determine probabilities for a 

specific discrete random variable or combined random 

variables, there are many situations in statistical inference and 

decision-making that involve the s___ type of probability 

function. 

 

I.e. Certain probability distributions _____ – have general 

characteristics which can be exploited. 

 

Recognize the similarities between certain types of 

experiments and match a given case to the general formulas 

for mean, variance, independence and other characteristics of 

the random variables. 
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The examples we have seen so far have been different, 

specific, probability distributions.  We are given information 

in each case. 

 

Let’s consider one specific, common, discrete random 

variable.  In Topic 6 we will consider one specific continuous 

random variable. 
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The Binomial Distribution: 
 

Many experiments share the common trait that their _______ 

can be classified into one of two events. 

 

For Example: 

1.  Select a person: male or ______ 

2. Apply for a job: Success or ____ 

3. Your credit card bill: paid or due 

 

It is often possible to describe the outcomes of events as 

either a “success” or “failure.” 

 

Use general terminology of “success” or “failure” to 

distinguish. 
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Experiments involving repeated independent trials, each 

with just two possible outcomes, form the basis of the 

________ distribution (________ probability distribution). 

 

Definition: Bernoulli Trial: 
Each repetition of an experiment involving only ___ 

outcomes is called a Bernoulli trial. 

 

Interested in a series of independent, repeated Bernoulli  

    trials. 

 

Independent results mean any one trial cannot influence the  

    results of any other trial. 
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Note: Name the trials: t1 t2 t3 ..., then,: P( t2=success |t1 =  

          success)=P( t2=success); etc. 

 

By “repeated” trials we mean that each time the experiment is 

conducted, the conditions are _________. 

 

The Binomial Distribution is characterized by: 

 n = number of _____ 

 Π= probability of success in one independent trial. 

 

The values of n and Π are referred to as the parameters of 

this distribution. 

 

They help determine the ___________ of “success” and 

“failure.” 
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In a binomial distribution, the probabilities of interest are 

those of receiving a certain number (x) of _________ in ‘n’ 

independent ______, each trial having the same probability 

(Π) of success. 

 

Note: P(Failure) = 1- P(Success) as there are only 2 possible  

          outcomes. 

 

They are “complementary” outcomes. 
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The Binomial Formula: 

 

To determine the probability of exactly x successes in n 

repeated Bernoulli trials, each with a ________ probability of 

success equal to Π, it is necessary to find the probability of 

any one ________ of outcomes where there are x successes. 
 

If there are x successes in n trials, there must be (n-x) failures. 
 

The probabilities of interest are those of getting x “successes” 

in n independent trials, each of which has probability Π of 

success. 
 

P(Event)=P(Outcome #1) + P(Outcome #2)+ ... 

             = P(Outcomes) * (# of Outcomes) 
 

       if each outcome has the same probability. 
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We can choose x from n in : 
_ _ _

n!

x!(n x)


  ways. 

 

So, there are nCx outcomes consistent with the event of x 

“s________” and (n-x) failures. 

 

Each of these (nCx) outcomes occurs with probability 

  x n x( )1 

. 

 

So: 
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P

nCx

n

x n x

for
etc

x n x

x n x

(X successes in n trials)

x 0,  1,  2,  3,  ..., n

n 1,  2,  3,...

 












 













 

 

( ) ( )

!

!( )!
( )

.

1

1

 

 

This set of probabilities gives the probability distribution 

for a _______ Random Variable. 
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Note: If x is B(n, Π), it is a ________ random variable: 

 

P X nCx x n x( ) ( ) ( ) 













 1

x 0,  1,  2,  3,..., n

n 1,  2,  3,  ....  is its probability ____ function: 

   

So: 

( ) ( ) ; .

( ) ( )

i P X

ii P X
x

n








0

1
0

all x
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Example:      0 2 4 1 0 8. ; ; ( ) .n  

P C( ) ( . ) ( . )

( )( . ) . ____

0 0 2 0 8

1 0 8 0

4 0

0 4 0

4













=
4!

0!4!
 

 

P C( ) ( . ) ( . )

( . ) ( . ) . ____

1 0 2 0 8

0 2 0 8 0

4 1

1 4 1

1 3













=
4!

1!3!
 

 

P C( ) ( . ) ( . )

( . ) ( . ) .

2 0 2 08

0 2 08 01536

4 2

2 4 2

2 2











 



=
4!

