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THE ALMON ESTIMATOR; METHODOLOGY AND USERS' GUIDE

INTRODUCTION

The purposes of this Japer are to survaey and index recent
contributions relating to the methodology of the "Almon Polynomial
Approximation Estimator™, and to provide guidance to users of computer
programs related to this estimator. Giles [9] covers developments in
the field of distributed lags up to October 1973. fThis paper incorporates

his section on "Finite Lag Models”™ as well as subsequent developments.

PART T - METHODOLOGY

THE ATMON ESTIMATOR

Consider a simple distributed lag of (finite) length n + 1,

n
Ve = E /[J’ixt_i tu, t=1,2,...,T @Y
i=p

where it is desired to estimate the coefficients (or lag weights)

/gi; i=n0,1,.,.,n.

When n is relatively small and successive observations are not
collinear, these coeffiecients can be estimated directly by least squares.
However, when n is large and/or successive observations too collinear

)

it becomes necessary to impose certain restrictions on the coefficients,

for otherwise the individual coefficient estimates may be very imprecise.

Almon [1] suggested that thefgi be restricted to lie on a

polynomial of degree P £ n.

Thus,

P
B = Z ajiil = f(i) ; 1i=0,1,...,n, ()

J=o

where the polynomial degree, P, is given. Then by estimating the values

taken by the polynomial at (P + 1) arbitrary points in the interval
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An alternative form of the Almon technique (the "Direct Method™)
avoids the use of Lagrangian interpolation and is described by Fair and

Jaffee [7], Robinson [18] and Cooper [6], for example,

The "Direct Method" combines (1) and (2) to give

P n
- i
Vg § aj { S i Xt—i) + u, (1)
j=o0 i=o0
or
P
Ve T aj zjt + u, (W
i=o
where

n
= E ;3
Zip A

i=o

A
Then, given n and P, the zjt are constructed, and the a; are obtained by

L

applying 0.L.5, +to (4. The/gi are obtained as

P
A .
/%i = .g a. 37 ; 1=0,1,...,n.
J =0
if we let,
A = (al, 8y, . .,ap)
zZ = [zjt]
and k. = [1, 1, ig,..., -iP]
i
ther,  Var (&) =g ° (z'7)7L
- ' _ 2 ] "l ]
and Var gﬁi) ki Var (A) k ; =6 ki(Z AR 3

Cooper demonstrates that the two approaches are algebraically
identical, but he points out that the direct method is more likely to be
hampered by multicollinearity in the Artificial Variables (zjt) than is
the Lagrangian interpolation variant. A small value of P reduces the
imprecision arising from milticollinearity, since it reduces the number

of regressors in the least squares regression, (W) .



In both forms of the Almon technique, Further lineér
regtrictions may be placed on the value and/or slope of the polynomiagl
at any point in [0, n). However, it is common practice that these
constraints be placed at the end points £{0) and/or f(n). This point
ig discussed in detail by Fair and Jaffee. Almon suggested that the
restrictions £(-1) = f(n + 1) = 0, always be Imposed (since
?6_1 =/6n 11 = 0, from the specification of equation (1)), but these
restrictions have been condemned as irrelevant (e.g. Schmidt and
Waud [21]) since only the behaviour of the polynomial in the range

[0, n] is of interest.

SPECIFTCATION OF THE DTSTRIBUTED LAG MODEL

Specification of the complete model entails

(1) choosing the correct lag length, n
() finding the appropriate polynomial order, P
(3) deciding which end-point restrictions (if any) are to be incorporated

into the model,

Since a priori information is generally weak, the choice of n,
P and end-point restrictions may not -be immediately obvious. For this
reason model selection is often based on the "Residual Variance
Criterion™ (ﬁ2 rule) applied to a small set of possible specifications.
Giles and Smith [13] have shown that this criterion is valid for the
Almon estimator and that it holds asympltotically when the errors are

autocorrelated.

As is noted by Giles [11], one danger in using this rule is
that it is very tempting to test a large number of alternative
specifications and choosehthe one which looks "most sensible"

g pogteriori. He points out that such knowledge is a priori information
and should be treated as such. The literature emphasises that caution
must be exercised when applying classical methods to specify a lag

model . especiallvy if end-point restrictions are involved. See



Cohen et al. [5], Schmidt and Waud, and Trivedi [2u].

