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That is

e Test some hypothesis of interest
If we Reject Hy, then estimate parameters using one estimator
If we Do Not Reject Hy, estimate parameters using a different estimator

Result is a "Pre-Test Estimator"

0 = Iiser)0 + I(ser) 0"

6 is a weighted sum of its 2 "component estimators”, with random weights

e What are the sampling properties of 8 ?
e Similar situation if we pre-test, and then test again, based on either 8 or 6*

e \What are the properties of the second test?




Historical overview

e June 1944 issue of AMS had papers by Halmos, Hurwicz, Robbins, Scheffé,
Tukey, Wald, Wolfowitz; and by Ted Bancroft (1907 - 1986)
e "On biases in estimation due to the use of preliminary tests of significance"

e \Work was motivated by Berkson (JA4SA4, 1942), "Tests of significance

considered as evidence"

e Subsequently many papers by Bancroft & his students (e.g., Han)

e Work by Dudley Wallace & students (e.g., Toro-Vizcarrondo, Toyoda,
Brook)

e Work by George Judge, Mary-Ellen Bock, Tom Yancey, students




Some general results

Measure finite-sample performance in terms of estimators' risks

L(6(y),8)=0; L=0 iff 6(y) =96

r(8) = By [LOW) , )]

Quadratic loss (1) Scalar 6 : r(é) = MSE ()
(i) Vector 6: r(0) = tr[MMSE (6 )]
= tr[V(0 ) + Bias(d )Bias(d )]
PTE's are inadmissible under quadratic (& many other loss functions),

because they're discontinuous functions of the sample data (Cohen, 1965)




Testing the equality of two variances

e Bancroft's first problem

Simple random sampling, independently from 2 Normal populations
x;~N[p,0f] ; i=1,2,...,n1; vi=(ng-1)
X~Nu,05] ; i=1,2,...np ; w=(n;-1)

Ho: 0f = 672 vs. Hyof > o3,

F-testis UMPI. f = (s?/s3), where s? = (v—l_)z?il(xﬁ ~x%)%;j=1,2
]

. 1 —
f>cw: RejectHy. Use s = @Z?il(xu — %,)?

o [ < Cla) - Do Not Reject H,. Use s° = (vlivz) [v1512 + 172522]




The pre-test estimator of f is: 67 = I(f>)ST + Iir<cyS*

Note: E[68]1 = E[(1 = I(f<e))sE] + E| I(r<e)s?]
=of + E[(s® — s?)I(r<0)]

Going to be difficult to evaluate!

Bancroft determined the Bias and the Variance of this pre-test estimator

Bias (62) = o101 [B, (v1 1]2+1)¢ B ( vz |

(v1+v3) 2

=% q=0190)/(v; + v1$0)

B,(a ; b) is incomplete Beta function

e Variance — very messy.




e Giles (1992) derived the exact sampling distribution of 62 , and used it to

demonstrate effect of pre-testing on coverage probabilities of confidence
Intervals
e Let’s compare the "never pool”, "always pool" and "pre-test” estimators

In terms of risk under quadratic loss - i.e., MSE




Relative Risks of Estimators of First

Variance
(vi=4,;v,=20)

==« Don't Pool

= Pre-Test (5%)

e Pre-Test (c=1)




e Always a region of parameter space where "never pool" is worst
o Always a region of parameter space where "always pool" is worst
e Always a region of parameter space where "pre-test” is worst

e Unless ¢ =1:
(i)  Always a region of parameter space where "never pool" is best

(i)  Always a region of parameter space where "never pool" is best

(il1)  Never a region of parameter space where "pre-test" is best

e In general, the risk of the PTE depends on vy, v,, ¢, and a




Testing restrictions on regression coefficients

e Bancroft's second problem

o Vi = Pixy; + Boxz + & ; & ~iid N[0, 07]
L HO,B2=0 VSs. H1ﬂ2¢0
e |[t| >y RejectHo. Use Bi, (OLS=MLE)

e |[t| <y DoNotReject Hyp. Use fB;  (RLS = RMLE)

e PTE: ,631 = 51.2 I(|t|>c(a)) + :gl I(ItISC(a))

e Bancroft evaluated only the bias of the PTE

e Variance subsequently evaluated by Toro-Vizcarrondo (1968)




Exact sampling distribution of PTE derived by Srivastava & Giles (1992)

Problem generalizes to pre-testing the validity of m exact linear restrictions

on coefficient vector for multiple linear regression model:

y=XB+e ; £~N[0,0%,] ; wv=Mm-—-k)

Hy:RB=71r vs. Hi:RB+#1r | let 6§ = (R —71)

F-test is UMPI . Test statistic is n.c. F, withn.c.p. 1= (8'8)/(20?)
e f>cyiRejectHy Use B =S"1X'y ; S=(X'X)

e f < (g :DoNotReject Ho. Use B*=p+S'R'[RST*R']"(r — RB)

e PTE: : ,53 = ,gl(f>c(a)) + IB*I(fSC(a))

e Risk under quadratic loss — Brook (1972, 1976)




“Modern” derivation of risk of PTE for this problem
p= ﬁl(f>c(a)) + 'B*I(fSC(a))

It s ey X > =0 0 s c) =17 Irs ey
r(B) =E[(B-8) (B -p)]

= 1(B) = E Iy e,y (B~ B) (B - B)] + 66 [I(yzc )

