David Giles

Bayesian Econometrics

1. General Background
2. Constructing Prior Distributions
3. Properties of Bayes Estimators and Tests
4. Bayesian Analysis of the Multiple Regression Model
5. Bayesian Model Selection / Averaging
6. Bayesian Computation - Monte Carlo Markov Chain (MCMC)

1. General Background

Major Themes

(i) Flexible \& explicit use of Prior Information, together with data, when drawing inferences.
(ii) Use of an explicit Decision-Theoretic basis for inferences.
(iii) Use of Subjective Probability to draw inferences about once-and-for-all events.
(iv) Unified set of principles applied to a wide range of inferential problems.
(v) No reliance on Repeated Sampling.
(vi) No reliance on large- n asymptotics - exact Finite-Sample Results.
(vii) Construction of Estimators, Tests, and Predictions that are "Optimal".

Probability

Definitions

1. Classical, "a priori" definition.
2. Long-run relative frequency definition.
3. Subjective, "personalistic" definition:
(i) Probability is a personal "degree of belief".
(ii) Formulate using subjective "betting odds".
(iii) Probability is dependent on the available Information Set.
(iv) Probabilities are revised (updated) as new information arises.
(v) Once-and-for-all events can be handled formally.
(vi) This is what most Bayesians use.

Rev. Thomas Bayes (1702?-1761)

Bayes' Theorem
(i) Conditional Probability:

$$
\begin{align*}
& p(A \mid B)=p(A \cap B) / p(B) \quad p(B \mid A)=p(A \cap B) / p(A) \tag{1}\\
& p(A \cap B)=p(A \mid B) p(B)=p(B \mid A) p(A) \tag{2}
\end{align*}
$$

(ii) Bayes' Theorem:

From (1) and (2): $\quad p(A \mid B)=p(B \mid A) p(A) / p(B)$
(iii) Law of Total Probability:

Divide event A into k mutually exclusive \& exhaustive events, $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$.
Then,

$$
\begin{equation*}
A=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \ldots \ldots \ldots \cup\left(A \cap B_{k}\right) \tag{4}
\end{equation*}
$$

From (2): $\quad p(A \cap B)=p(A \mid B) p(B)$
So, from (4):

$$
p(A)=p\left(A \mid B_{1}\right) p\left(B_{1}\right)+p\left(A \mid B_{2}\right) p\left(B_{2}\right)+\cdots+p\left(A \mid B_{k}\right) p\left(B_{k}\right)
$$

(iv) Bayes' Theorem Re-stated:

$$
p\left(B_{j} \mid A\right)=p\left(A \mid B_{j}\right) p\left(B_{j}\right) /\left[\sum_{i=1}^{k}\left(p\left(A \mid B_{i}\right) p\left(B_{i}\right)\right)\right]
$$

(v) Translate This to Inferential Problem:

$$
p(\boldsymbol{\theta} \mid \boldsymbol{y})=p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) / p(\boldsymbol{y})
$$

or,

$$
p(\boldsymbol{\theta} \mid \boldsymbol{y})=p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) / \int p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d \boldsymbol{\theta}
$$

(Note: multi-dimensional multiple integral.)

We can write this as:

$$
p(\boldsymbol{\theta} \mid \boldsymbol{y}) \propto p(\boldsymbol{\theta}) p(\boldsymbol{y} \mid \boldsymbol{\theta})
$$

or,

$$
p(\boldsymbol{\theta} \mid \boldsymbol{y}) \propto p(\boldsymbol{\theta}) L(\boldsymbol{\theta} \mid \boldsymbol{y})
$$

That is: Posterior Density for $\boldsymbol{\theta} \propto$ Prior Density for $\boldsymbol{\theta} \times$ Likelihood Function

- Bayes' Theorem provides us with a way of updating our prior information about the parameters when (new) data information is obtained:

- As we'll see later, the Bayesian updating procedure is strictly "additive".
- If $\quad \int p(\boldsymbol{\theta} \mid \boldsymbol{y}) d \boldsymbol{\theta}=1$,
then we can always "recover" the proportionality constant later:

$$
\int p(\boldsymbol{\theta} \mid \boldsymbol{y}) d \boldsymbol{\theta}=\int \frac{p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d \boldsymbol{\theta}}{\int p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d \boldsymbol{\theta}}=1
$$

- So, the proportionality constant is

$$
c=1 / \int p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d \boldsymbol{\theta}
$$

- This is just a number, but obtaining it requires multi-dimensional integration.
- So, even "normalizing" the posterior density may be computationally burdensome.

Example 1

We have data generated by a Bernoulli distribution, and we want to estimate the probability of a "success":

$$
p(y)=\theta^{y}(1-\theta)^{1-y} \quad ; \quad y=0,1 \quad ; \quad 0 \leq \theta \leq 1
$$

Uniform prior for $\theta \in[0,1]$:

$$
\begin{aligned}
p(\theta) & =1 & ; & 0 \leq \theta \leq 1 \\
& =0 & ; & \text { otherwise }
\end{aligned}
$$

Random sample of n observations, so the Likelihood Function is

$$
L(\theta \mid \boldsymbol{y})=p(\boldsymbol{y} \mid \theta)=\prod_{i=1}^{n}\left[\theta^{y_{i}}(1-\theta)^{\left(1-y_{i}\right)}\right]=\theta^{\sum y_{i}}(1-\theta)^{n-\sum\left(y_{i}\right)}
$$

Bayes' Theorem:

$$
p(\theta \mid \boldsymbol{y}) \propto p(\theta) p(\boldsymbol{y} \mid \theta) \propto \theta^{\Sigma y_{i}}(1-\theta)^{n-\Sigma\left(y_{i}\right)}
$$

How would we normalize this posterior density function?

Statistical Decision Theory

- Loss Function - personal in nature.
- $L(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}) \geq 0$, for all $\boldsymbol{\theta}$; $L(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}})=0$ iff $\widehat{\boldsymbol{\theta}}=\boldsymbol{\theta}$.
- Note that $\widehat{\boldsymbol{\theta}}=\widehat{\boldsymbol{\theta}}(\boldsymbol{y})$.
- Examples (scalar case; each loss is symmetric)

$$
\begin{align*}
L_{1}(\theta, \widehat{\theta}) & =c_{1}(\theta-\hat{\theta})^{2} ; & & c_{1}>0 \tag{i}\\
L_{2}(\theta, \hat{\theta}) & =c_{2}|\theta-\hat{\theta}| ; & & c_{2}>0 \\
L_{3}(\theta, \hat{\theta}) & =c_{3} ; \text { if }|\theta-\hat{\theta}|>\varepsilon & & c_{3}>0 ; \varepsilon>0 \tag{ii}\\
& =0 \quad ; \quad \text { if }|\theta-\hat{\theta}| \leq \varepsilon & & \text { (Typically, } \left.c_{3}=1\right)
\end{align*}
$$

- Risk Function: Risk $=$ Expected Loss
- $R(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}})=\int L(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}(\boldsymbol{y})) p(\boldsymbol{y} \mid \boldsymbol{\theta}) d \boldsymbol{y}$
- Average is taken over the sample space.
- Minimum Expected Loss (MEL) Rule:
"Act so as to Minimize (posterior) Expected Loss."
(e.g., choose an estimator, select a model/hypothesis)
- Bayes' Rule:
"Act so as to Minimize Average Risk."
(Often called the "Bayes' Risk".)
- $r(\widehat{\boldsymbol{\theta}})=\int R(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}) p(\boldsymbol{\theta}) d \boldsymbol{\theta} \quad$ (Averaging over the parameter space.)
- Typically, this will be a multi-dimensional integral.
- So, the Bayes' Rule implies

$$
\widehat{\boldsymbol{\theta}}=\operatorname{argmin} .[r(\widehat{\boldsymbol{\theta}})]=\operatorname{argmin} . \int_{\Omega} R(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}) p(\theta) d \boldsymbol{\theta}
$$

