Chapter 12
Defensive Roles of Polyphenol Oxidase in Plants

C. Peter Constabel and Raymond Barbehenn

Plant polyphenol oxidases (PPOs) are widely distributed and well-studied oxidative
enzymes, and their effects on discoloration in damaged and diseased plant tissues
have been known for many years. The discovery in C.A. Ryan’s laboratory in the
mid-1990s that tomato PPO is induced by the herbivore defense signals systemin
and jasmonate, together with seminal work on PPO’s possible effects on herbiv-
orous insects by G. Felton and S. Duffey has motivated many studies of PPO in
the context of plant-herbivore defense. The cloning and characterization of PPO
cDNAs from multiple plant species now allows for direct testing of defensive func-
tions of PPO using transgenic plants. These have shown that PPO can contribute
to insect herbivore and pathogen resistance, although how this occurs is only now
being investigated more closely. Here we review progress in the functional analysis
of PPO in plant defense against pests, and describe recent results that address the
mechanisms of PPO as an anti-herbivore protein. We suggest that assumptions of
how PPO functions as an anti-nutritive defense against lepidopterans needs to be re-
examined in light of the near anoxic conditions in lepidopteran midguts. Ultimately,
the efficacy of PPO should be directly tested in a greater variety of plant-insect
interactions. In addition, the identification of the endogenous PPO substrates will
help to define defensive and potentially other roles for PPO in plants.

12.1 Introduction

Polyphenol oxidases (PPOs) are ubiquitous copper-containing enzymes which use
molecular oxygen to oxidize common ortho-diphenolic compounds such as caf-
feic acid and catechol to their respective quinones. PPO-generated quinones are
highly reactive and may cross-link or alkylate proteins, leading to the commonly ob-
served brown pigments in damaged plant tissues and plant extracts. The conspicuous
pigments are generally undesirable in food products, and the role of PPO in browning
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has prompted numerous studies on PPO in food and beverages. In parallel, the po-
tential roles for PPO in plant defense against pests have motivated many studies on
PPO in an ecological context, though few of these have used a transgenic approach.
Functional and mechanistic studies on PPO in plant-insect interactions using PPO-
modified transgenic plants have recently been reported, providing new insight into
the biology of this versatile enzyme.

12.2 The Biochemistry of Plant Polyphenol Oxidase

Polyphenol oxidase (catechol oxidase; E.C. 1.10.3.2) has been purified and char-
acterized from a wide range of plant species and a variety of tissues (Constabel
et al. 1996; Mayer 2006), and activity levels using common substrates vary widely
(Constabel and Ryan 1998). Key features of PPOs are two conserved copper-binding
domains, and N-terminal chloroplast and thylakoid transit peptides (van Gelder
et al. 1997; Marusek et al. 2006). The size of the predicted mature PPO proteins is
typically 54-62kD (Constabel et al. 1996; van Gelder et al. 1997). However, some
PPOs are processed further, and in some cases only the processed form is fully active
(Rathjen and Robinson 1992). Many PPOs are predicted to contain a proteolytic
processing site near the C-terminus of the polypeptide (Marusek et al. 2006).

Based on its association with browning reactions in crop plants, PPO has been
characterized in a wide variety of food plants including banana, wheat, quince, and
avocado, and a number of chemical inhibitors have been identified (reviewed in
Mayer 2006; Yoruk and Marshall 2003). Although PPO is found at significant levels
in a variety of fruits, vegetables and grains, its biological function in these tissues has
rarely been studied. PPO is expressed in many different tissues and organs, including
roots, leaves, flowers, and vascular tissue (Constabel et al. 1996). Its presence in
chloroplasts led to the proposal that PPO may function in pseudocyclic photophos-
phorylation or as a modulator of oxygen levels, yet to date little evidence supports
these roles (Steffens et al. 1994). A complicating issue regarding PPO function has
been the separate localization of its phenolic substrates in plant vacuoles, so that
the cell would have to be broken in order for PPO to oxidize phenols; this is most
likely to occur following pest or pathogen challenge. Roles of PPO in plant defense
are thus commonly discussed, although direct evidence for such roles has become
available only recently.

