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Intense research interest over the past decade has
yielded diverse and often discrepant theories about
the function of anterior cingulate cortex (ACC). In par-
ticular, a dichotomy has emerged between neuropsy-
chological theories suggesting a primary role for ACC in
motivating or ‘energizing’ behavior, and neuroimag-
ing-inspired theories emphasizing its contribution to
cognitive control and reinforcement learning. To rec-
oncile these views, we propose that ACC supports the
selection and maintenance of ‘options’ – extended,
context-specific sequences of behavior directed toward
particular goals – that are learned through a process of
hierarchical reinforcement learning. This theory
accounts for ACC activity in relation to learning and
control while simultaneously explaining the effects of
ACC damage as disrupting the motivational context
supporting the production of goal-directed action
sequences.

Theories of ACC function
Akinetic mutism (see Glossary) is a striking neurological
condition characterized by dramatic reductions in sponta-
neous speech and movement despite preserved motor abil-
ity [1–3]. As one patient reported following remission of the
illness:

She didn’t talk because she had ‘nothing to say’. Her
mind was ‘empty’. Nothing ‘mattered’. She apparent-
ly was able to follow . . . conversations even during the
early period of the illness, but felt no ‘will’ to reply. [1]

The disorder is typically associated with lesions to the
anterior portion of midcingulate cortex [4] in a region often
referred to as ACC [2,3]. On the basis of decades of such
observations, neurologists proposed that ACC serves to
motivate goal-directed behaviors [2]. A modern take on
this idea holds that ACC provides a global ‘energizing’
factor necessary to support speeded responding [5,6], ef-
fortful behavior [7–10] and autonomic arousal [11]. Long-
standing neuroimaging evidence of ACC activity during
voluntary action selection also appears consistent with this
hypothesis [12]. However, although useful as a point of
departure, the proposal that ACC motivates goal-directed
behavior relies on intuitive but computationally imprecise
terms such as ‘effort’ and ‘energy’.

Meanwhile, current dominant theories of ACC function
– derived primarily from neuroimaging data – surprisingly

point to a role for ACC not in motivating effortful behavior
per se but rather in decision making and the deployment of
cognitive control. These theories emphasize the ACC con-
tribution to instigating punctate, trial-to-trial changes in
behavior such as an increase in the strength of top-down
control following experienced response conflict [13,14] or
adaptive modification of behavior as a result of action–
reinforcement contingencies [15,16]. However, although
these theories have enjoyed substantial support from con-
firmatory neuroimaging studies [13,14,16], they have yet

Opinion

Glossary

Actor: in reinforcement learning theory, a module that executes the policy of
the agent.
Akinetic mutism: neuropsychological disorder characterized by a reduction in
or absence of spontaneous behavior in the presence of preserved motor ability.
Anterior cingulate cortex: region of the frontal midline cortex approximately
ventral to the cingulate sulcus. This Opinion focuses on the dorsal and caudal
portion of this region, which is alternatively termed the anterior midcingulate
cortex.
Basal ganglia: collection of subcortical nuclei primarily concerned with motor
control.
Conflict monitoring theory: theory that the anterior cingulate cortex is
responsible for detecting the simultaneous activation of incompatible
response channels to facilitate the deployment of cognitive control.
Critic: in reinforcement learning theory, a module the evaluates the value of the
current state and computes reward prediction errors; also termed adaptive
critic.
Midbrain dopamine system: collection of subcortical nuclei that project mainly
to the basal ganglia and frontal cortex; the system releases the neurotrans-
mitter dopamine, which is strongly implicated in motor activation and
reinforcement learning.
Hierarchical reinforcement learning: branch of reinforcement learning theory
concerned with hierarchical organization of behavior.
Option: in hierarchical reinforcement learning, a temporally abstract behavior
that describes extended and potentially variable sequences of actions.
Policy: in reinforcement learning theory, a mapping of states to actions that
determines the agent’s behavior.
Primitive action: in hierarchical reinforcement learning, the smallest unit of
behavior that implements simple mappings between stimuli and responses.
Pseudo-reward: in hierarchical reinforcement learning, a quantity that
indicates the abstract reward value associated with a subgoal.
Reinforcement learning: process by which rewards and punishments adap-
tively modify behavior.
Reward positivity: component of the event-related brain potential, also termed
the feedback error-related negativity, that indexes a mechanism for reward
processing; it is hypothesized to reflect the impact of dopaminergic reward
prediction error signals on the anterior cingulate cortex to facilitate adaptive
decision-making.
Reward prediction error: in reinforcement learning theory, the instantaneous
change in value; positive and negative reward prediction error signals are said
to indicate that ongoing events are better or worse than expected, respectively.
Task set: set of mappings between stimuli and responses necessary to effect
flexible task-dependent behavior.
Top-down biasing signals: excitatory activity from the prefrontal cortex that
facilitates task-dependent processing in other brain areas.
Value: in reinforcement learning theory, a quantity that predicts expected
cumulative reward given the system state and policy.
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to be satisfactorily reconciled [17]. Of still greater concern,
a growing body of lesion and neurophysiological studies
have yielded inconsistent or contradictory results for both
the conflict [14,18] and reinforcement learning (RL) [19–
23] hypotheses, because ACC lesions in humans typically
result in global slowing and increased response variability
rather than inflexibility of control or an inability to learn
from feedback [5].