Cohen et al provide evidence to show that the ﬁe criterion and
the t—statisticsl' may be of little use for discrimination AMONE
alternative specifications due topre-testing biases. Frost [8) suggests
that, if one uses the ﬁz opiterion, the estimated coefficients in the
resulting specification will be biased. Furthermore, their distribution
will deviate significantly from the normal distribution and their

estimated variances will be biased downwards.

Godfrey and Poskitt [14] present a different approach for
testing the restrictions imposea by the Almon estimator. Their method,
which they show is equivalent to the likelihood ratio test, requires
only that the unrestricted form be estimated. They assume that n is
Known which allows them to use their technique to select the correct
degree of the polynomial. The "optimal" order of the polynomial is
also considered by Amemiva and Morimune [3] and Schmidt and Sickles [20].
Following the restrictive assumption, that the independent variables follow
a first order autoregressive process with a varying correlation
coefficient, Amemiya and Morimune attempt to find the order of polynomial
which minimises some loss function (they assume n is known). The loss
function they consider is the trace of the product of the mean square
error matrix and the autocovariance metrix of the independent variable.
An empirical study suggests that the "optimal" polynomial degree will be
lower as: the lag distribution is smoother, collinearity greater,
sample size smaller, and the ratio of the error variance to the variance
of the dependent variable is greater.

Schmidt and Sickles apply the "weak™ mean sguare error

criterion that Amemiya and Morimune use to investigate the efficiency

of the Almon estimator. Since the Almon restricted estimator has a

1. The choice of lag length can not be made on the basis of t-tests,
since these tests are invalid unless the correct lag length is
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smaller varianee than the 0.L.S. estimator they are interested in comparin
the unbiased 0.L.5, estimator with the possibly biased Almon estimator
(i.e. when the coefficients do mot lie exactly on tThe polynomial or if
other imposed restrictions are false). To do this they compare the

Yweak" mean square errors of the two estimators and find that the
difference depends on the closeness of fit of the polynomial (as well

as on P). They also attempt to find the "optimal™ degree of the
polynomial in a way similar to that of Amemiva and Morimuné.

As an alternative to classical statistical inference, Bayesian
techniques appear to offer scope'for dealing with prior information
(Zellner and Williams [25] and Giles [12]) and model selection. The
fact that meaningful probability statements may be attached to alternative
specifications makes the Bayesian methodology especially appealing.
Further discussion on related Bayesian methods is contained in

Chetty [4], Leamer [15), [18] and Maddala [17].

FURTHER ISSUES

Two adverse features of the polynomial estimation procedure

are that it has the tendency to "smear™ or "spread” the effect of the
lag back over preceding time periods, and that the presence of a lag is

not a testable hypothesis in this context.

Giles [10] shows that in the special case of exactly P
independent restrictions on the coefficients, the t~statistics for
each [ﬂ are identical and the same as that for gj,wheré 5} ig the estimate o
the only Almon coefficient not eliminated by the restrictions. He also
points'out that the "Average Lag" is "superfluous™ in this case, since

it is independent of the estimates and is determined solely by the lag
length, n.
The possibility of a lag structure which varies not only over

time but also with other variables is discussed by Tinsley [23], Almon [27,

Pesando [181 and Tamner [22]. Pesando demonstrates how the "varialble



CONCLUSION

Although the Almon technique appears very useful for estimating
distributed lags, users must not overlook special problems which may arise
when it is used. Because the optimal lag length can not be fbund using
t-tests, many of ithe methods mentioned above for selecting the optimal
order of polynomial are of little practical use (since they require that
the correct lag length be known). Bearing this in mind it seems that the
most sensible approach for specifying an Almon model is to use the ﬁa

rule. However, problems may arise due topre-testing biases which suggests

that extreme care must be taken if this rule is to be used.

PART IT - USERS' GUIDE

This section discusses Regression Strategy and provides some
mathematical analysis of equations and test statistics gemerated by the
Almon method. An appendix contains illustrations and equations of
second, third and fourth degree polynomials. Specifications for the

computer program will follow in a separate note.