A puzzling feature of PPO has been a variable degree of latency, so that PPOs
from some species need to be activated with detergents or proteases for full activ-
ity. For example, tomato leaf PPO is extracted in its fully active form (Constabel
et al. 1995), but poplar leaf PPO requires activation with protease or detergent
(Constabel et al. 2000). Recent experiments suggest that such activating treatments
function by removal of a peptide from the active site, via proteolysis or partial un-
folding of the polypeptide, respectively (Gandia-Herrero et al. 2005). Treatment
with low pH can also activate latent PPOs, presumably via a conformational change
of the active site, increasing its accessibility to substrates (Kanade et al. 2006).
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PPO latency may be significant for its defensive function; we recently showed that
latent poplar PPO is activated by its passage through caterpillar guts (Wang and
Constabel 2004).

PPOs are known to have broad substrate specificities. Thus, an enzyme from any
given source may be capable of oxidizing a variety of simple ortho-diphenolics,
such as caffeic acid and its conjugates, catechol derivatives, or dihydroxyphe-
nylalanine (DOPA). However, enzymes from different plant species exhibit distinct
preference profiles (reviewed in Constabel et al. 1996). Flavonoids with
ortho-dihydroxy phenolic rings have been found to be PPO substrates, for example,
catechin, (—)-epicatechin, and myricetin (Guyot et al. 1996; Jimenez and Garcia-
Carmona 1999). Some reports also describe the oxidation of trihydroxy phenolics,
such as gallic acid, by PPO (Shin et al. 1997), but it is not clear how widespread
this is. Furthermore, for some PPOs a monophenolase activity has been described
(Wuyts et al. 2006). Such enzymes may hydroxylate a monophenol such as tyro-
sine, which can then undergo further oxidation by the polyphenol oxidase activity
to the quinone. Tyrosine hydroxylation by PPO has been described in pokeweed,
where this reaction constitutes part of the biosynthetic pathway leading to betalains
(Gandia-Herrero et al. 2005).

While the range of substrates accepted by isolated PPOs can be readily defined
in vitro, knowledge of the substrates that are utilized in planta or during defense
reactions is much scarcer. Caffeic acid esters such as chlorogenic acid (caffeoyl-
quinate) are excellent PPO substrates and are very common plant metabolites. In
tomato and coffee, chlorogenic acid has been identified as the most likely in vivo
PPO substrate (Melo et al. 2006; Li and Steffens 2002). Caffeic acid esters are
ubiquitous as lignin precursors (Humphreys and Chapple 2002), but in most species
these may not accumulate to sufficient levels to be considered likely PPO substrates.
In Populus tremuloides, catechol is postulated to be released by the breakdown of
the abundant phenolic glycosides (Clausen et al. 1989), and would therefore be
available as a substrate in damaged tissues (Haruta et al. 2001). For most PPOs,
however, the endogenous substrates are unknown. The importance of identifying
the in planta PPO substrates and understanding the overall phytochemical context
of PPO-containing plants is emphasized by recent reports of PPO-like enzymes
with biosynthetic roles as hydroxylases of secondary metabolites (Cho et al. 2003;
Nakayama et al. 2000).

PPO has been extensively studied by biologists, plant pathologists, and ecolo-
gists interested in mechanisms of defense against pests and pathogens. Based on the
browning reactions resulting from the reactive PPO-generated quinones, PPO has
often been suggested to function as a defense against pests and pathogens. A most
dramatic illustration of the efficacy of PPO in this context comes from work on
Solanum berthaultii in which extremely high PPO levels (45% of soluble protein)
are found in glandular trichomes (Kowalski et al. 1992). Breakage of the trichomes
by small-bodied insects such as aphids leads to rapid PPO-mediated oxidation
and polymerization of phenolics, ultimately entrapping insects, or occluding their
mouthparts with a sticky polymer (Kowalski et al. 1992). In most species, however,
leaf PPO is found not in trichomes but in mesophyll cells. Here, the PPO-generated
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quinones were proposed to alkylate dietary protein during insect feeding, and to de-
grade essential amino acids in insect guts (Felton et al. 1989, 1992). PPO-mediated
protein alkylation has been demonstrated to operate against lepidopteran pests in
the presence of oxygen and in artificial diets, and is now being investigated in more
detail in midgut fluids (see Section 12.5 below).