Why have neuropsychological and neuroimaging
approaches not converged on a unified theory of ACC
function? We suggest that research to date has focused
too narrowly on the types of simple stimulus–response
associations that characterize response-conflict and trial-
and-error learning tasks, and has therefore neglected the
high-level structure that characterizes everyday human
behavior. In this Opinion we argue that ACC supports the
selection and execution of coherent behaviors over extend-
ed periods [24], an idea we formalize in terms of recent
advances in RL theory that utilize a hierarchical mecha-
nism for action selection, hierarchical reinforcement learn-
ing (HRL) [25]. In this view, ACC is more concerned with
the selection and maintenance of the task itself than with
the minutiae of task execution. Thus, ACC would be re-
sponsible for engaging in a psychology experiment until its
completion as opposed to implementing subtle behavioral
adjustments along the way. As we argue below, this pro-
posal holds the promise of reconciling diverging theories of
ACC function into a formal, unified theoretical framework.

ACC and option selection
HRL can provide increased computational efficiency over
standard RL approaches for problems involving extended
sequences of actions (Box 1). HRL incorporates the concept
of options that represent action policies comprising
sequences of simple primitive actions. As an everyday ex-
ample, a set of primitive actions might consist of the indi-
vidual steps needed to drive a car – releasing the emergency
break, turning on the ignition, pressing the gas pedal, etc. –
whereas an option might comprise the sequence of primitive
actions that bring a driver to a specific supermarket. Cru-
cially, each option comprises not only the given sequence of
actions, but the entire set of actions that map various
possible initiation states to the goal state, such that a single
option could be employed to reach the market from home,
work or any arbitrary starting point. Thus, options are
defined by their associated goal states (the market) and
the set of initiation states that trigger the option (hunger,
access to a vehicle, etc.), in addition to the action sequences
(the policy) that map the transitions from initiation states to
the goal state. The increased computational efficiency of
HRL results from the ability to learn and organize
sequences of behavior at the option level (drive to the
market, get groceries, drive to school, pick up the kids,
etc.) rather than at the level of primitive actions (stop at
5th and Main, turn left, accelerate on Main, etc.).

Recently, Botvinick and colleagues have explored how
HRL principles might be implemented by the brain [25]. A
key insight of their work is that the option idea maps neatly
onto the concept in cognitive psychology of the task set, the
set of a mappings between stimuli and responses necessary
to effect flexible task-dependent behavior, such as stopping

the car at red lights and accelerating at green lights. More-
over, they suggested that this function could be implemen-
ted by prefrontal cortex, a region widely believed to be
involved in supporting task sets [26]. Here we develop their
account by proposing that ACC, rather than prefrontal
cortex, is responsible for option selection and maintenance.