MODEL SPECIFICATION

The Almon technique reduces the number of coefficients to be
estimated from n + 1 lag weights to P + 1 "Almon coefficients™; P £ n.
FPlacing end-point restrictions on the polynomial Ffurther reduces the
number of Almon coefficients - one coefficient.for each independent

linear restriction. Hence model specification involves:

1. finding the correct lag length, n
2. choosing the optimal degree of polynomial, P,

3. imposing appropriate end-point restrictions, R.

n is rarely known a priori and cannot be determined using
t-tests, hence many of the Techniques discussed in the literature for

choosing the "optimal" degree of polynomial (see Amemiya and Morimune)
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For this reason, a sensible strategy to adopt is to consider a
small set of possible combinations of n, P and R based on econcmic theory
and then to cheose the "best™ by applying the residual variance eriterion

(ﬁe rule) . (Note that pre-testing biases may result when this rule is

used - see Part I.)

THE CHOICE QF LAG LENGTH

As pointed out above, the lag length cannot be chosen on the
basis of t-tests, since these tests are invalid when the lag length has
not been correctly chosen. For this reason the choice of n must he made
on prior economic information. By carefully analysing the lag in question
and applying sound econemic reasoning it should be possible to arrive at a

few possible values for n, one of which is hepefully correct.

POLYNOMTAL, DEGREE AND END-POINT RESTRICTIONS

The choice of a small set of eligible shapes must again be
subject to sound economic reasoning. It is stressed that it is not
appropriate to randomly test many different polynomial degrees and
restrictions then pick the combination with the highest ﬁg. If a
polynomial shape is to be incluaed in the eligible set there must exist

strong economic justification for its inclusion.

The normal procedure for choosing P and R would entail analysing
the lag to isolate various characteristics then choosing a few shapes from

the appendix to this paper (or elsewhere) which best represent the lag.

Some of the common characteristics to look for are listed below:
(1) TDoes the lag "tail off" slowly [A] or quickly [B]?

[a] [B]

£(1) , (i)
=f 5 =fs

[o 7 i | 1

Restriction f'(n) = 0



(?) In what position is the largest lag weight expected to lie, i.e.

at 1 =0 [C] or elsewhere [D]?

[c] [n]
F(i) F(i)

=pf; = A1

Restriction £'(0) = 0

(3) What is the expected value of the polynomial Q@i] at 1 =0, i =n,

It

i.e. if/jO = 0} then £(0)
/Gn 0 £(n)

I

I
=]

Each restricted polynomial (a given combination of P and R)
may assume many different shapes in the interval [0, n] depending upon
which particular lag is being estimated. When estimating a given
specification users should be careful to observe which shape has been
generated to avoid using one which aoesn't make "economic sense”.
Different shapes arise depending on which part(s) of the polynomial oheys
the restriction(s) [E], and because each shape has a "mipror image™ with

respect to the horizontal axis [F].

[E] P=2

. ﬂo =0

(i) . f{i)

= i = i

SN

I’I \ i r’ 1

[F] P =2
fo =0

ey | £(1)
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MATHEMATICAL ANALYSIS AND TEST STATISTTCSE'

Consider,
n

Ye T 2. By xep touy
i=o0

which has T - n - 1 degrees of freedom (T observations). Restricting
the coefficients To lie on a polynomial of degree T increases the number

of degrees of freedom by [(n + 1) - (P + 1)] to (T -P - 0.

If,
P
— 23 . o _
ﬁi E ajl , where 0 1
j=o -
then,
P
Ve F E aj zjt +ouy (5)
j=o

At this stage (P + 1) coefficients require estimation. When
end-point restrictions are imposed on the polynomial they are inceorporated
dirvectly into equation (5) by eliminating the appropriate Almon
coefficients (aj) and transforﬁing the zjt matrix. Imposing R end-point
restrictions yields the final Almon specification with T+R -P -1

degrees of freedom.

n
Example vy, = ZE /6i Xeog FoUg
i=o0

5 - . .2
subject to/@i = a  + ai + i
and, /Sn =0
Thus,
a + a,n + a n2 = 0
o 1 2
or, a, = - n(a; + ayn)




Hence, /éi = - n(al + agn) Es ali + a2i2
. L2 2
al(l -n) -+ a2(1 - n)

ok
A k.,
i

]

*
where A is a (P + 1 - R) vector consisting of the Almon coefficients not
eliminated by the R end-point restrictions and k; isa (P+1 - R) vector

of transformed polynomial variables.