12.3 PPO and Induced Herbivore Defense in Tomato
and Other Plants

The idea that PPO may act as an anti-nutritive defense against leaf-eating insects
was first suggested by G. Felton and S. Duffey, who showed an inverse correlation
of Heliothis zea growth and PPO levels in tomato plants (Felton et al. 1989). Strong
support for an anti-herbivore role of PPO came from the discovery that the her-
bivore defense-inducing signal molecules systemin and methyl jasmonate (MeJA)
induce PPO activity and PPO mRNA levels in tomato leaves (Constabel et al. 1995).
Systemin is a short peptide required for systemic wound signaling in tomato which
strongly upregulates tomato herbivore defenses (Ryan 2000; Narvdez-Vasquez and
Orozco-Cérdenas, this volume). Though no longer considered to be the primary
systemic signal, it is required for the generation of such a signal (Schilmiller and
Howe 2005). PPO and other defenses were also found to be strongly induced
by MeJA and oligogalacturonic acid, major plant defense signaling compounds
(Constabel et al. 1995). Since PPO induction in tomato by multiple signals oc-
curs in parallel with a suite of other anti-herbivore proteins including several types
of protease inhibitors (PIs) and the anti-nutritive enzymes arginase and threonine
deaminase (Bergey et al. 1996; Chen et al. 2005), PPO is thought to play a similar
role in defense against insects.

In tobacco, PPO and PIs are upregulated by tobacco systemin as well as by
MelJA (Constabel and Ryan 1998; Ren and Lu 2006). Likewise, strong herbivore-,
wound-, and MeJA-induction of PPO was shown in leaves of several poplar species
(Constabel et al. 2000; Haruta et al. 2001). Hybrid poplar (Populus trichocarpa x
P. deltoides) has a strong systemic inducible defense response, which also includes
trypsin inhibitors and chitinases, both with confirmed anti-insect activities (Parsons
et al. 1989; Lawrence and Novak 2001, 2006). Recent large scale genomics exper-
iments have underscored the complexity of the herbivore defense response in hy-
brid poplar, which involves upregulation of many additional putative defense genes
(Christopher et al. 2004; Ralph et al. 2006; Major and Constabel 2006). Overall, the
co-induction of PPO with other herbivore defense proteins in several plant species
has provided support for its anti-herbivore function.

The induction of PPO in tomato by both insects and MeJA has been replicated
in both laboratory and field studies (Stout et al. 1998; Thaler et al. 1996, 2002).
Furthermore, the early work in tomato stimulated numerous studies on inducible
PPO in diverse plant species. The inducibility of PPO by wounding or MeJA treat-
ment has been confirmed in other plants, including both herbaceous crops and trees
(Constabel and Ryan 1998). The induction of PPO by herbivory has now been shown
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Table 12.1 Studies of PPO induction in plants by herbivores with unknown effects on herbivores

Plant taxa Insect species (Order)’ Induction Reference

Solanaceae

Tomato Leptinotarsa decemlineata (C) ~2X Felton (1992)

Potato L. decemlineata regurgitant ~3-7X Kruzmane et al. (2002)
Salicaceae

Poplar (hybrid) Malacosoma disstria (L) ~12X Constabel et al. (2000)
Betulaceae

Black alder Agelastica alni (C) ~3X Tscharntke et al. (2001)
Poaceae

Buffalograss Blissus occiduus (H) None Heng-Moss et al. (2004)
Barley, wheat, oats Diuraphis noxia (Ho) None Ni et al. (2001)
Fabaceae

Common bean Melanoplus differentialis (O) ~2X Alba-Meraz and Choe (2002)
Soybean Helicoverpa zea (L) None Bi and Felton (1995)
Soybean Ceratoma trifurcata (C) None Felton et al. (1994)
Soybean Spissistilus festinus (H) 1.6X Felton et al. (1994)
Malvaceae