Th.l:If w~MVNI[O,]], and 4 is p.d.s., then for any measurable fctn., ¢,

E[p(Ww' Aw)w'Aw] = E[¢ <X<2]’+2_ﬁ>>]tr. (4) + E[¢()((21'+4;6,9/2))]0’A8
2




e Th.2:If w~MVNI[O,I;],and 4 is p.d.s., then for any measurable fctn., ¢,

E[¢(w' Aw)w] = eE[¢(x<2’+2 o))

2
e Using these results, we can show that

r(B) = 6%[k + (44 — m)Pyy — 24P 4]

where

Pij = Pr.[Fonsivejin < (cm(v + )/ (w(m+1i)]; i,j,=0,1,2, ...

and v=mn-k)




Risks of OLS, RLS and PTE
(n=20; k=m=3;02=1)




e Always a region of parameter space where OLS is worst
e Always a region of parameter space where RLS is worst
e Always a region of parameter space where PTE Is worst
e Always a region of parameter space where OLS is best
e Always a region of parameter space where RLS is best

e Never aregion of parameter space where PTE is best

e In general, risk of PTE depends on 3, 6%, R, r, n, k, m, o, X
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Fig. 2. Probability density function for the pre-test estimator (8, =8, = o =1).

Vi = Pix1i + Boxzi +& ; g~iid N[0, 07]




e Dependence of results on choice of significance level for pre-test suggests
the question: “Is there an optimal choice of o ?”

e Addressed by several authors: Sawa & Hirumatsu (1973), Brook (1972,

1976),Toyoda & Wallace (1975, 1977), Ohtani & Toyoda (1980), Brook

& Fletcher (1981), Bancroft & Han (1983), J. Giles & Lieberman (1992),
Giles et al. (1992)
e Several ways of defining “optimal”. For example:
(1) Minimax regret
(i)  Minimum average regret

(il1)  Pseudo-Bayesian approach




Choosing a Using Mini-max Regret
(n=20;k=m=3;0%2=1; a=35.7%)

e Pre-test (c = 1.39)

= == OLS




Choosing a Using Average Regret
: (n=20; k=m=3;06%2=1)

e Pre-test
== «= QLS




Further examples

Can pre-testing ever dominate both of the component estimators?

YES, in some situations — recall Bancroft’s 1% problem

Ozcam et al. (1991) — SURE model
J. Giles (1992) — variance estimation after pre-test of homogeneity in
regression with multivariate Student-t errors: PTE dominates both

component estimators in terms of risk under quadratic loss

Giles & Cuneen (1994) — autoregressive models and pre-test of exact

restrictions on coefficients

Generally, ranges where PTE dominates are quite limited




Ve =PB1+ BoYi—1 + Bayiz+ & i &~iid N[0,0?]
Hy:3=0 wvs. Hy:p3>0




Pre-test testing
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e Generally, when conducting a sequence of tests, the test statistics are not

Independent of each other
e Size distortion and implications for power

e Example 1

M1 Vi = Bixq; + Baxoi + & 5 &~ N[0, 0f]

Hy: 5, =0 vs. H:p, # 0
M2 Vi = B1x1; +v; 5 v;~N[0,07]

H'y: Errors serially independent  vs. H';: Errors are AR(1)

o Giles & Lieberman (1992) — size of DW test is distorted upwards

e Recommend (nominal) significance level of up to 50% at 1* stage




e Power results mixed, but can have situations where pre-testing actually
increases power of DW test (after controlling for size distortion)

e Example 2

M1 Ve = P1X1¢ + Baxze + &
& = P&+ U ] u,~N[0,02] ; —-1<p<l1

Hy:p=0 wvs. H:p#0
M2 Ve = Brx1r + Baxar + & ; &~N[0,0f]

H’O: ,32=0 VS. H'l:ﬁ2¢0

e King & Giles (1984) - little size distortion/power loss if a = 50% at 1%

stage




Extensions

e Are the results robust to choice of loss function?
(i)  Absolute error loss — Giles (1993)

(i)  LINEX loss (asymmetric) — J. Giles & Giles (1993, 1996)

e Are the results robust to non-normality?

J. Giles — various papers — Spherically symmetric disturbances

e Are the results robust to model mis-specification?
Omitted regressors — J. Giles, Giles, various papers
o Multi-stage pre-test estimation — very little evidence available — lots of

Interesting problems here




e Some recent PTE developments include:
(1) Magnus & Durbin (1999) - model averaging
(i)  Danilov & Magnus (2004) - model averaging
(ili)  Chmelarova & Hill (2010) — Hausman pre-test estimation
(iv)  Guggenberger (2010) — Hausman pre-test testing

(v) De Luca & Magnus (2011) - model averaging

(vi) Llorente & Martin Apaolaza (2011) — symmetry model of categorical

data

(vil) Baltagi et al. (2011, 2012) — panel data regression with spatial data




Summary

e Pre-testing is very common, but its consequences are often ignored
Pre-test strategies are inadmissible
Care needs to be paid to “size” of a pre-test

Pre-testing alters the sampling distributions of subsequent estimators and

tests, often in very complicated ways
Several surveys of the "pre-testing" literature
Bancroft and Han (1977)

Han et al. (1988)

e J. Giles and Giles, Journal of Economic Surveys, 1993