2!2!
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P C( ) ( . ) ( . )

( . ) ( . ) .

3 0 2 08

0 2 08 0 0256

4 3

3 4 3

3 1











 



=
4!

3!1!  

 

P C( ) ( . ) ( . )

( . ) ( . ) . ____

4 0 2 0 8

0 2 0 8 0

4 4

4 4 4

4 0













=
4!

4!0!  

             

          P(X) 

0.4 

0.3 

0.2 

0.1 

0.0 

                       0        1       2       3       4             X 
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Binomial tables assist in the calculations. 
 

General Characteristics of Binomial Distribution 
 

(A) If n is small and   0.50: distribution is skewed to the 

_____. 

 

(B) If n is small and   > 0.50: distribution is skewed to the 

____. 

 

(C) If n is large and/ or   = 0.50: distribution is __________. 
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Example: 30% of job applicants are from a minority group.  

If we take __applicants at random, what is the probability 

of including __from the minority group? 

 

Let X = “minority person” 

n=5;  X=2; =0.3 

 

P X nCx Binomial

P

x n x( ) ( ) ( )

( )
!
! !

( . ) ( . ) . ____

  










 

 1

2
5

2 3
0 3 0 7 02 3
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Example: Customers in a bank.  One in four customers 

require service for more than 4 minutes.  ___ people are in a 

queue.  What is the probability that exactly 3 customers will 

take more than 4 minutes each? 

 
=0.25;n=6;  x=3 

X=”customer takes more than 4 minutes.” 

 

P X nCx

P

x n x( ) ( ) ( )

( )
! !

( . ) ( . ) .

 










 

 1

3
6!

3 3
0 25 0 75 013183 3
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What is the probability that at least 3 customers need more 

than 4 minutes each? 

 

I.e.  P(3)+ P(4) + P(5) + P(6): 
 

P( )
! !

( . ) ( . ) .4
6!

4 2
025 075 003304 2









   

 

P( )
! !

( . ) ( . ) .5
6!

5 1
025 075 000445 1









   

 

P( ) ( . ) ( . ) .6
6!

6!0!
025 075 000026 0









 

 

So the probability is: 
(0.1318+ 0.0330 + 0.0044 + 0.0002)  = 0.____ 

& P(< 3 customers take more than 4 minutes each)=1- 0.1694 = 0.____ 
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The Expected Value of a Binomial Random Variable: 
 

The ____ number of successes in any given experiment must 

equal the number of trials (n) times the probability of a 

success on each trial ( ). 

 

For example, the probability that a process produces a 

defective item is   = 0.___;  

 

Then the mean number of defectives in ___trials is:   

                                 

                              (10)(0.25) =2.5. 
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Let X be ~ B(n,  ). Then E(X)=n : 

 

 

 



  

Probability of success

number of successes expected from a single trial is

So,  in "n"  trials,  expected n  "successes."



  



:

( ) ( )1 0 1
 

 

Binomial mean: E(X Binomial)=____  
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Proof: 

E X xP x

x nCx

x
n

x n x

n

x n x

n
n

x n x

n
m

y m

x

n

x

x

n n x

x n x

x

n

x n x

x

n

x n x

x

n

( ) ( )

( ) ( )

( )
!

!( )!
( )

!

( )!( )!
( )

( )!

( )!( ( ))!
( )

( )
!

!(

( ) ( )



  

 





 






   


















   













0

0

1

1

1 1 1

1

1

1

1
1

1

1 1 1
1

 

 

 

  












 

   

 








y

y x m n

So

E x n n

y

m

y m y

Y B m

)!
( )

[ ; ]

,

( ) ( )( )

( , )

0

1

1 1

1

 

 



                                                                   
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Similarly, we can show that V(X)=_______ 

 

So the standard deviation of X: n ( )1  

 

when X~ B(n,  ). 
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Example: If a manufacturing process is working properly, 10% 

of the items produced will be defective.  We take a random 

sample of 15 items.  Calculate the ________ number of 

defectives: 

 

X = defective ~ B(15, 0.1) 
 

So, E(x) = n= (15)(0.1) = 1.5 
 

One or two defectives expected. 
 

 

What is the ________ deviation of the number of defectives? 
 

V(X) = n  (1- )=(15)(0.1)(0.9)=1.35 
 

So, the standard deviation (X)= 1.16 
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