A
The/gi are obtained from

~ A A2 2
/gi = & (I-n) + a,(i” ~-n")
Now,
Y T 8% For ToBp Py to8y 2o voug
= . (al o+ a2n)n Zop to8) Zpp toa, Zyp tou
= 2
= a (zlt -7 Zot) +oa, (z2t - n zot) + U
_ o &
I N TR P
and,

where Z‘x is a Tx{(P + 1 - R) metrix of observations on thé (P+1 -R)

transformed er variahles.

Further,
& w1t -1
VARA) = &« (2 Z)
and,
AR _ k* R
v Vs’i) = k; VAR(A) k;
- L B I
="k (7 2)77 ks | (6)

A
To estimate varggi) replaeecj2 byi}g in (6) where,

gz = (G'G)'/(T +R -P - 1)



TESTING THE RESTRICTIONS

(1) Given that the true lag length ig used, the following statistic

may be used to test the hypothesis that the restrictions imposed by the
Alman estimator are correct.
AN A —~ -~
Fo=[UU-UDET-n-L/00M0-°P -+ R)]
is F-distributed with (n - P+ R) and (T - n - 1) degrees of freedom,

where a,is the vector of 0,L.S. residuals. Note that this statistic

assumes that n is correct, so when n has been mis-specified the statistio

is dnvalid,

(2) The methed for testing the restrictions put forward by Godfrey and
Pogkitt and discussed in the methodology only requires that the

unrestricted Torm be estimated.

TESTING THE COEFFICIENTS

Given that the Almon restrictions comply with the lag and that

n is gorrect, the following statistics may be used to test the

significance of the lag weights.

(1) The t-test

7

# A . s w L] %
Let ass be the ith diagonal element of ki (z 2 ki

then,

Now,
,\ - ~ - - 3 -
t, o= (4 —/Gi)/s.e.ggi) is t-distributed with (T + R - P - 1)
degrees of freedom and may be used to test the hypothesis that
S = "i, wherefgg is known (e.g./fg =0).
(When the residual variance criterion is used For model

selection, it is possible that one or more lag weights are insignificant.

This does not mean that those lag weights should be eliminated because

the test assumes that the optimal lag lenoth has been used.) !




(¢) The F-test

Given that n is chosen correctly and the Almon restrictions are
appropriate, the hypothesis that/g =/§ 5 (/E known) , may be tested using
the F-test. It can be shown that
B A A A A
F = [gﬂ—ﬁ) 24 (f-p)](T+R-P-1)/[0UP+1-R)]

is F-distributed with (P + 1 - Ry and (T +R - P - 1) degrees of freedom.

SERTAL CORRELATION

The Durbin-Watson and Wallis statistics may be applied to the
residuals resulting from the Almon estimator to test Tor autocorrelated

error terms.

n I
_ 2 < 2
Dw. = g (ut - ut—l) / oy
t=2 to=1
n n
_ 2 2
W7 2 W -u Y STy
t=5 t=1

When consulting the tables note that k' = (P - R) instead of (k - 1) as
is usually the case, and that the tabulated critical values are invalid
when the regression does not contain an intercept, if there is z lagged
dependent variable as a regressor or if any of the restrictions, ete.

are incorrect.

GOODNESS OF FIT

The multiple correlation coefficient associated with the

Almon estimator is given by

R = L [0y - & =1y,2y
A T (= ¥99)
: i

and the "adjusted" Ri (ﬁi) is given by

e

L-%) = T-1@ - Ri)/(T +R - P ~1),

e
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APPENDTX

Second, third and fourth order polynomials are illustrated

by the following diagrams (mirror images are given only for second
degree polynomials). The sets of transfeormed equations which follow

the diagrams are given in the same order as fthe illustrations to

which they correspond.



