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1. General Background 

 

Major Themes 

(i)  Flexible & explicit use of Prior Information, together with data, when  

  drawing inferences. 

(ii)  Use of an explicit Decision-Theoretic basis for inferences. 

(iii)  Use of Subjective Probability to draw inferences about once-and-for-all 

  events. 

(iv)  Unified set of principles applied to a wide range of inferential    

  problems. 

(v)  No reliance on Repeated Sampling. 

(vi)  No reliance on large-n asymptotics - exact Finite-Sample Results. 

(vii)  Construction of Estimators, Tests, and Predictions that are "Optimal". 
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Probability 

Definitions 

1.  Classical, "a priori" definition. 

2.  Long-run relative frequency definition. 

3.  Subjective, "personalistic" definition: 

 (i) Probability is a personal "degree of belief". 

 (ii) Formulate using subjective "betting odds". 

 (iii) Probability is dependent on the available Information Set. 

 (iv) Probabilities are revised (updated) as new information arises. 

 (v) Once-and-for-all events can be handled formally. 

 (vi) This is what most Bayesians use.   
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Rev. Thomas Bayes (1702?-1761) 
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Bayes' Theorem 

 

(i)  Conditional Probability: 

  

  𝑝(𝐴|𝐵) = 𝑝(𝐴 ∩ 𝐵)/𝑝(𝐵)  𝑝(𝐵|𝐴) = 𝑝(𝐴 ∩ 𝐵)/𝑝(𝐴)   (1) 

 

  𝑝(𝐴 ∩ 𝐵) = 𝑝(𝐴|𝐵)𝑝(𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴)      (2) 

 

 (ii)  Bayes' Theorem: 

  

  From (1) and (2):  𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴)/𝑝(𝐵)    (3) 
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(iii)  Law of Total Probability: 

 

Divide  event A into k mutually exclusive & exhaustive events, {B1, B2, ...., Bk}. 

Then,   𝐴 = (𝐴 ∩ 𝐵1) ∪ (𝐴 ∩ 𝐵2) ∪ … … … ∪ (𝐴 ∩ 𝐵𝑘)    (4) 

 

From (2): 𝑝(𝐴 ∩ 𝐵) = 𝑝(𝐴|𝐵)𝑝(𝐵) 

So, from (4): 

𝑝(𝐴) = 𝑝(𝐴|𝐵1)𝑝(𝐵1) + 𝑝(𝐴|𝐵2)𝑝(𝐵2) + ⋯ + 𝑝(𝐴|𝐵𝑘)𝑝(𝐵𝑘) 

 

(iv) Bayes' Theorem Re-stated: 

 

   𝒑(𝑩𝒋|𝑨) = 𝒑(𝑨|𝑩𝒋)𝒑(𝑩𝒋)/[∑ (𝒑(𝑨|𝑩𝒊)𝒑(𝑩𝒊))𝒌
𝒊=𝟏 ]  
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(v) Translate This to Inferential Problem: 

    𝑝(𝜽|𝒚) = 𝑝(𝒚|𝜽)𝑝(𝜽)/𝑝(𝒚) 

or, 

𝑝(𝜽|𝒚) = 𝑝(𝒚|𝜽)𝑝(𝜽)/ ∫ 𝑝(𝒚|𝜽)𝑝(𝜽) 𝑑𝜽 

 

(Note: multi-dimensional multiple integral.) 

 

We can write this as: 

𝑝(𝜽|𝒚) ∝ 𝑝(𝜽)𝑝(𝒚|𝜽) 

or, 

𝑝(𝜽|𝒚) ∝ 𝑝(𝜽)𝐿(𝜽|𝒚) 

That is: Posterior Density for 𝜽  ∝  Prior Density for 𝜽  ×  Likelihood Function  
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• Bayes' Theorem provides us with a way of updating our prior information 

about the parameters when (new) data information is obtained: 

 

   Prior Information    Sample Information 

 

              

       Bayes' Theorem 

 

  Posterior Information 

  ( = New Prior Info.)      More Data  

 

         Bayes' Theorem 
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• As  we'll see later, the Bayesian updating procedure is strictly "additive". 