Our proposal builds on the well-established actor–critic
architecture, which separates control into parallel modules
for action selection and performance monitoring [25,27],
but departs from previous work by placing ACC at the apex
of both pathways (Figure 1). Specifically, we propose that
ACC selects and maintains options, that dorsolateral pre-
frontal cortex (DLPFC) and motor structures in the dorsal
striatum (which together comprise the actor) execute those
options, and that orbitofrontal cortex and the ventral
striatum (which together comprise the critic) evaluate
progress toward the goal states of the options. This pro-
posal leverages existing concepts about the computational
function of these systems with which ACC interacts. First,
the dorsal striatum implements the policy of the actor, for
example, by stopping the car at red lights and accelerating
at green lights [27–29]. Second, the ventral striatum,

Box 1. Reinforcement learning: standard and hierarchical

approaches

Reinforcement learning (RL) algorithms provide a simple but
powerful framework for understanding how agents learn to behave
in complex and uncertain environments [27]. Standard RL ap-
proaches find an intuitive and influential implementation in actor–
critic architectures, which propose a division of labor between two
components of the learning system: an actor that selects actions
according to their weighted associations with the current state of the
world (termed a policy), and a critic that generates an estimate of the
long-term reward associated with each world state (termed a value
function). The policy of the actor and the value function of the critic
are both learned through experience, specifically through computa-
tion by the critic of a reward prediction error that indicates whether
ongoing events are better or worse than expected. Suppose, for
example, that a rat has just discovered food in the left arm of a novel
T-maze. This outcome would be coded by the critic as a positive
prediction error – events are better than expected – that would lead
to an increase in the value of the immediately preceding world state
(the choice point of the T-maze) and a strengthening of the
association of the immediately preceding action (turning left) with
that state. Next time, the rat would tend to turn left when put back in
the maze.

RL algorithms are powerful enough to find routes through more
complex mazes, forage efficiently for food, and even play interna-
tional-class backgammon. However, they become increasingly
inefficient as the world to be learned about becomes more complex
in terms of the number of possible states and available actions. The
resulting combinatorial explosion renders standard RL infeasible in
even moderately complex tasks. Hierarchical RL algorithms attempt
to address this scaling problem by grouping together interrelated
states and actions to form higher-level behavioral plans – termed
options – that comprise structured sequences of actions directed
towards specified subgoals [25]. Options can be learned about as
coherent, temporally extended steps towards the overall goal,
reducing the complexity of the learning task. Importantly, learning
occurs via straightforward extensions of standard RL: options that
lead to better-than-expected outcomes are reinforced, whereas
successful completion of a chosen option serves as a pseudo-
reward that reinforces preceding lower-level actions according to
the same RL principles. In effect, the learning task is solved
simultaneously at different levels of abstraction, identifying both
low-level actions and high-level options that most efficiently achieve
their respective goals.
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which forms the core of the critic, evaluates whether or not
ongoing events predict future reward (or punishment), for
example, by indicating that accelerating at the red light
constitutes maladaptive behavior [27–29]. Third, DLPFC
provides top-down biasing signals to the dorsal striatum
(and other brain areas) that facilitate execution of the
current policy [14]; these signals are most important when
the appropriate policy has not been learned by the dorsal
striatum or is inconsistent with past behavior, such as
when driving on the wrong side of the road in a foreign
country. Finally, orbitofrontal cortex provides the ventral
striatum with information related to abstract goals, con-
sistent with its role in contextually based action and
reward evaluation [30,31]; this information affords the
basal ganglia flexibility to learn not only about primary
rewards and punishments (such as the pain resulting from
a car accident) but also about goal-related outcomes (such
as stopping at a red light).

This neurocomputational architecture, which underlies
several popular models of cognitive control, RL and deci-

sion making [25,27,28], leaves several important issues
unaddressed. First, although the model provides a role for
the basal ganglia in learning about and executing simple
stimulus–response mappings, it falls short of describing
how the system can do so efficiently for complex sequences
of actions – such as driving to the supermarket and return-
ing home with a bag of groceries – because the computa-
tional load on the system increases nonlinearly with the
number of steps comprising the action sequence [25]. Sec-
ond, the architecture does not specify what task DLPFC
should implement nor what goal orbitofrontal cortex
should take as appropriate for the current task context.
Third, the framework leaves undetermined the degree of
vigor with which the task should be executed.

