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1.

General Background

Major Themes

(1)

(i1)
(iii)
(iv)
(V)

(vi)
(vii)

Flexible & explicit use of Prior Information, together with data, when
drawing inferences.

Use of an explicit Decision-Theoretic basis for inferences.

Use of Subjective Probability to draw inferences about once-and-for-all
events.

Unified set of principles applied to a wide range of inferential
problems.

No reliance on Repeated Sampling.
No reliance on large-n asymptotics - exact Finite-Sample Results.

Construction of Estimators, Tests, and Predictions that are "Optimal”.



Probability

Definitions

1. Classical, "a priori" definition.

2. Long-run relative frequency definition.
3. Subjective, "personalistic™ definition:

(i) Probability is a personal "degree of belief".

(i) Formulate using subjective "betting odds".

(ii1) Probability is dependent on the available Information Set.
(iv) Probabilities are revised (updated) as new information arises.
(v) Once-and-for-all events can be handled formally.

(vi) This is what most Bayesians use.



; AT
L e

Rev. Thomas Bayes (1702?-1761)



Bayes' Theorem

(1) Conditional Probability:

p(A|B) =p(AnB)/p(B) p(B|A) =p(AnB)/p(4) (1)
p(ANnB) =p(A|B)p(B) = p(B|A)p(A) (2)
(i) Bayes' Theorem:

From (1) and (2):  p(A|B) = p(B|A)p(A)/p(B) 3)



(ii1) Law of Total Probability:

Divide event A into k mutually exclusive & exhaustive events, {B1, B, ...., Bk}.

Then, A=(ANB)UMANB,) U ...... U (A N By) (4)

From (2): p(ANnB)=p(A|B)p(B)
So, from (4):
p(4) = p(A|B)p(By) + p(A|B,)p(B,) + - + p(A|By)p(By)

(iv) Bayes' Theorem Re-stated:

p(B;|A) = p(A|B;))p(B))/[ZL1(p(AIB)P(BY)]




(v) Translate This to Inferential Problem:

p(@ly) =p(y[0)p(0)/p(¥)

or,

p(6ly) = p(y10)p(6)/ f p(y10)p(8) do

(Note: multi-dimensional multiple integral.)

We can write this as:
p(8ly) x p(8)p(y|0)

or,

p(@ly) «< p(0)L(0]y)
That is: Posterior Density for @ o Prior Density for 8 x Likelihood Function



e Bayes' Theorem provides us with a way of updating our prior information
about the parameters when (new) data information is obtained:

Prior Information Sample Information

\Bayes' Theorem /

[ Posterior Information ]

(= New Prior Info.) More Data

\Bayes' Theorem /
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o As we'll see later, the Bayesian updating procedure is strictly "additive".
If [p(@ly)d6 =1,

then we can always "'recover" the proportionality constant later:

p(y10)p(6)d6 _
[ p(y10)p(6)d6

fp(ely)de =

So, the proportionality constant is

c=1/p(y|0)p(6)do

e This Is just a number, but obtaining it requires multi-dimensional
Integration.
e S0, even "normalizing" the posterior density may be computationally

burdensome.



Example 1

We have data generated by a Bernoulli distribution, and we want to estimate the

probability of a "success":
p(y) =601-6)'"Y ; y=0,1; 0<6<1
Uniform prior for 8 € [0,1] :
p@)=1 ; 0<6<1 (mean & variance?)
=0 ,  otherwise
Random sample of n observations, so the Likelihood Function is
L(Oly) = p(¥16) = [Ti=4[6”:(1 — )79 = 627i(1 — )"~ 200
Bayes' Theorem:

p(81y) « p(O)p(¥|6) o« 627i(1 — )20

How would we normalize this posterior density function?
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Statistical Decision Theory

e Loss Function - personal in nature.
e 1L(0,08) =0, foralle ; L(6,0)=0 iff 6=20.
e Note that § = 9(y).
e Examples (scalar case; each loss is symmetric)