• If        ∫ 𝑝(𝜽|𝒚)𝑑𝜽 = 1, 

 then  we can always "recover" the proportionality constant later: 

∫ 𝑝(𝜽|𝒚)𝑑𝜽 = ∫
𝑝(𝒚|𝜽)𝑝(𝜽)𝑑𝜽

∫ 𝑝(𝒚|𝜽)𝑝(𝜽)𝑑𝜽
= 1 

• So, the proportionality constant is 

    𝑐 = 1/ ∫ 𝑝(𝒚|𝜽)𝑝(𝜽)𝑑𝜽 . 

• This is just a number, but obtaining it requires multi-dimensional 

integration. 

• So, even "normalizing" the posterior density may be computationally 

burdensome. 
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Example 1 

We have data generated by a Bernoulli distribution, and we want to estimate the 

probability of a "success": 

  𝑝(𝑦) = 𝜃𝑦(1 − 𝜃)1−𝑦    ;    y = 0, 1   ;    0 ≤ 𝜃 ≤ 1 

Uniform prior for  𝜃 ∈ [0 , 1] : 

  𝑝(𝜃) = 1       ;     0 ≤ 𝜃 ≤ 1    (mean & variance?) 

          = 0       ;     otherwise 

Random sample of n observations, so the Likelihood Function is 

             𝐿(𝜃|𝒚) = 𝑝(𝒚|𝜃) = ∏ [𝜃𝑦𝑖(1 − 𝜃)(1−𝑦𝑖)]𝑛
𝑖=1 = 𝜃∑ 𝑦𝑖(1 − 𝜃)𝑛−∑(𝑦𝑖) 

Bayes' Theorem: 

           𝑝(𝜃|𝒚) ∝ 𝑝(𝜃)𝑝(𝒚|𝜃) ∝ 𝜃∑ 𝑦𝑖(1 − 𝜃)𝑛−∑(𝑦𝑖)    

How would we normalize this posterior density function?  
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Statistical Decision Theory 

• Loss Function - personal in nature. 

• 𝐿(𝜽, 𝜽̂) ≥ 0, for all 𝜽  ;   𝐿(𝜽, 𝜽̂) = 0   iff  𝜽̂ = 𝜽. 

• Note that 𝜽̂ = 𝜽̂(𝒚). 

• Examples (scalar case; each loss is symmetric) 

(i)  𝐿1(𝜃, 𝜃) = 𝑐1(𝜃 − 𝜃)2  ;        c1 > 0 

(ii)  𝐿2(𝜃, 𝜃) = 𝑐2|𝜃 − 𝜃|  ;         c2 > 0 

(iii)  𝐿3(𝜃, 𝜃) = 𝑐3  ;    if |𝜃 − 𝜃| > 𝜀     c3 > 0 ; 𝜀 > 0 

    = 0    ;    if |𝜃 − 𝜃| ≤ 𝜀     (Typically, c3 = 1) 

• Risk Function: Risk = Expected Loss 

• 𝑅(𝜽, 𝜽̂) = ∫ 𝐿 (𝜽, 𝜽̂(𝒚)) 𝑝(𝒚|𝜽)𝑑𝒚 

• Average is taken over the sample space. 
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• Minimum Expected Loss (MEL) Rule: 

"Act so as to Minimize (posterior) Expected Loss." 

(e.g., choose an estimator, select a model/hypothesis) 

• Bayes' Rule: 

"Act so as to Minimize Average Risk."  

(Often called the "Bayes' Risk".) 

• 𝑟(𝜽̂) = ∫ 𝑅 (𝜽, 𝜽̂)𝑝(𝜽)𝑑𝜽            (Averaging over the parameter space.) 

• Typically, this will be a multi-dimensional integral. 