We argue that ACC, in its role in selecting and main-
taining options according to principles of HRL, provides
the solution to these problems. By design, the HRL frame-
work alleviates the computational burden on systems such
as the basal ganglia that are responsible for learning about
primitive actions (Box 2). Second, ACC learns to associate
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Figure 1. Proposed implementation of the hierarchical reinforcement learning mechanism. (a) Abstract function associated with each component. The option selection
mechanism sits at the apex of a standard actor–critic architecture for reinforcement learning: it determines the appropriate task to implement given the state of the external
environment and specifies the goal-state defining successful task completion. The selected option-specific policy is communicated to the actor, which implements the
policy via two interacting modules. A high-level module implements the task set by biasing the activity of a low-level module, which in turn executes behaviors appropriate
to the policy given the current state of the environment (not shown). In parallel, a high-level module within the critic associates the termination state of the option with a
subgoal, providing pseudo-rewards and contextual information to a low-level critic module that evaluates the progress of the actor towards the option termination state.
The critic outputs a slowly changing signal related to average reward and a fast reward prediction error signal indicating when events are better or worse than expected.
The option mechanism utilizes these signals, together with information related to experienced costs (not shown), for learning the value of options, for selecting options for
execution, and for maintaining the system on-task after an option is selected. Also not shown are additional connections to the actor and critic modules that carry reward-
related information from the critic and state-related information from the external environment. (b) Proposed neural implementation of the hierarchy. (c) An illustrative
example. The agent is at home fixing a macaroni and cheese dinner only to find that he missing a key ingredient: cheese. Confronted with this obstacle, ACC selects and
coordinates a sequence of options for driving to a nearby market, purchasing the ingredient, and returning home (as opposed to an alternative sequence of options such as
ordering the same meal at a local diner). The DLPFC manages the individual policies associated with each option, including driving to the market, by biasing neural activity
in the dorsal striatum and in other motor structures that implement the particular steps of the sequence, such as accelerating at green lights. Note that the DLPFC and dorsal
striatum work together to execute the policy, but DLPFC input is especially important for tasks that are incompatible with overlearned behaviors, for example, for driving on
the wrong side of the road in a foreign country. Meanwhile, the orbitofrontal cortex represents the termination state of the option – arriving safely at the market – as the goal
of the action sequence, and the ventral striatum utilizes this contextual information to determine whether or not the individual actions are consistent with the goal. Finally,
the dopamine system indicates to ACC whether or not the current state of the task is associated with high predictive value (tonic dopamine) and when events are suddenly
better or worse than predicted (phasic dopamine). Thus, if on a long drive the DLPFC momentarily loses control over the desired task set, such that the motor system turns
onto the wrong side of the road, the critic can alert ACC via decreased dopamine levels that the action is inconsistent with the goal, which would in turn boost activation of
the appropriate task set in DLPFC and correct for the error. ACC, anterior cingulate cortex; AR, average reward; DA, midbrain dopamine system; DLPFC, dorsolateral
prefrontal cortex; DS, dorsal striatum; OFC, orbitofrontal cortex; RPE, reward prediction error; VS, ventral striatum.
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values with different options and chooses the appropriate
option for the current environmental state according to
standard RL principles. In this way, ACC decides what
task to perform and then directs DLPFC to implement that
task, which in turn provides top-down biasing signals to
the dorsal striatum to facilitate execution of the chosen
policy. Thus, whereas ACC selects the option-specific poli-
cy, DLPFC and the dorsal striatum together execute that
policy. Note that a key difference between the role of
DLPFC and ACC is that the latter instigates switches
between tasks to achieve a higher-level goal (get in the
car, drive to the market, get groceries, etc.), whereas the
former implements the task at hand (e.g. drive to the
market). Furthermore, orbitofrontal cortex associates the
termination state of each option with pseudo-reward (Box
1), providing contextually appropriate reward information
to the ventral striatum such that, for example, the system
is provided with a pseudo-reward on successful completion
of the drive-to-market option.

Finally, we propose that ACC not only chooses the option
but also determines the level of effort to be applied toward
executing the policy, and maintains this signal until
the option reaches its termination state. Thus, when the

selected option is associated with a high value, ACC directs
DLPFC to exert vigorous top-down control. Conversely,
when the level of activation provided by ACC to DLPFC
is weak because the option is undervalued, then the level of
control exerted by DLPFC over the basal ganglia is com-
mensurately weak and subject to decay. As a consequence,
responses associated with the desired task set become slow
and variable and ultimately dominated by the primitive
actions mediated by the basal ganglia: reflexive and char-
acterized by immediate gratification.