(1) L1(6,0) = c1(6 — 6)* ;

(ii) L,(6,0) = c,160 — 0] ;

(iii) L3(6,0) =cy ; if |0-0|>¢

=0 : |if |9—§|S£

e Risk Function: Risk = Expected Loss
* R(6,8) = [L(6,8()) p(yI0)dy

e Average is taken over the sample space.

c1>0
c2>0
c3>0: >0

(Typically, ca=1)
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Minimum Expected Loss (MEL) Rule:
"Act so as to Minimize (posterior) Expected Loss."

(e.g., choose an estimator, select a model/hypothesis)

Bayes' Rule:
"Act so as to Minimize Average Risk."
(Often called the "Bayes' Risk".)

r(0) = [R(6,0)p(0)do (Averaging over the parameter space.)
Typically, this will be a multi-dimensional integral.

So, the Bayes' Rule implies
6 = argmin. |r(8)| = argmin. [, R(6,8)p(6)d6
Sometimes, the Bayes' Rule is not defined. (If double integral diverges.)

The MEL Rule is almost always defined.
Often, the Bayes' Rule and the MEL Rule will be equivalent.
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To see this last result;

Eny

0=argmin.j [j L(B,@)p(yl@)dy]p(@)d@
a Jy

—argmin. [ 1| 1(6,0)p@1»pGIdyIde
Y

Q

= argmin. J

| 1e.0)p@ eIy
Y Q

Have to be able to interchange order of integration - Fubini's Theorem.

Note that p(y) = 0. So,
0 = argmin. Jq L(6,0)p(0]y)de .
That is, 0 satisfies the MEL Rule.

May as well use the MEL Rule in practice.

What is the MEL (Bayes') estimator under particular Loss Functions?
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e Quadratic Loss (La): 0 = Posterior Mean = E(0|y)

Fny

Absolute Error Loss (L2): 8 = Posterior Median

Zero-One Loss (Ls): 0 = Posterior Mode

Consider L1 as example:
o ming [ ¢, (8 — H)Zp(HIy)dH
= 2¢, [(6 - 0)p(8]y)do =0

=0 j p(6]y)d6 = j Op(81y)do

— 0= [ op(oly)de = E@ly)
(Check the 2nd-order condition)

See CourseSpaces handouts for the cases of Lz and Lz Loss Functions.
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Example 2

We have data generated by a Bernoulli distribution, and we want to estimate the

probability of a "success":
p(y)=0Y(1-6)Y ; y=0,1; 0<6<1
(a) Uniform prior for € [0,1] :
p@)=1 ; 0<6<1 (mean = 1/2; variance = 1/12)
=0 ; otherwise
Random sample of n observations, so the Likelihood Function is
L(Oly) = p(¥16) = [Ti=4[6”:(1 — )79 = 627i(1 — )"~ 200
Bayes' Theorem:
p(01y) x p(O)p(¥16) o< 62Vi(1 — G)"~20D (*)
Apart from the normalizing constant, this is a Beta p.d.f.:
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e A continuous random variable, X, has a Beta distribution if its density

function is

p(x|a, B) = B(a;,ﬁ)x(“‘l)(l —x)BD - 0<x<1; a,f>0

e Here, B(a,pB) = fol t%(1 —t)P~1dt isthe "Beta Function".
e We canwriteitas: B(a,B) =T(a)I'(B)/T(a + B)

where T'(t) = ["x""te™dx is the "Gamma Function"

See the handout, "Gamma and Beta Functions".
EX]=a/(a+pB) ; VIX]I=aB/[(a+B)*(a+p+1)]
Mode [X] = (a—1)/(a+ B — 2) cifa,f>1
Median [X] = (a —1/3)/(a+ [ — 2/3)  ifa,B>1

Can extend to have support [a, b], and by adding other parameters.