• So, the Bayes' Rule implies 

        𝜽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛. [𝑟(𝜽̂)] = 𝑎𝑟𝑔𝑚𝑖𝑛. ∫ 𝑅(𝜽, 𝜽̂)𝑝(𝜃)𝑑𝜽
Ω

  

• Sometimes, the Bayes' Rule is not defined. (If double integral diverges.) 

• The MEL Rule is almost always defined. 

• Often, the Bayes' Rule and the MEL Rule will be equivalent. 
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• To see this last result: 

𝜽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛. ∫ [∫ 𝐿(𝜽, 𝜽̂)𝑝(𝒚|𝜽)𝑑𝒚]𝑝(𝜽)𝑑𝜽
𝑌Ω

 

= 𝑎𝑟𝑔𝑚𝑖𝑛. ∫ [∫ 𝐿(𝜽, 𝜽̂)𝑝(𝜽|𝒚)𝑝(𝒚)𝑑𝒚]𝑑𝜽
𝑌Ω

 

= 𝑎𝑟𝑔𝑚𝑖𝑛. ∫ [∫ 𝐿(𝜽, 𝜽̂)𝑝(𝜽|𝒚)𝑑𝜽]𝑝(𝒚)𝑑𝒚
Ω𝑌

 

• Have to be able to interchange order of integration - Fubini's Theorem. 

• Note that 𝑝(𝒚) ≥ 0. So, 

    𝜽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛. ∫ 𝐿(𝜽, 𝜽̂)𝑝(𝜽|𝒚)𝑑𝜽
Ω

 . 

• That is, 𝜽̂ satisfies the MEL Rule. 

• May as well use the MEL Rule in practice. 

• What is the MEL (Bayes') estimator under particular Loss Functions? 
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• Quadratic Loss (L1):              𝜽̂ = 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑀𝑒𝑎𝑛 = 𝐸(𝜽|𝒚) 

• Absolute Error Loss (L2):      𝜽̂ = 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑀𝑒𝑑𝑖𝑎𝑛 

• Zero-One Loss (L3):              𝜽̂ = 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑀𝑜𝑑𝑒 

• Consider L1 as example: 

• 𝑚𝑖𝑛.𝜃̂ ∫ 𝑐1(𝜃 − 𝜃)
2

𝑝(𝜃|𝑦)𝑑𝜃 

                                  ⟹ 2𝑐1 ∫(𝜃 − 𝜃)𝑝(𝜃|𝑦)𝑑𝜃 = 0 

  ⟹ 𝜃 ∫ 𝑝(𝜃|𝑦)𝑑𝜃 = ∫ 𝜃𝑝(𝜃|𝑦)𝑑𝜃 

⟹ 𝜃 = ∫ 𝜃𝑝(𝜃|𝑦)𝑑𝜃 = 𝐸(𝜃|𝑦) 

(Check the 2nd-order condition) 

See CourseSpaces handouts for the cases of L2 and L3 Loss Functions. 
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Example 2 

We have data generated by a Bernoulli distribution, and we want to estimate the 

probability of a "success": 

  𝑝(𝑦) = 𝜃𝑦(1 − 𝜃)1−𝑦    ;    y = 0, 1   ;    0 ≤ 𝜃 ≤ 1 

(a) Uniform prior for ∈ [0 , 1] : 

  𝑝(𝜃) = 1       ;     0 ≤ 𝜃 ≤ 1   (mean = 1/2; variance = 1/12) 

          = 0       ;     otherwise 

Random sample of n observations, so the Likelihood Function is 

             𝐿(𝜃|𝒚) = 𝑝(𝒚|𝜃) = ∏ [𝜃𝑦𝑖(1 − 𝜃)(1−𝑦𝑖)]𝑛
𝑖=1 = 𝜃∑ 𝑦𝑖(1 − 𝜃)𝑛−∑(𝑦𝑖) 

Bayes' Theorem: 

            𝑝(𝜃|𝒚) ∝ 𝑝(𝜃)𝑝(𝒚|𝜃) ∝ 𝜃∑ 𝑦𝑖(1 − 𝜃)𝑛−∑(𝑦𝑖)     (*) 