Dopamine and option maintenance
We propose that option selection and maintenance in ACC
are supported by input from the midbrain dopamine sys-
tem. The dopamine system carries both phasic (brief) and
tonic (extended) signals that mediate related but distinct
functions [32]. An influential theory holds that the phasic
component constitutes a reward prediction error signal as
defined within the standard RL framework [27], which we
suggest is utilized by ACC to learn option values [15]
(Box 3). By contrast, the tonic component is said to be
responsible for motivating the pursuit of hedonic rewards
by coding for expected future reward [33] or for promoting
effortful behavior by coding for the average reward rate
[34]. Tellingly, both systematic injection of a dopamine
antagonist [35] and direct ACC lesions [10] impair effortful
behavior. This process appears to be mediated by the
dopamine–ACC interface, because disruption of midbrain
dopamine projections to ACC [36] and infusion of a D1
receptor antagonist into ACC [37] also impair effortful
behavior. In addition, loss of dopaminergic input to ACC
in humans promotes akinetic mutism [3]. Neurocomputa-
tional theories of decision making have thus pointed to-
ward the dopamine–ACC interface as a crucial nexus for
the selection and execution of effortful behaviors [38–40].

How might dopamine facilitate effortful behavior by
ACC? An influential theory of the impact of DA on frontal
cortex holds that dopamine levels regulate the balance of D1
and D2 receptor-dependent synaptic activity: D1 receptor
activation, promoted by high levels of dopamine, favors
stable working memory representations; by contrast, D2
receptor activation, promoted by lower levels of dopamine,
favors response flexibility and task switching [41]. These
network dynamics may constitute a mechanism for gating
and maintaining information in working memory [42]. Un-
derstood in the HRL framework, low dopamine levels could
facilitate the gating of a high-valued option into working
memory (option selection), whereas high dopamine levels
could maintain that information in working memory until
the option is completed (option maintenance). In this way
the system might protect options associated with high-val-
ued subgoals (such as completion of a long, tedious drive for
pay) against primitive actions that provide relief against
immediate costs but that also impede progress towards the
overall goal (such as pausing for libations along the way).

The HRL framework and previous theories of ACC
function
The HRL framework incorporates key elements of existing
theories of ACC while addressing many of their weak-
nesses. First, the name itself – hierarchical reinforcement

Box 2. ACC and the basal ganglia

The basal ganglia have an extensively documented role in
reinforcement learning (RL). In animals, dopaminergic reward
signals facilitate long-term potentiation at cortico–striatal synapses
in a manner that supports instrumental conditioning [58], and basal
ganglia lesions retard such learning [59]. In humans, neuroimaging
studies reveal dissociable correlates of actor and critic components
of an RL system in the dorsal and ventral striatum, respectively [29].
Several influential models have converged to document the
neurocomputational mechanisms by which the basal ganglia
implement associative learning on the basis of dopaminergic input
according to RL principles [28].

Several prominent theories have also proposed a role for ACC in
associating actions with their outcomes [15,16]. However, these
theories have rarely addressed – and never satisfactorily answered –

the question of the specific contribution of ACC to this process: If the
function ascribed to ACC overlaps so closely with those more
typically associated with the basal ganglia [28], then what is the
specific ACC contribution to RL? This question is complicated by the
fact that ACC damage results in varied task-dependent RL impair-
ments. For example, in humans, ACC lesions promote response
slowing and variability [5] but spare the ability to learn from
feedback in the Wisconsin Card Sort Test [20]. In non-human
primates, ACC lesions spare acquisition of a new response to
conditioned reinforcement [22] but impair performance when
animals are required to sustain a rewarded response across multiple
trials [19,21]. It has also been observed that such lesions increase
error rates in a task-switching paradigm because of an apparent
failure of subjects to sustain attention to the task [23].