Cotton Helicoverpa zea (L) Not detectable Bi et al. (1997)
Theaceae

Tea Helopeltis theivora (H) ~2-3X Chakraborty and

Chakraborthy (2005)
! C = Coleoptera, L = Lepidoptera, H = Heteroptera, Ho = Homoptera, O = Orthoptera.

for a taxonomically diverse group of plants (Table 12.1), and this induction has
commonly been interpreted as a direct response against the herbivore. By contrast,
studies of the potential impact of induced PPO against the herbivores have largely
been done with a more limited range of plants and herbivores, primarily noctuid
caterpillars on tomato and other species in the Solanaceae (Table 12.2). The results
of 11 of 16 experiments demonstrate PPO induction and are consistent with the
hypothesis that induced PPO contributes to defense against herbivores. As with all
correlative studies, however, it is not possible to determine the specific impact of
induced PPO on herbivores due to the other biochemical changes that occur in dam-
aged plants (e.g., Hermsmeier et al. 2001; Thaler et al. 2001; Chen et al. 2005; Major
and Constabel 2006). The direct effects of PPO on insect herbivores can thus best
be tested using transgenic plants, where PPO levels are manipulated independently
of other traits (see Section 12.4).

Other studies of the association between PPO activity and insect herbivore per-
formance using (1) plant genotypes that vary in resistance to herbivory, (2) on-
togenetic variation in PPO activity within the plant, and (3) leaves treated with
PPO, yielded mixed results. A potato genotype with high PPO activity had in-
creased resistance to the Colorado potato beetle (Leptinotarsa decemlineata;
Castanera et al. 1996), while resistance to the coffee leaf miner (Leucoptera
coffeella; Diptera) was apparently unaffected by higher levels of PPO in coffee
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leaves (Melo et al. 2006). Relative growth rates of Helicoverpa zea caterpillars
were negatively correlated with tomato leaf and tomato fruit PPO levels (Felton
et al. 1989), while Manduca quinquemaculata caterpillars showed greater perfor-
mance on younger tobacco leaves, which contain higher PPO levels (Kessler and
Baldwin 2002). Lymantria dispar caterpillars were unaffected by an eight-fold in-
crease in PPO levels, using mushroom PPO applied to the leaf surface (Barbehenn
et al. 2007).

Correlations of PPO activity with defense may be confounded by the complexity
of PPO gene families. For example, the poplar genome contains as many as 10-12
PPO genes (I.T. Major, L. Tran and C.P. Constabel, unpublished data), but to date,
only three PPO genes have been studied. PtdPPO] is exclusively expressed in dam-
aged leaves, while PtdPPO2 and PtdPPO3 are predominantly expressed in stems,
petioles, or roots. Both PtdPPO1 and PtdPPQO?2 are inducible, but in different tissues
(Wang and Constabel 2004). Tissue-specific PPO expression has been most care-
fully studied in tomato, where seven PPO genes were characterized by Steffens and
co-workers (Hunt et al. 1993; Steffens et al. 1994). In elegant work using promoter-
GUS fusions, in situ hybridization, and immunolocalization, a highly complex
cell- and tissue-specific pattern of expression was established (Thipyapong 1997;
Thipyapong and Steffens 1997). Each PPO showed a distinctive expression profile,
but at least one PPO gene showed constitutive expression for any given tissue. In-
terestingly, only the PPO-F gene was found to be herbivore-inducible. In addition
to systemin and MelJA, pathogen and abiotic stress signals such as salicylic acid
and ethylene were also shown to regulate PPO-F, consistent with additional roles of
PPO in pathogen or other stress resistance. In general, diverse expression patterns
of PPO in tomato and poplar in response to both developmental and stress signals
indicate that PPO may have additional stress-related functions in different systems
or situations.

