ECON 575: Advanced Topics in Econometrics Exercises for Bayesian Econometrics

A solution sheet is available on request. (This gives you the opportunity to attempt these questions without seeing the answers.)

Question 1

Let x be a (continuous) random variable that follows a (standard) Gamma Distribution. Then, its p.d.f. is:

$$p(x) = x^{\gamma - 1}e^{-x}/\Gamma(\gamma)$$
 ; $x > 0$; $\gamma > 0$

where $\Gamma(.)$ is the usual Gamma function:

$$\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt,$$

which satisfies the recursion relationship:

$$\Gamma(z+1) = z\Gamma(z).$$

The parameter γ is the shape parameter for this distribution. It can be shown that $E(x) = \gamma$. Some examples of this density function appear below.

Let y be a (discrete) random variable that follows a Poisson Distribution. Then, its p.m.f. is:

$$p(y) = e^{-\lambda} \lambda^x / x!$$
; $x = 0, 1, 2,$; $\lambda > 0$.

(The parameter λ is both the mean and the variance of this distribution.)

- (a) Now, suppose we have a random sample of n independent observations from a Poisson Distribution, and that we wish to estimate λ . Taking a Bayesian approach, we need to specify a prior p.d.f. for this parameter. Prove that the Gamma prior is the natural conjugate prior in this case.
- (b) What is the Bayes estimator for λ , first under a quadratic loss function; and second under a 'zero-one' loss function? Are either of these Bayes estimators unbiased?

Question 2

Suppose that we have a random sample of n non-negative observations from an exponential distribution with mean $(1/\theta)$. So, the p.d.f. for the i^{th} observation is:

$$p(y_i) = \theta \exp\{-\theta y_i\}$$
.

Suppose also that the prior for θ is a gamma density, with parameters α and β , and mean equal to $(\alpha\beta)$, and mode at $[(\alpha-1)\beta]$, if $\alpha > 1$:

$$p(\theta) = \theta^{\alpha - 1} e^{-(\theta/\beta)} / [\beta^{\alpha} \Gamma(\alpha)] .$$

- (a) Prove that the posterior for θ is a gamma density, with parameters $(\alpha + n)$ and $(\beta^{-1} + \Sigma y_i)^{-1}$.
- (b) What is the Bayes estimator of θ under a quadratic loss function?
- (c) What is the Bayes estimator of θ under a "zero one" loss function?

Ouestion 3

Consider the Natural Conjugate Bayes estimator of β in the standard Normal multiple linear regression model, under a quadratic loss function.

- (a) Show that this estimator is biased.
- (b) Why does this really not matter to a pure Bayesian econometrician?
- (c) If the conditional prior covariance matrix for β were chosen to be equal to the covariance matrix for the Maximum Likelihood estimator of β in this model, show that the expected value of the Bayes estimator of β is a simple average of the conditional prior mean for β , and β itself.
- (d) Why would the choice of prior covariance matrix in (c) really be a "non-Bayesian" choice?

Question 4

Suppose that we have a sample of 'n' random observations from a normal population whose mean is *known*, but whose variance is unknown. We wish to estimate the latter parameter using Bayesian inference.

- (a) Show that the natural-conjugate prior for the "precision", $\tau = \sigma^{-2}$, is a Gamma density.
- (b) Give the formulae for the Bayes estimator of this precision parameter under both quadratic and zero-one loss functions.
- (c) What would be a consistent estimator for the variance itself under each of these loss functions?

Question 5

- (a) Suppose that we have n=10 observations drawn randomly from a population with an unknown mean, μ , and known variance of unity. If the sample mean is 1.5, calculate the posterior odds relating to the hypotheses H_1 : $\mu=1.0$ and H_2 : $\mu=2.0$ when the prior probability for each hypothesis is 0.5.
- (b) Consider the following loss structure:

State of the World

		H_1 True	H_2 True
Action	Accept H_1	0	4
	Accept H ₂	2	0

Which hypothesis would you choose?

Ouestion 6

You need to know the following result. If a random variable, *X*, follows a **Gamma Distribution**, then its p.d.f. is:

$$p(x) \propto x^{\alpha-1} e^{-x/\gamma}$$
 ; $\alpha, \gamma > 0$; $x > 0$

This density is skewed to the right, it has a single mode at $x = \gamma(\alpha - 1)$, provided $\alpha \ge 1$, and $E(X) = \alpha \gamma$.

Now, consider the following estimation problem. We have 'n' independent observations from a **Pareto distribution**, whose p.d.f. is:

$$p(y_i) = (\theta A^{\theta})/(y_i^{\theta+1})$$
 ; $0 < A < y_i < \infty$; $0 < \theta < \infty$; $i = 1, 2, ..., n$.

- (a) Suppose we are ignorant, *a priori*, about θ . Show that the posterior p.d.f. is $p(\theta \mid y) \propto \theta^{n-1} (A/G)^{n\theta}$, where G is the geometric mean of the sample data.
- (b) What is the Bayes estimator for θ under quadratic loss? What about under zero-one loss?

Question 7

Suppose that we have 'n' independent drawings from a distribution that is uniform on $[0, \theta]$, where θ is unknown and is to be estimated. That is:

$$p(y_i | \theta) = 1/\theta$$
 ; $0 \le y_i \le \theta$

We are totally 'ignorant' about the value of θ , except for its sign.

- (a) What is the MLE for θ ?
- (b) Assume we are ignorant, *a priori*. Show that the posterior p.d.f. for θ is

$$p(\theta \mid y) \propto 1/\theta^{n+1}$$
 ; $\theta \ge y_{\text{max}}$

- (c) Prove that the normalizing constant for this posterior is ny_{max}^n .
- (d) Obtain the Bayes (MEL) estimator for θ when the loss function is quadratic.
- (e) Interpret the difference between the MLE and Bayes estimators here, for finite 'n'.