HRL theory offers a clear solution to this conundrum. It proposes
that ACC and the basal ganglia operate in parallel and according to
common RL principles, but do so at different levels of hierarchical
organization: ACC selects, maintains and learns about high-level
options, whereas basal ganglia are concerned with lower-level
actions. However, in tasks without a hierarchical structure, ACC may
come to encode lower-level actions redundantly with the basal
ganglia. A key feature of this proposal is that ACC will be most
involved in tasks that involve reward integration across multiple
trials [60], which ACC utilizes to learn not the value of individual
actions but rather the value of the task itself. ACC damage then
results in a failure to associate the task with a positive value,
resulting in decreased attention to task demands and a concomitant
inability to sustain optimal performance [19,21,23].
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learning – makes transparent the relationship between
this proposal and standard RL theories of ACC function.
Yet our position goes beyond current RL models by identi-
fying the unique computational function of ACC: selection
and maintenance of high-level plans associated with ex-
tended behaviors. Notably, option values used for selection
are learned in part by integrating the cumulative reward
received across the primitive actions that comprise the
option [25]. Thus, the theory explains several findings that
are otherwise troubling for standard RL accounts of ACC
function, including recent extensions of these models [43],
namely, that ACC lesions have little impact on trial-and-
error learning tasks in which feedback relates to simple
stimulus–action mappings rather than to global options
[20] and, conversely, that ACC is activated by rewards and
punishments that are not contingent on low-level actions
but that nevertheless reinforce extended behaviors, such
as the decision to continue with the experiment [44].

Second, HRL theory is in broad agreement with
accounts emphasizing the role of ACC in effort and moti-
vation. The theory naturally accommodates neuropsycho-
logical evidence that the primary effect of ACC lesions is to
reduce spontaneous speech and action, impede effortful
behavior, and produce global slowing of responding

[5,8,10,20], while providing a computationally precise for-
malization of the underlying mechanisms. Thus, because
each individual action assumes a small cost, sequential
behavior will be associated with a positive value only when
taken as a whole. When the whole is disrupted, as occurs
following ACC lesions, the costs associated with individual
actions become prohibitive and action initiation is sup-
pressed.

Third, the theory holds that option selection and main-
tenance – not conflict monitoring – are the cardinal ACC
functions. According to this view, ACC activation in conflict
tasks reflects the broader role of the region in maintaining
task sets and sustaining effortful behavior, with other
regions such as posterior parietal cortex responsible for
resolving interference effects [45]. Instead, just as ACC
integrates reward signals across trials to determine the
appropriate level of task engagement, ACC integrates
information about costs and effort – both correlated with
but not reducible to conflict – to the same end [17]. Thus,
ACC damage spares conflict adaptation effects [14,18]
while causing a more global slowing of responses [5]
and, in at least some patients, a lack of awareness of
conflict-related costs [8] in these tasks.

Finally, our proposal dovetails with recent neuroimag-
ing and neurophysiological evidence that ACC is active
during voluntary task selection [46] and task switching
[47,48]. Once a task is selected, ACC appears to provide
stable, across-trial maintenance of the task set in support
of goal-directed behavior [49] by facilitating DLPFC func-
tion towards this end [6]. Hence, ACC lesions result in
increased and more variable response times in humans [5]
and in impaired attention to task demands and disrupted
task-switching in non-human primates [23]. Detailed ex-
amination of ACC activity from rats [50] to monkeys
[51,52] to people [53] provides converging evidence that
the region is responsible for managing transitions between
successive task stages, consonant with its organization of
multiple options across sequences of behavior. In this way,
our theory aligns with recent suggestions that ACC and
DLPFC implement high-level cognitive control by organiz-
ing behavior according to extended mental programs rath-
er than by selecting individual discrete actions [53].

Future directions
The HRL framework suggests several productive avenues
for future research. In particular, the theory points to the
development of novel tasks involving a high-level structure
to demonstrate the crucial contribution of ACC in motivat-
ing extended behaviors. For example, ACC damage should
result in abnormal performance in voluntary task-switching
studies (i.e. option selection) and in vigilance tasks that
require infrequent responding (option maintenance). Along
these lines, encouraging evidence from a recent study dem-
onstrated the sensitivity of ACC to HRL reward-prediction
error signals in a task in which a subgoal must be completed
(collection of a package) before an overall goal is reached
(delivery of the package to a set location) [54]. In addition,
the hierarchical structure imposed by ACC should be
necessary for problems that the basal ganglia would other-
wise find computationally intractable. This would be espe-
cially important when the outcome of a given action is

Box 3. ACC, dopamine and option-value learning

We propose that reward prediction error signals (RPEs) commu-
nicated to anterior cingulate cortex (ACC) from the midbrain
dopamine system underlie the development of option-specific
values used for option selection. RPEs, which are fundamental to
RL algorithms for solving complex sequence learning and control
problems [27,42], are believed to be carried by the fast phasic
component of dopamine neuron activity: brief increases in the firing
rate code for positive RPEs, which indicate that events are better
than expected, and brief pauses in the firing rate code for negative
RPEs, which indicate that events are worse than expected. The
learning process might be mediated directly by the impact of
dopamine RPEs on pyramidal cells in ACC [15] (but see [61]) or
indirectly by other mechanisms [62,63]. Irrespective of the neural
implementation, these RPEs would enable the system to learn that
the task itself is valuable rather than the individual components that
comprise the task.