It's a very flexible and useful distribution, with a finite support.
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w

Prob. density

a=05 3=05

ax=2,3=8

x=0:0 =9
=8 0=1]
a=l1l:F=1
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e (Going back to Slide 14:

p(]y) x p(O)p(¥|6) x 82Yi(1— )" 20D - 0<fh <1 (*)
Or,
p(Bly) = ——p(@)p¥|0) x 6% 1(1—-6)F1; 0< 6 <1

B(a,B)
where a=ny+1 ; f=n(l-y)+1

e S0, under various loss functions, we have the following Bayes' estimators:

(i) Li: 6, = E[0]y] =iﬁ= ny +1)/(n+2)

a+
(a—-1)
(a+p-2)

(ii) L3: §3 = Mode[0|y] = =y
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e Note that the MLE is & = y. (The Bayes' estimator under zero-one loss.)
e The MLE (85) is unbiased (because E[y] = 0); consistent, and BAN.
e Wecanwrite: 6, = (¥ +1/n)/(1 + 2/n)

So, lim (8,) =¥ ; and 8, is also consistent and BAN.

(n—o0)
(b) Beta prior for € [0,1] :
p(0) x 941 (1 -6t : ab>0
e Recall that Uniform [0, 1] is a special case of this.
e \We can assign values to a and b to reflect prior beliefs about 6 .

eeg,E[0l=a/(a+b) ; V[l =ab/[(a+b)?*(a+b+1)]
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e Set values for E[8] and V[6], and then solve for implied values of a and b.

Recall that the Likelihood Function is:

L@By) =p(yl0) = 8™ (1 — o)r(1=Y)

So, applying Bayes' Theorem:

[ “kernel” of the density ]

p(0|y) < p()p(y|0) « HW*+a-1(1 — g)n(1-y)+b-1

This is a Beta density, with

a=ny+a ; f=n(l—y)+b

An example of "Natural Conjugacy"

e S0, under various loss functions, we have the following Bayes' estimators:

(i) Li: 6, =E[0]y] =

a

a+f -

(ny+a)/(n+a+b)
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. A -1 _
(ii) Ls: 65 = Mode|B|y] = (;iﬁ_)z) =nmy+a—1)/(a+b+n-2)

e Recall that the MLE is 8 = .
e We canwrite: 8, = (¥ + a/n)/(1 +a/n+ b/n)

So, lim)(él) =y ; and 0, is consistent and BAN.

(n—>oo
e Wecanwrite: ;= (y +a/n—1/n)/(1+a/n+b/n—2/n)

So, lim (3) =¥ ; and 85 is consistent and BAN.

n—o)
e |n the various examples so far, the Bayes' estimators have had the same
asymptotic properties as the MLE.

o \We'll see later that this result holds in general for Bayes' estimators.
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Example 3

yi~N[uw,0f] ; of isknown

e Before we see the sample of data, we have prior beliefs about value of u:
p(W) = p(u|og)~N[a, 7]

That is,

(-~ (u-m?} cexp{——(u-?}

™~

[“kernel " of the density ]

e Note: we are not saying that u is random. Just uncertain about its value.
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e Now we take a random sample of data:

Y= V1 Y2 e s V)
e The joint data density (i.e., the Likelihood Function) is:

1
p(y|u, a§) = L(uly, o§) _(00\/_> exp Z(yl 1)?

p(y L0 — 2]

>

W 05) & exp{

20

“kernel” of the density ]

e Now we’ll apply Bayes’ Theorem:

/[leellhood function ]

p(uly, o8) « p(ulo)p(y|u of)
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e 50,
2 11 —\ 2 1 n 2
p(uly, ad)  expl—=|=(u = D% + = > (i = )
% =
We can write:
n n
D =P =) =) 4@ - )’
i=1 =1
So,

11 i
p(uly, o§) Mexp{—z[g(u—u)z —g<Z(yl y)? +ny —w )”

