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That is………. 

 Test some hypothesis of interest 

 If we Reject H0, then estimate parameters using one estimator 

 If we Do Not Reject H0, estimate parameters using a different estimator 

 Result is a "Pre-Test Estimator" 

  +  

  is a weighted sum of its 2 "component estimators", with random weights 

 What are the sampling properties of  ? 

 Similar situation if we pre-test, and then test again, based on either  or  

 What are the properties of the second test? 
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Historical overview 

 June 1944 issue of AMS had papers by Halmos, Hurwicz, Robbins, Scheffé, 

Tukey, Wald, Wolfowitz; ............. and by Ted Bancroft (1907 - 1986)  

 "On biases in estimation due to the use of preliminary tests of significance" 

 Work was motivated by Berkson (JASA, 1942), "Tests of significance 

considered as evidence" 

 Subsequently many papers by Bancroft & his students (e.g., Han) 

 Work by Dudley Wallace & students (e.g., Toro-Vizcarrondo, Toyoda, 

Brook) 

 Work by George Judge, Mary-Ellen Bock, Tom Yancey, students 
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Some general results  

 Measure finite-sample performance in terms of estimators' risks 

 , 0 ;     0   iff   

  , )]  

 Quadratic loss  (i)  Scalar θ :    ) 

                          (ii) Vector θ :    )] 

                                                            ) + Bias(  )Bias(  )'] 

 PTE's are inadmissible under quadratic (& many other loss functions), 

because they're discontinuous functions of the sample data (Cohen, 1965) 
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Testing the equality of two variances  

 Bancroft's first problem 

 Simple random sampling, independently from 2 Normal populations 

 ~  ,     ;     i = 1, 2, ....,   ;     v1 = (  - 1)  

 ~  ,     ;     i = 1, 2, ....,    ;     v2 = (  - 1)  

 H0:      vs.   H1: .          

 F-test is UMPI.   /  , where ∑  ;  j = 1, 2 

  :  Reject H0.     Use   ∑  

  :  Do Not Reject H0.     Use          
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 The pre-test estimator of  is:     

 Note:                     1    

   

 Going to be difficult to evaluate! 

 Bancroft determined the Bias and the Variance of this pre-test estimator 

 Bias ( ; 1 1;   

   ;  /  

  ;  is incomplete Beta function 

 Variance – very messy. 
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 Giles (1992) derived the exact sampling distribution of  , and used it to 

demonstrate effect of pre-testing on coverage probabilities of confidence 

intervals 

 Let’s compare the "never pool", "always pool" and "pre-test" estimators 

in terms of risk under quadratic loss - i.e., MSE 

 



10 
 

 
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00.10.20.30.40.50.60.70.80.91.0

Don't Pool

Pool

Pre‐Test 5%

Pre‐Test c 1

Relative Risks of Estimators of First 
Variance

(v1 = 4 ; v2 = 20)

Risk



11 
 

 Always a region of parameter space where "never pool" is worst 

 Always a region of parameter space where "always pool" is worst 

 Always a region of parameter space where "pre-test" is worst 

 Unless c = 1: 

(i) Always a region of parameter space where "never pool" is best 

(ii)  Always a region of parameter space where "never pool" is best 

(iii) Never a region of parameter space where "pre-test" is best 

 In general, the risk of the PTE depends on v1, v2, , and α 
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Testing restrictions on regression coefficients 

 Bancroft's second problem 

   ;   ~  0 ,  

 H0: 0   vs.  H1: 0    

 | |  :   Reject H0.   Use   .      (OLS = MLE) 

 | |  :   Do Not Reject H0.   Use         (RLS = RMLE) 

 PTE:    =  .  | |  +   | |   

 Bancroft evaluated only the bias of the PTE 

 Variance subsequently evaluated by Toro-Vizcarrondo (1968) 
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 Exact sampling distribution of PTE derived by Srivastava & Giles (1992) 

 Problem generalizes to pre-testing the validity of m exact linear restrictions 

on coefficient vector for multiple linear regression model: 

     ;     ~ 0 ,        ;        

 : β    vs.   : β       ;       let    

 F-test is UMPI . Test statistic is n.c. F, with n.c.p.   / 2  

  : Reject H0.   Use         ;       