We have previously proposed that the impact of these fast phasic
dopamine signals on ACC elicits a component of the human event-
related brain potential (ERP) [15]; commonly referred to as error-
related negativity, this ERP component has recently been termed the
correct-related or reward positivity owing to its observed sensitivity
to positive rather than negative RPEs [64,65]. Several sources of
evidence support the dopamine–ERP link. First, functional magnetic
resonance imaging (fMRI) and ERP findings indicate that ACC RPEs
are highly correlated with neural activity in the ventral tegmental
area (the source of dopamine projection to the cortex) [66] and in the
ventral striatum (a primary target of the midbrain dopamine system)
[65]. Second, the timing of dopamine RPEs recorded from the
human midbrain [67] coincides with that of the reward positivity
recorded at the scalp, suggesting a robust functional connection.
Third, the reward positivity is highly sensitive to neurological and
pharmacological insults of the DA system [68]. And fourth, a
homolog of the reward positivity has been identified in the monkey
cingulate sulcus [69], the scalp manifestation of which is sensitive to
administration of dopamine antagonists [70].

Our proposal finds support from a recent ERP and fMRI study that
identified ACC-dependent RPEs associated with progress towards a
subgoal as formally defined within the HRL theoretical framework
[54]. Taken together, these considerations converge in suggesting
that reward-related scalp potentials reflect the impact of dopamine
RPE signals on ACC for learning option-specific values [15].
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immediately rewarding (or punishing) but is simultaneous-
ly predictive of poor (or good) overall outcomes, such as
reaching a point in a maze that holds a small reward but
represents a dead end. Without a hierarchical structure,
standard RL approaches would have much greater difficulty
in learning the relationship between present states and
distal outcomes and thus would be disproportionately af-
fected by immediate rewards. Box 4

Our computational account focuses on explaining be-
havioral evidence and delineating the abstract neurocog-
nitive functions of multiple brain areas, rather than
providing a detailed neurophysiological-level account of
those functions [28]. A key direction for future research
thus concerns exactly how options are coded within ACC at
the cellular level. Computational simulations of sequential
behavior suggest that hierarchical task structure may be
encoded by the internal dynamics of collections of neurons,
as revealed by the evolution of the system through state
space using multi-dimensional scaling [55]. Strikingly,
application of similar statistical techniques to neuronal
data from rat ACC indicates that neuronal ensembles
track the progression of an animal through a task-depen-
dent frame of reference, or task space [50], accompanied by
abrupt transitions as the animal learns novel task contin-
gencies [56]. Our proposal predicts that such network-
dependent ACC activity will manifest most clearly in
hierarchical tasks, that the proportion of task-sensitive
(as opposed to response-specific) neurons will increase with
the degree of hierarchical organization, and that this

activity should be especially sensitive to manipulations
of dopaminergic input to ACC. Evidence that fMRI multi-
variate pattern analysis can identify task-selective activa-
tion patterns in medial frontal cortex [57] also raises the
tantalizing possibility of identifying option-specific neural
signatures in humans, because the HRL framework sug-
gests that distinct options should be associated with dis-
tinct patterns of ACC BOLD activity. Specifically, we
predict that seemingly task-independent sustained activi-
ty previously observed in ACC [49] will, at a finer grain of
analysis, reflect evolving patterns of activity that are
distinctive for specific tasks.

Conclusion
We began with a rarely acknowledged conundrum: cur-
rently, dominant theories of ACC function from the neu-
roimaging literature struggle to explain the most basic
clinical observation about the impact of ACC lesions, a
reduction in spontaneous speech and action. We suggest
that the missing link is consideration of the hierarchical
structure of everyday human behavior. We propose that
ACC is responsible for learning and selecting high-level
behavioral plans that provide the meaning behind, and
thus the motivation for, our moment-to-moment actions.
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