Apart from the normalizing constant, this is a Beta p.d.f.: 
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• A continuous random variable, X, has a Beta distribution if its density 

function is 

          𝑝(𝑥|𝛼, 𝛽) =
1

𝐵(𝛼,𝛽)
𝑥(𝛼−1)(1 − 𝑥)(𝛽−1)   ;  0 < 𝑥 < 1  ;   𝛼, 𝛽 > 0 

• Here,   𝐵(𝛼, 𝛽) = ∫ 𝑡𝛼(1 − 𝑡)𝛽−1𝑑𝑡
1

0
   is the "Beta Function". 

• We can write it as:  𝐵(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)/Γ(𝛼 + 𝛽) 

where  Γ(𝑡) = ∫ 𝑥𝑡−1𝑒−𝑥𝑑𝑥
∞

0
   is the "Gamma Function" 

• See the handout, "Gamma and Beta Functions". 

• 𝐸[𝑋] = 𝛼/(𝛼 + 𝛽)    ;    𝑉[𝑋] = 𝛼𝛽/[(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)] 

Mode [X]  = (𝛼 − 1)/(𝛼 + 𝛽 − 2)        ;   if  𝛼, 𝛽 > 1 

Median [X] ≅ (𝛼 − 1/3)/(𝛼 + 𝛽 − 2/3)        ;   if  𝛼, 𝛽 > 1 

• Can extend to have support [a , b], and by adding other parameters. 

• It's a very flexible and useful distribution, with a finite support. 
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• Going back to Slide 14: 

 

𝑝(𝜃|𝒚) ∝ 𝑝(𝜃)𝑝(𝒚|𝜃) ∝ 𝜃∑ 𝑦𝑖(1 − 𝜃)𝑛−∑(𝑦𝑖) ;  0 < 𝜃 < 1   (*) 

 

Or, 

𝑝(𝜃|𝒚) =
1

𝐵(𝛼,𝛽)
𝑝(𝜃)𝑝(𝒚|𝜃) ∝ 𝜃𝛼−1(1 − 𝜃)𝛽−1 ;  0 < 𝜃 < 1  

 

where        𝛼 = 𝑛𝑦̅ + 1   ;    𝛽 = 𝑛(1 − 𝑦̅) + 1 

 

• So, under various loss functions, we have the following Bayes' estimators: 

(i)  L1:  𝜃1 = 𝐸[𝜃|𝒚] =
𝛼

𝛼+𝛽
= (𝑛𝑦̅ + 1)/(𝑛 + 2) 

(ii)  L3:  𝜃3 = 𝑀𝑜𝑑𝑒[𝜃|𝒚] =
(𝛼−1)

(𝛼+𝛽−2)
= 𝑦̅ 
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• Note that the MLE is 𝜃̃ = 𝑦̅.   (The Bayes' estimator under zero-one loss.) 

• The MLE (𝜃3) is unbiased (because 𝐸[𝑦] = 𝜃); consistent, and BAN. 

• We can write:   𝜃1 = (𝑦̅ + 1/𝑛)/(1 + 2/𝑛)  

So, lim
(𝑛→∞)

(𝜃1) = 𝑦̅ ;  and 𝜃1 is also consistent and BAN. 

(b) Beta prior for ∈ [0 , 1] : 

               𝑝(𝜃) ∝ 𝜃𝑎−1(1 − 𝜃)𝑏−1     ;      𝑎, 𝑏 > 0 

• Recall that Uniform [0 , 1] is a special case of this. 

• We can assign values to a and b to reflect prior beliefs about  𝜃 . 

• e.g., 𝐸[𝜃] = 𝑎/(𝑎 + 𝑏)    ;    𝑉[𝜃] = 𝑎𝑏/[(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)] 
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• Set values for 𝐸[𝜃] and 𝑉[𝜃], and then solve for implied values of a and b. 