12.4 Some Defensive Functions of PPO have been Demonstrated
in Transgenic Tomato and Poplar Plants

In tomato and poplar, the induction and regulation of PPO in the herbivore defense
response, in parallel with many confirmed defense genes, has provided indirect ev-
idence for its role in defense (‘guilt by association’). Nevertheless, it is possible
that the herbivore-induced PPO contributes to wound healing and defense against
opportunistic pathogens, rather than direct defense against insects. This question
can best be addressed using transgenic plants. The availability of PPO cDNAs from
a diversity of species has facilitated this approach in species susceptible to genetic
transformation. Based on the commercial interest in the role of PPO in browning,
several studies reported the successful anti-sense suppression of PPO in potato tuber
and apple fruit (Bachem et al. 1994; Murata et al. 2001; Coetzer et al. 2001). Con-
versely, the overexpression of PPO in transgenic sugarcane resulted in darker juice
(Vickers et al. 2005). However such PPO-modified plants were not used to address
questions of biological functions or plant defense.
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The defensive roles of PPO were first directly tested with PPO-overexpressing
tomato plants, which showed fewer lesions and increased resistance to the bacterial
pathogen Pseudomonas syringae pv tomato (Li and Steffens 2002), while antisense
PPO-suppressed tomato showed greater susceptibility (more bacterial replication
and more lesions; Thipyapong et al. 2004a). These plants also provide the strongest
support to date for a defensive role of PPO against insect herbivores. Noctuid
caterpillars Heliothis armigera and Spodoptera litura showed negative effects on
growth when fed on PPO-overexpressing lines, and conversely, positive effects
on growth when fed PPO-suppressed lines (P. Thipyapong, personal communica-
tion). In transgenic Populus, overexpression of the induced leaf PPO gene in low
PPO poplar lines facilitated assays for roles of PPO against tree-feeding caterpil-
lars. These studies have provided mixed results. First-instar caterpillars of Mala-
cosoma disstria had decreased growth rates on elevated-PPO poplar (Wang and
Constabel 2004), but only when experiments were performed in the fall, presum-
ably a result of decreased caterpillar vigor. Similarly, fourth-instar caterpillars of
Lymantria dispar had decreased growth rates on elevated-PPO poplar in the winter
(Barbehenn et al. 2007). A second species of lymantriid caterpillar, Orgyia leu-
costigma, had decreased growth rates on elevated-PPO poplars in one experiment,
but no negative effects were observed in another experiment (both in the winter).
Here it appears that the varying and small effects of large increases in PPO activity
in poplar (five to 40-fold increases) would make induced PPO alone ineffective as a
defense against these tree-feeding caterpillars.

The differences in the apparent effectiveness of overexpressing PPO in tomato
vs. poplar may be due to several factors, including the differential susceptibilities
of test insects. The cell-specific localization of PPO may also be important; in
tomato a significant proportion of overexpressed PPO is found in glandular tri-
chomes (P. Thipyapong, personal communication). This may favor pre-ingestive
PPO oxidation of phenolics and avoid the anoxic environment of the gut (see be-
low). Similarly, a rapid oxidation of phenolics in tomato may be favored by the
lack of latency for the tomato, but not the poplar enzyme (Constabel et al. 1995,
2000).

PPO-overexpressing transgenic poplars have been useful tools for probing other
aspects of PPO, such as its stability after ingestion. Defense proteins are predicted
to be relatively stable in the harsh conditions found in insect digestive systems, and
the recovery of significant amounts of PPO in frass of forest tent caterpillar feeding
on transgenic foliage is consistent with this expectation (Wang and Constabel 2004).
Furthermore, PPO was activated by its passage through the insect gut, since unlike
PPO extracted from leaves, PPO in frass extracts was fully active. Western blot
analysis using PPO-specific antibodies showed that PPO in frass migrated at a lower
molecular weight, indicating that proteolytic processing at a discrete site occurred
in the gut (Wang and Constabel 2004). As mentioned above, PPOs are frequently
observed to have a C-terminal proteolytic processing site (Marusek et al. 2006).
The biological significance of PPO activation by gut enzymes is not clear, but it
may impact its effectiveness.
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12.5 PPO Activity Against Insects: Mechanisms of Action
and Limitations

The many studies of PPO induction by herbivores attest to the general belief that
PPOs play a key role in defense against herbivores. However, since the work of
Felton et al. (1989, 1992), studies have rarely examined the mode of action of in-
gested PPOs. At least three mechanisms have been proposed by which PPO might
affect insect herbivores: (1) PPO-generated quinones could alkylate essential amino
acids, decreasing plant nutritional quality, (2) redox cycling of quinones may pro-
duce oxidative stress in the gut lumen, and (3) phenolic oxidation products, such
as quinones and reactive oxygen species (hydrogen peroxide) generated by quinone
redox cycling, could be absorbed and have toxic effects on herbivores. The work
that has addressed these mechanisms in insect herbivores is summarized below.