X exp {— Z [,uz (% + i) —2u ( n—é) + constant]}

v of

N

-~
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pluly, o) < exp{=;|w? (5 +72) —2u (5 +3)]}

e "Complete the square™:
bZ

b
ax“+bx +c a(x+2a) + (c ia

e |n our case,

X =U
B 1+n
\7 o}

L nx
b=-2 (E_-l-—z)
vV 0§

c=0

e S0, we have:
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( [ <ﬁ+n372> 27
st

p(uly,02) < exp{ =3 |(z + )| u— (

\

m= (1 : weighted average interpretation?
%+Lz)
90

e [ isthe MEL (Bayes) estimator of u under loss functions Li, Lo, Ls.

e Another example of "Natural Conjugacy".

e Show that (lim)(ﬁ) =Yy (= MLE: consistent, BAN)
Nn—o00
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Density for Mean

Prior, Likelihood, & Posterior for Mean of a Normal

Distribution (n = 1)

— PRIOR
— LIKELIHOOD
— POSTERIOR
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Dealing With ""Nuisance Parameters"
e Typically, 0 is avector: 8" = (64,6, ... ... ,05)
eg., 0 = (BB P 0)

e Often interested primarily in only some (one?) of the parameters. The rest
are "nuisance parameters".

e However, they can't be ignored when we draw inferences about parameters
of interest.

e Bayesians deal with this in a very flexible way - they construct the Joint
Posterior density for the full 8 vector; and then they marginalize this
density by integrating out the nuisance parameters.

e [For instance:

p(Bly) =p(B,oly) x p(B,o)L(B,oly)
Then,
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p(Bly) = |, p(B,cly)do (marginal posterior for B)

pGily) = [ [ oo [ 0By, . BB ..

(marginal posterior for f3;)

poly) = [ pBolas = | [ ... [ p@.oly)dp, ... b,

(marginal posterior for o)
Computational issue - can the integrals be evaluated analytically?
If not, we'll need to use numerical procedures.
Standard numerical "quadrature™ infeasible if p > 3, 4.

Need to use alternative methods for obtaining the Marginal Posterior

densities from the Joint Posterior density.
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e Once we have a Marginal Posterior density, such as p(f;|y), we can obtain
a Bayes point estimator for £;.

e For example:

,8 =E| ﬁlly f_ooﬁlp(ﬁlly)dﬁl
B, = argmax.{p(B,|y)}
B, = M, suchthat " p(B;ly)dB; = 0.5

e The "posterior uncertainty" about f; can be measured, for instance, by

computing

var. (B:1y) = [~ (B: — B.) ‘p(B:1y)dp;
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Bayesian Updating

e Suppose that we apply our Bayesian analysis using a first sample of data,
Y1

p(0|y1) x p(0)p(y1|6)
Then we obtain a new independent sample of data, y,.

e The previous Posterior becomes our new Prior for 8 and we apply Bayes'

Theorem again:

p(0ly1,y2) xp(0|y)p(¥210,y1)
X p(@)p(y110)p(¥210,y,)

o« p(0)p(¥1,¥210)
The Posterior is the same as if we got both samples of data at once.

The Bayes updating procedure is "additive" with respect to the available

information set.
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Advantages & Disadvantages of Bayesian Approach

1. Unity of approach regardless of inference problem: Prior, Likelihood
function, Bayes' Theorem, Loss function, MEL rule.

2. Prior information (if any) incorporated explicitly and flexibly:.

3. Explicit use of a Loss function and Decision Theory.

4, Nuisance parameters can be handled easily - not ignored.

B. Decision rules (estimators, tests) are Admissible.

6. Small samples are alright (even n = 1).

1. Good asymptotic properties - same as MLE.

However:

1. Difficulty / cost of specifying the Prior for the parameters.

2. Results may be sensitive to choice of Prior - need robustness checks.

3. Possible computational issues.
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