• Recall that the Likelihood Function is: 

 𝐿(𝜃|𝒚) = 𝑝(𝒚|𝜃) = 𝜃𝑛𝑦̅(1 − 𝜃)𝑛(1−𝑦̅) 

• So, applying  Bayes' Theorem:     “kernel” of the density 

   𝑝(𝜃|𝒚) ∝ 𝑝(𝜃)𝑝(𝒚|𝜃) ∝ 𝜃𝑛𝑦̅+𝑎−1(1 − 𝜃)𝑛(1−𝑦̅)+𝑏−1 

• This is a Beta density, with       𝛼 = 𝑛𝑦̅ + 𝑎  ;  𝛽 = 𝑛(1 − 𝑦̅) + 𝑏   

• An example of "Natural Conjugacy" 

• So, under various loss functions, we have the following Bayes' estimators: 

(i) L1:  𝜃1 = 𝐸[𝜃|𝒚] =
𝛼

𝛼+𝛽
= (𝑛𝑦̅ + 𝑎)/(𝑛 + 𝑎 + 𝑏) 
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(ii) L3:  𝜃3 = 𝑀𝑜𝑑𝑒[𝜃|𝒚] =
(𝛼−1)

(𝛼+𝛽−2)
= (𝑛𝑦̅ + 𝑎 − 1)/(𝑎 + 𝑏 + 𝑛 − 2) 

• Recall that the MLE is  𝜃̃ = 𝑦̅.    

• We can write:   𝜃1 = (𝑦̅ + 𝑎/𝑛)/(1 + 𝑎/𝑛 + 𝑏/𝑛)  

So, lim
(𝑛→∞)

(𝜃1) = 𝑦̅ ;  and 𝜃1 is consistent and BAN. 

• We can write:   𝜃3 = (𝑦̅ + 𝑎/𝑛 − 1/𝑛)/(1 + 𝑎/𝑛 + 𝑏/𝑛 − 2/𝑛)  

So, lim
(𝑛→∞)

(𝜃3) = 𝑦̅ ;  and 𝜃3 is consistent and BAN. 

• In the various examples so far, the Bayes' estimators have had the same 

asymptotic properties as the MLE. 

• We'll see later that this result holds in general for Bayes' estimators. 



22 
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Example 3 

𝑦𝑖~𝑁[𝜇 , 𝜎0
2]      ;      𝜎0

2     is known 

• Before we see the sample of data, we have prior beliefs about value of 𝜇: 

𝑝(𝜇) = 𝑝(𝜇|𝜎0
2)~𝑁[𝜇̅ , 𝑣̅] 

That is, 

𝑝(𝜇) =
1

√2𝜋𝑣̅
𝑒𝑥𝑝 {−

1

2𝑣̅
(𝜇 − 𝜇̅)2} ∝ 𝑒𝑥𝑝 {−

1

2𝑣̅
(𝜇 − 𝜇̅)2}  

 

“kernel” of the density 

 

• Note: we are not saying that 𝜇 is random. Just uncertain about its value. 
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• Now we take a random sample of data: 

𝒚 = (𝑦1, 𝑦2, … … , 𝑦𝑛) 

• The joint data density (i.e., the Likelihood Function) is: 

 

𝑝(𝒚|𝜇, 𝜎0
2) = 𝐿(𝜇|𝒚, 𝜎0

2)  = (
1

𝜎0√2𝜋
)

𝑛

𝑒𝑥𝑝 {−
1

2𝜎0
2 ∑(𝑦𝑖 − 𝜇)2

𝑛

𝑖=1

} 

 

𝑝(𝒚|𝜇, 𝜎0
2) ∝  𝑒𝑥𝑝 {−

1

2𝜎0
2 ∑ (𝑦𝑖 − 𝜇)2𝑛

𝑖=1 } 

“kernel” of the density 

• Now we’ll apply Bayes’ Theorem: 