  : Do Not Reject H0.   Use       

 PTE:  :         +     

 Risk under quadratic loss – Brook (1972, 1976) 
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 “Modern” derivation of risk of PTE for this problem 

    +     

     = 0     ;      1    

  

   

 Th.1: If    ~  , , and A is p.d.s., then for any measurable fctn., , 

;
. ; /  
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 Th. 2: If    ~  , , and A is p.d.s., then for any measurable fctn., , 

;
 

 Using these results, we can show that 

                

where 

  . , ; /  ;  i, j, = 0, 1, 2, …. 

and    
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 Always a region of parameter space where OLS is worst 

 Always a region of parameter space where RLS is worst 

 Always a region of parameter space where PTE is worst 

 Always a region of parameter space where OLS is best 

 Always a region of parameter space where RLS is best 

 Never a region of parameter space where PTE is best 

 In general, risk of PTE depends on β, , R, r, n, k, m, α, X  
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 Dependence of results on choice of significance level for pre-test suggests 

the question: “Is there an optimal choice of α ?” 

 Addressed by several authors: Sawa & Hirumatsu (1973), Brook (1972, 

1976),Toyoda & Wallace (1975, 1977), Ohtani & Toyoda (1980), Brook 

& Fletcher (1981), Bancroft & Han (1983), J. Giles & Lieberman (1992), 

Giles et al. (1992) 

 Several ways of defining “optimal”. For example: 

(i) Minimax regret 

(ii) Minimum average regret 

(iii) Pseudo-Bayesian approach 
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Further examples 

 Can pre-testing ever dominate both of the component estimators? 

 YES, in some situations – recall Bancroft’s 1st problem 

 Ozcam et al. (1991) – SURE model 

 J. Giles (1992) – variance estimation after pre-test of homogeneity in 

regression with multivariate Student-t errors: PTE dominates both 

component estimators in terms of risk under quadratic loss 

 Giles & Cuneen (1994) – autoregressive models and pre-test of exact 

restrictions on coefficients 

 Generally, ranges where PTE dominates are quite limited 
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Pre-test testing          
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 Generally, when conducting a sequence of tests, the test statistics are not 

independent of each other 

 Size distortion and implications for power 

 Example 1 

M1          ;   ~ 0 ,      

             : 0   vs.  : 0    

 M2    ;  ~ 0 ,  

  :  Errors serially independent       .     : Errors are AR 1  

 Giles & Lieberman (1992) – size of DW test is distorted upwards 

 Recommend (nominal) significance level of up to 50% at 1st stage 
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 Power results mixed, but can have situations where pre-testing actually 

increases power of DW test (after controlling for size distortion) 

 Example 2 

M1           

         ;         ~ 0 ,     ;     1 1 

            : 0    vs.  : 0    

 M2         ;  ~ 0 ,  

   :  0   .     : 0   

 King & Giles (1984) – little size distortion/power loss if α = 50% at 1st 

stage 
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Extensions 

 Are the results robust to choice of loss function? 

(i) Absolute error loss – Giles (1993) 

(ii) LINEX loss (asymmetric) – J. Giles & Giles (1993, 1996) 

 Are the results robust to non-normality? 

J. Giles – various papers – Spherically symmetric disturbances 

 Are the results robust to model mis-specification? 

Omitted regressors – J. Giles, Giles, various papers 

 Multi-stage pre-test estimation – very little evidence available – lots of 

interesting problems here 
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 Some recent PTE developments include: 

(i) Magnus & Durbin (1999) - model averaging 

(ii) Danilov & Magnus (2004) - model averaging 

(iii) Chmelarova & Hill (2010) – Hausman pre-test estimation 

(iv) Guggenberger (2010) – Hausman pre-test testing 

(v) De Luca & Magnus (2011) - model averaging 

(vi) Llorente & Martín Apaolaza (2011) – symmetry model of categorical 

data 

(vii) Baltagi et al. (2011, 2012) – panel data regression with spatial data 
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Summary 

 Pre-testing is very common, but its consequences are often ignored 

 Pre-test strategies are inadmissible 

 Care needs to be paid to “size” of a pre-test 

 Pre-testing alters the sampling distributions of subsequent estimators and 

tests, often in very complicated ways 

 Several surveys of the "pre-testing" literature 

 Bancroft and Han (1977) 

 Han et al. (1988)  

 J. Giles and Giles, Journal of Economic Surveys, 1993 