As originally shown by Felton et al. (1989, 1992), PPO can directly reduce pro-
tein quality in vitro, when incubated with dietary protein and chlorogenic acid at
ambient oxygen at pH 7.0. The alkylation of essential amino acids with quinones
under these conditions significantly decreased noctuid caterpillar performance, and
up to 50% of radiolabeled chlorogenic acid was found bound to protein in frass
of noctuid caterpillars fed on tomato foliage (Felton et al. 1989). High pH envi-
ronments, such as the lepidopteran midgut, favor protein alkylation, and several
essential amino acids (lysine, histidine, cysteine, methionine) are particularly sus-
ceptible to quinone alkylation (Felton et al. 1992). Under optimal conditions for
PPO activity, PPO clearly has an effect on protein nutritional quality. However,
limiting factors in insect digestive systems may be low oxygen levels and the pres-
ence of antioxidants such as ascorbate or glutathione (see below). Another potential
effect of PPO is elevated oxidative stress in the gut lumen, which we examined
recently using PPO-overexpressing poplar foliage (Barbehenn et al. 2007). High
PPO levels had little effect on observed levels of oxidized proteins or semiquinone
radical production in two tree-feeding caterpillar species. Coating leaf disks with a
commercial PPO (fungal tyrosinase) likewise produced no increase in semiquinone
radical levels. These data suggest that there is little increase in quinone formation
following ingestion of high levels of PPO in poplar, contrary to expectations based
on the model of Felton et al. (1989, 1992) and previous results with forest tent cater-
pillars (Wang and Constabel 2004). By contrast, Thipyapong and coworkers have
recently shown decreased growth rates and decreased nutritional indices of some
noctuid caterpillars on PPO-overexpressing tomato lines (P. Thipyapong, personal
communication), consistent with post-ingestive mechanism(s) of PPO activity. We
are unaware of any work that has examined the potential effect of PPO on oxidative
stress or toxicity at the tissue level in insects.

The activity of ingested PPO is dependant on the chemical environment of the
insect gut, such as oxygen and phenolic substrate levels, reductants, inhibitors,
and pH. Surprisingly little work has been done to determine how the physiologi-
cal conditions present in insect gut fluids influence PPO and other defensive reac-
tions. Phenolic substrates must be present for PPO to be effective, but unfortunately
these are typically not analyzed and are assumed to be present at sufficient levels.
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Likewise, molecular oxygen is an absolute requirement for PPO, and its activity is
halted by purging oxygen from the reaction mixture (Duckworth and Coleman 1970;
Fig. 12.1). Significantly, the gut contents of caterpillars and grasshoppers contain
low steady-state concentrations of oxygen, and are sometimes anaerobic (Johnson
and Barbehenn 2000). Oxygen drops from ambient levels of 150 mm Hg (21.0%)
to less than 10 mm Hg (1.4%) over a distance of several mm into the foreguts of
some caterpillars. The midgut oxygen levels of 0.1-0.5 mm Hg seen in many species
would be expected to decrease PPO activities to less than 1% of maximal PPO rates
at ambient oxygen levels (Fig. 12.1). Some caterpillar species have enlarged foreguts
with much higher oxygen levels than the midgut. Nevertheless, in our work with one
such species, Lymantria dispar, we found little evidence for a strong effect of PPO
(Barbehenn et al. 2007). The limited oxygen availability in midguts of many insects
should be kept in mind when using purified proteins or macerated leaf tissues to
model chemical processes within herbivores. Where an impact of PPO on herbivores
is found, limiting factors in the gut argue for a preingestive mode of action of PPO.