Likelihood function 

𝑝(𝜇|𝒚, 𝜎0
2) ∝ 𝑝(𝜇|𝜎0

2)𝑝(𝒚|𝜇, 𝜎0
2) 
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• So,  

𝑝(𝜇|𝒚, 𝜎0
2) ∝ 𝑒𝑥𝑝 {−

1

2
[
1

𝑣̅
(𝜇 − 𝜇̅)2 +

1

𝜎0
2 ∑(𝑦𝑖 − 𝜇)2

𝑛

𝑖=1

]} 

We can write: 

∑(𝑦𝑖 − 𝜇)2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝑦̅)2 + 𝑛(𝑦̅ − 𝜇)2

𝑛

𝑖=1

 

So, 

𝑝(𝜇|𝒚, 𝜎0
2) ∝ 𝑒𝑥𝑝 {−

1

2
[
1

𝑣̅
(𝜇 − 𝜇̅)2 +

1

𝜎0
2 (∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

+ 𝑛(𝑦̅ − 𝜇)2)]} 

        ∝ 𝑒𝑥𝑝 {−
1

2
[𝜇2 (

1

𝑣̅
+

𝑛

𝜎0
2) − 2𝜇 (

𝜇̅

𝑣̅
+

𝑛𝑦̅

𝜎0
2) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡]} 
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    𝑝(𝜇|𝒚, 𝜎0
2) ∝ 𝑒𝑥𝑝 {−

1

2
[𝜇2 (

1

𝑣̅
+

𝑛

𝜎0
2) − 2𝜇 (

𝜇̅

𝑣̅
+

𝑛𝑦̅

𝜎0
2)]} 

 

• "Complete the square": 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑎(𝑥 +
𝑏

2𝑎
)2 + (𝑐 −

𝑏2

4𝑎
) 

• In our case, 

𝑥 = 𝜇 

𝑎 = (
1

𝑣̅
+

𝑛

𝜎0
2) 

𝑏 = −2 (
𝜇̅

𝑣̅
+

𝑛𝑥̅

𝜎0
2) 

𝑐 = 0 

• So, we have: 
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 𝑝(𝜇|𝒚, 𝜎0
2) ∝ 𝑒𝑥𝑝 {−

1

2
[(

1

𝑣̅
+

𝑛

𝜎0
2) (𝜇 −

(
𝜇̅

𝑣̅
+

𝑛𝑦̅2

𝜎0
2 )

(
1

𝑣̅
+

𝑛

𝜎0
2)

)

2

]} 

 

• The Posterior distribution for μ is 𝑁[𝜇̿, 𝑣̿], where 

𝜇̿ =
((

1

𝑣̅ 
)𝜇 ̅+(

𝑛

𝜎0
2)𝑦̅)

(
1

𝑣̅
+

𝑛

𝜎0
2)

       ;             weighted average interpretation? 

1

𝑣̿
= (

1

𝑣̅
+

𝑛

𝜎0
2) 

• 𝜇̿  is the MEL (Bayes) estimator of μ under loss functions L1, L2, L3. 

• Another example of "Natural Conjugacy". 

• Show that  lim
(𝑛→∞)

(𝜇̿) = 𝑦̅      ( = MLE: consistent, BAN) 
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Dealing With "Nuisance Parameters" 

• Typically, 𝜽 is a vector:  𝜽′ = (𝜃1, 𝜃2, … … , 𝜃𝑝) 

 e.g.,  𝜽′ = (𝛽1, 𝛽2, … … , 𝛽𝑘;  𝜎) 

• Often interested primarily in only some (one?) of the parameters. The rest 

are "nuisance parameters". 

• However, they can't be ignored when we draw inferences about parameters 

of interest. 

• Bayesians deal with this in a very flexible way - they construct the Joint 

Posterior density for the full 𝜽 vector; and then they marginalize this 

density by integrating out the nuisance parameters. 