SECOND DEGREE POLYNOMIALS

. Unrestricted




£(0) =£'(0) =0




ofm =f'(n) =0
r

L £(0) = f£(m) =0

N_

f(0) =f£'(n)

1]
o




10, £(0)y =f (n) =0

i

L1, £'(0) =f'(n) =0




12. Unrestricted
P

N

b £(0) =0

e

13. f(m) =0

15, £(0) =f(n) =0

17. £(0) = £°(0) =0

N




18, f(0)y =Ff'(0)y =f(n) =0 19, f(m) = f'(m =0

|~
[o] ¥
ne
0. () =fmM =1f'(n) =0 el., £'(0) =f(n) = f'(m) =0
e
/—\‘/ /
’ _/
7P n . © M
2, £' (D) ;f'(n)=0 23, £'(0y =f(n) =0
/1

/] - ;
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1

DE(0) =F£'(0) =fn) =L£'(n) =D




FORMULAE

1 Vi = a2 4 + ay2y, + 8nZny
"~
g _ o AL A2
‘d:_ = ao o all -+ Elzl
K, = (1,4, 19
Zpg = (Zgps Zpps 2py)
2. Yy a7p t EpZp
/A = Q i o+ ,E.‘l 12
o1 1 2
& .2
ki - (l': €L )
i
2y = (P Zpy)
3.0 Yy T oAy (zgp mmz ) o+ oay (75
-~ oA . ~ .2 2
/?i = a8 (i-n) + ay (17 -n7)
kvf = (i-n, izunz)
i
7* = . 2
g Zip " My Zop - N Zg)
he Ye T 85%5p T 8574
” o~ (AN
ﬁi = a, + api
® .2
Ky o= (L, 19
®
Zt = (zot’ Zz.t)
5.0 Yy T oagzoe toay (Zp - 2nziy)
~ _ oA P .2 .
/gi' = a, * a, (i~ - 2ni)
B 2 )
ki = (1, i" - 2ni)
e
Ty = (Zgps Zpp - 20z



5

Sy
s

L S

Bo%ot
~ L2
a2.1
2
(19

(2,, - 2nz, + n°
8y (Zpp = emzy, 0z

n
a, (i2 - Z2ni + nz)

(i2 - Zni + ng)

2 +2'
(z2t = Nz nz
a, (ZEt - nzltj
A2 .
ay (i° - ni)
(1% - ni)

- nz

(zoy 1t)

8y (Zpp = 2nzy)
~ .2 .
ay (1" - 2ni)

(12 - 2ni)

= (2pp - 2n23y)

(z n2
dp o ~ 11 %

A .2

aa (i° - ne)

(1% - n%

(zp4 -



12.

T SN
I

L N G N

15.

"b‘.‘}

#op

s

I

o ot
N
a

e}

ey

CBofor TPy foEfrp T B3%ay
AR A ~ 2 A
a() a] i + a21 + 331
2 .3

(1, i, 47, i7)

(Zgpr Z1ee Zops Zgq)

?
8 (z1p = MZg)  foay (Zpp - nirg) o+ oAy (zgy

~ ~ .22 A3
ay (i-n) + ay (i"-n") =+ aq & ~n3)

(i-n, i%-n%, i3-nd
] 2 ] 3

(Zyp = M2ops Zpp = M Zgps Zgp - WTZ)
By " ApZpp * 8373y
A ~ 2 A3
all + agm o+ a3l
(1, i°, 1%
(Z140 Zpps Z3y)

( + a 2
ay (2py = nzqy) 3 (Zgg = 17y

a, (i°ni) o+ By (47 - 0D)
(i%-ni, 13n)

2
(2pp = MZyp, 23p - M2py)

-

2
-1

Z

ot)



i

ag (z3£ - ant)

A3 .2
aq (i ~ni7)

(i3-ni%

- Nz

(Z3¢ 2t)

2 2 3
a, (Zzt - 2nzlt +n Zot) + aq (z3t - 3n 2y + 2n zot)
A

&, GPenim® v & (i3-3n%i+20’y

(i2—2ni+n2 . i3-3112i+2n3)

2 2 3
—Enzl + n Zops th—3n 29y + 2n zot)

(Z ¢ t

2
ag (231: - 2nzzt + 3n th)

&, @-2ni? + 1%
(i%-2n1% + 3n%1)

2
- 2nz + 3n th)

(734 2t



21.

22.

23.

24,

=, Dan
e

A

Qé (

-

(Z3¢

3 2
- 1 ZOt) + aE (Zzt - Il Zot)
idandy 4 8, @hnd

3 .2

n, i —ng)

n n2 )
T Zgpe ZppT" ot



2
~ 2nz + nz

3y (2ye 3t

1
A P L

i

G - 2ni? ¢ n%id

2 .
(ZLHZ - 2nz:3t + n 221:)

o)