Although pH optima of PPOs are commonly broad, the reactivity of quinones
with amino acids in an acidic medium is greatly reduced. Thus, Felton et al. (1992)
concluded that PPOs would likely be ineffective against the Colorado potato beetle
due to the low pH (5.5-6.5) of the beetle’s midgut. Consistent with this conclusion,
no significant decreases in the levels of four essential amino acids were found in the
feces of L. decemlineata that fed on potato leaves from varieties with higher PPO
levels (Castanera et al. 1996). Grasshopper gut pH is also acidic, but we are unaware
of work on the effects of PPO in the Orthoptera. The high pH found in lepidopteran
midguts (ca. pH 9-10) would be expected to decrease the activities of ingested PPO,
but the basic conditions favor protein alkylation (Felton et al. 1989).

Extensive work by food scientists has identified many PPO inhibitors that reduce
browning of processed foods. Among these inhibitors, ascorbate is ubiquitous in
leaves and present at high levels, and would be co-ingested with PPO. When present
in midgut fluid or in vitro reaction mixtures at 0.2—-0.5 mM, ascorbate can chemi-
cally reduce quinones and semiquinone radicals, thereby limiting the effectiveness
of PPO as an oxidative defense (Martinez-Cayuela et al. 1988; Janovitz-Klapp
et al. 1990; Felton and Duffey 1992; Barbehenn et al. 2007). Levels of ascorbate
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in the midgut fluids of tree-feeding caterpillars feeding on young trembling aspen,
red oak, and hybrid poplar foliage are sufficiently high to prevent the net production
of quinones by PPO (Barbehenn et al. 2003, 2007). Furthermore, an ascorbate recy-
cling system is considered to be central to the antioxidant defenses of tree-feeding
caterpillars (Barbehenn et al. 2001). However, it is not known whether the ascorbate
ingested by tomato-feeding caterpillars, such as noctuids, is maintained in their gut
fluids at sufficiently high levels to inhibit PPO.

Thiols such as glutathione and cysteine also decrease the net production of
quinones by PPO and may inhibit the enzyme directly (Negishi and Ozawa 2000).
In leaves, glutathione concentrations are roughly 5% as high as ascorbate lev-
els, but can be equal to ascorbate levels in caterpillar midgut fluids (Barbehenn
et al. 2001, 2003). Midgut glutathione at 50-100 uM in tree-feeding caterpillars
is thus theoretically high enough to inhibit PPO activity (Barbehenn et al. 2003;
Nagai and Suzuki 2003; Aydemir and Akkanh 2006), although apparently higher
levels of cysteine are necessary to inhibit PPO from some plants (e.g., Janovitz-
Klapp et al. 1990). Other potential PPO inhibitors reported include simple pheno-
lics and quercetin (Walker and McCallion 1980; Le Bourvellec et al. 2004; Nerya
et al. 2004).

12.6 PPO and Pathogen Defense

A role for PPO in defense against pathogens has been postulated from the earli-
est days of PPO research. This hypothesis has been supported by many correlative
studies, such as the upregulation of PPO in pathogen-challenged plants (reviewed
in Constabel et al. 1996; Mayer 2006). Pathogen-induced PPO activity continues to
be reported for a variety of plant taxa, including monocots and dicots (e.g., Chen
et al. 2000; Deborah et al. 2001). Similarly, studies describing correlations of high
PPO levels in cultivars or lines with high pathogen resistance continue to provide
support for a pathogen defense role of PPO (Raj et al. 2006). Several groups have
also attempted to correlate the protective effects of rhizosphere bacteria with an
induction of defense enzymes including PPO, with mixed success (Chen et al. 2000;
Ramamoorthy et al. 2002).