• For instance: 

  𝑝(𝜽|𝒚) = 𝑝(𝜷, 𝜎|𝒚) ∝ 𝑝(𝜷, 𝜎)𝐿(𝜷, 𝜎|𝒚) 

Then,  
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𝑝(𝜷|𝒚) = ∫ 𝑝(𝜷, 𝜎|𝒚)𝑑𝜎
∞

0
                                (marginal posterior for 𝜷) 

 

𝑝(𝛽𝑖|𝒚) = ∫ ∫ … . ∫ 𝑝(𝜷|𝒚)𝑑𝛽1 … . 𝑑𝛽𝑖−1𝑑𝛽𝑖+1 … . 𝑑𝛽𝑘 

           (marginal posterior for 𝛽𝑖) 

𝑝(𝜎|𝑦) = ∫ 𝑝(𝜷, 𝜎|𝒚)𝑑𝜷 = ∫ ∫ … . ∫ 𝑝(𝜷, 𝜎|𝒚)𝑑𝛽1 … . 𝑑𝛽𝑘 

           (marginal posterior for 𝜎) 

• Computational issue - can the integrals be evaluated analytically? 

• If not, we'll need to use numerical procedures. 

• Standard numerical "quadrature" infeasible if p > 3, 4. 

• Need to use alternative methods for obtaining the Marginal Posterior 

densities from the Joint Posterior density. 
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• Once we have a Marginal Posterior density, such as 𝑝(𝛽𝑖|𝒚), we can obtain 

a Bayes point estimator for 𝛽𝑖. 

• For example:  

       𝛽𝑖̂ = 𝐸[𝛽𝑖|𝒚] = ∫ 𝛽𝑖𝑝(
∞

−∞
𝛽𝑖|𝒚)𝑑𝛽𝑖      

                         𝛽𝑖̃ = 𝑎𝑟𝑔𝑚𝑎𝑥. {𝑝(𝛽𝑖̃|𝒚)} 

                         𝛽𝑖̆ = 𝑀, such that ∫ 𝑝(
𝑀

−∞
𝛽𝑖|𝒚)𝑑𝛽𝑖 = 0.5 

 

• The "posterior uncertainty" about 𝛽𝑖 can be measured, for instance, by 

computing 

 𝑣𝑎𝑟. (𝛽𝑖|𝒚) = ∫ (𝛽𝑖 − 𝛽𝑖̂)
2

𝑝(
∞

−∞
𝛽𝑖|𝒚)𝑑𝛽𝑖 
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Bayesian Updating 

• Suppose that we apply our Bayesian analysis using a first sample of data, 

𝒚1: 

  𝑝(𝜽|𝒚1) ∝ 𝑝(𝜽)𝑝(𝒚1|𝜽) 

• Then we obtain a new independent sample of data, 𝒚2. 

• The previous Posterior becomes our new Prior for 𝜽 and we apply Bayes' 

Theorem again: 

   𝑝(𝜽|𝒚1, 𝒚2) ∝ 𝑝(𝜽|𝒚1)𝑝(𝒚2|𝜽, 𝒚1) 

                                          ∝ 𝑝(𝜽)𝑝(𝒚1|𝜽)𝑝(𝒚2|𝜽, 𝒚1) 

                                          ∝ 𝑝(𝜽)𝑝(𝒚1, 𝒚2|𝜽) 

• The Posterior is the same as if we got both samples of data at once. 

• The Bayes updating procedure is "additive" with respect to the available 

information set. 
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Advantages & Disadvantages of Bayesian Approach 

1.  Unity of approach regardless of inference problem: Prior, Likelihood 

 function, Bayes' Theorem, Loss function, MEL rule. 

2.  Prior information (if any) incorporated explicitly and flexibly. 

3.  Explicit use of a Loss function and Decision Theory. 

4.  Nuisance parameters can be handled easily - not ignored. 

5.  Decision rules (estimators, tests) are Admissible. 

6.  Small samples are alright (even n = 1). 

7.  Good asymptotic properties - same as MLE.  

However: 

1.  Difficulty / cost of specifying the Prior for the parameters. 

2.  Results may be sensitive to choice of Prior - need robustness checks. 

3.  Possible computational issues. 