Direct evidence for a role of PPO in inhibiting pathogen ingress or growth
comes from transgenic tomato plants with enhanced or suppressed PPO levels.
When challenged by the bacterial pathogen Pseudomonas syringae pv tomato,
PPO-overexpressing plants showed reduced bacterial growth, whereas PPO anti-
sense-suppressed lines supported greater bacterial numbers (Li and Steffens 2002;
Thipyapong et al. 2004a). These studies are the only direct demonstrations to date
of PPO’s importance in pathogen defense. Whether such a function extends to other
types of pathogens such as fungi remains to be tested. In poplar, infection with
Melampsora medusae (a foliar rust pathogen) does not induce PPO, but represses its
expression together with many other herbivore defense genes (Miranda et al. 2007).
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The demonstration that PPO can inhibit bacterial plant pathogens suggests that,
in addition to effects on some herbivores, PPO is important for inhibiting microbes
introduced into damaged leaves via the mouthparts of feeding insects. These might
be opportunistic bacteria or pathogens that are vectored by specific insects, although
little is known about the microflora of caterpillar mouthparts and digestive sys-
tems. Thus, the distinction between pest and pathogen defenses may be artificial,
and these may be seen as synergistic and complementary responses. This contrasts
with the view that pest and pathogen defense responses are mutually exclusive.
This hypothesis was based on early work on tomato showing that salicylic acid,
a potent inducer of pathogen defense and systemic acquired resistance, inhibits
the jasmonate-regulated herbivore defense response (Doares et al. 1995; Thaler
et al. 2002). Current models of defense signaling outline a complex and overlapping
set of responses, regulated by jasmonate, ethylene, and salicylic acid-based signals,
leading to several possible outcomes (Devoto and Turner 2005). Functionally, cross-
talk is supported by the observation of herbivore-induced resistance of Arabidopsis
against microbial pathogens, including P. syringae (De Vos et al. 2006). In tomato,
the PPO-F gene is induced during both the wound response and infection with the
pathogen P. syringae (Thipyapong 1997, 2004a).

To date, no clear mechanism for the potential anti-pathogen effects of PPO has
been demonstrated. Li and Steffens (2002) suggest several possibilities, including
(1) general toxicity of PPO-generated quinones to pathogens and plant cells, acceler-
ating cell death, (2) alkylation and reduced bioavailability of cellular proteins to the
pathogen, (3) cross-linking of quinones with protein or other phenolics, forming a
physical barrier to pathogens in the cell wall, and (4) quinone redox cycling leading
to H,O; and other reactive oxygen species (Jiang and Miles 1993). While reactive
oxygen species are known to be important factors in plant pathogen interactions and
defense signaling, and PPO is implicated in the formation of melanin-like polymers
in potato blackspot lesions (Stevens et al. 1998), none of these hypotheses of how
PPO might affect pathogens has been tested rigorously so far.

12.7 Conclusions and Future Directions

Although the transgenic approach has led to the direct demonstration of the efficacy
of inducible PPO as a defense against some lepidopteran herbivores in some cases,
the mechanisms of action against these attackers are still unclear. More detailed
analyses of midgut chemistry in a greater variety of insects feeding on high-PPO
foliage will begin to address this question. In particular, the extent of quinone
binding to protein and amino acids in the gut contents of herbivores needs to be
established. The interpretation of feeding studies would be enhanced by testing not
only PPO levels and insect performance, but consumption rate and plant nutritional
and chemical quality, so that deterrence or compensatory feeding can be detected.
In addition, our knowledge of PPO effects would benefit from greater attention to
endogenous PPO substrates, rather than simply extrapolating from substrate speci-
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ficities observed in vitro. In few cases have the probable substrates been identified,
yet the biochemical reactivities of PPO-produced quinones are dependent on the
specific structure (Jiang and Miles 1993).

Much recent work on PPO has emphasized potential roles in defense. Neverthe-
less, alternate roles for this enzyme are likely and have been demonstrated. For ex-
ample, antisense PPO tomato plants have enhanced pathogen resistance and drought
tolerance (Thipyapong et al. 2004b), and PPO-like enzymes can act as hydroxy-
lases in secondary metabolism (Steiner et al. 1999; Nakayama et al. 2000; Cho
et al. 2003). Given the tremendous variation in PPO expression patterns, activity
levels, and potential substrates in different species, similar variation in the adaptive
roles played by PPO in defense and other processes may be anticipated.
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