- Sometimes, the Bayes' Rule is not defined. (If double integral diverges.)
- The MEL Rule is almost always defined.
- Often, the Bayes' Rule and the MEL Rule will be equivalent.
- To see this last result:

$$
\begin{aligned}
\widehat{\boldsymbol{\theta}} & =\operatorname{argmin} . \int_{\Omega}\left[\int_{Y} L(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}) p(\boldsymbol{y} \mid \boldsymbol{\theta}) d \boldsymbol{y}\right] p(\boldsymbol{\theta}) d \boldsymbol{\theta} \\
& =\operatorname{argmin} . \int_{\Omega}\left[\int_{Y} L(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}) p(\boldsymbol{\theta} \mid \boldsymbol{y}) p(\boldsymbol{y}) d \boldsymbol{y}\right] d \boldsymbol{\theta} \\
& =\operatorname{argmin} . \int_{Y}\left[\int_{\Omega} L(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}) p(\boldsymbol{\theta} \mid \boldsymbol{y}) d \boldsymbol{\theta}\right] p(\boldsymbol{y}) d \boldsymbol{y}
\end{aligned}
$$

- Have to be able to interchange order of integration - Fubini's Theorem.
- Note that $p(\boldsymbol{y}) \geq 0$. So,

$$
\widehat{\boldsymbol{\theta}}=\operatorname{argmin} . \int_{\Omega} L(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}) p(\boldsymbol{\theta} \mid \boldsymbol{y}) d \boldsymbol{\theta}
$$

- That is, $\widehat{\boldsymbol{\theta}}$ satisfies the MEL Rule.
- May as well use the MEL Rule in practice.
- What is the MEL (Bayes') estimator under particular Loss Functions?
- Quadratic Loss $\left(L_{1}\right)$:

$$
\widehat{\boldsymbol{\theta}}=\text { Posterior Mean }=E(\boldsymbol{\theta} \mid \boldsymbol{y})
$$

- Absolute Error Loss $\left(L_{2}\right): \quad \widehat{\boldsymbol{\theta}}=$ Posterior Median
- Zero-One Loss (L_{3}): $\widehat{\boldsymbol{\theta}}=$ Posterior Mode
- Consider L_{1} as example:
- min. $\hat{\theta} \int c_{1}(\hat{\theta}-\theta)^{2} p(\theta \mid y) d \theta$

$$
\begin{aligned}
& \Rightarrow 2 c_{1} \int(\hat{\theta}-\theta) p(\theta \mid y) d \theta=0 \\
& \Rightarrow \hat{\theta} \int p(\theta \mid y) d \theta=\int \theta p(\theta \mid y) d \theta \\
& \Rightarrow \hat{\theta}=\int \theta p(\theta \mid y) d \theta=E(\theta \mid y)
\end{aligned}
$$

(Check the 2nd-order condition)
See CourseSpaces handouts for the cases of L_{2} and L_{3} Loss Functions.

Example 2

We have data generated by a Bernoulli distribution, and we want to estimate the probability of a "success":

$$
p(y)=\theta^{y}(1-\theta)^{1-y} \quad ; \quad y=0,1 \quad ; \quad 0 \leq \theta \leq 1
$$

(a) Uniform prior for $\in[0,1]$:

$$
\begin{aligned}
p(\theta) & =1 & & ; \\
& =0 \leq \theta \leq 1 & &
\end{aligned}
$$

Random sample of n observations, so the Likelihood Function is

$$
L(\theta \mid \boldsymbol{y})=p(\boldsymbol{y} \mid \theta)=\prod_{i=1}^{n}\left[\theta^{y_{i}}(1-\theta)^{\left(1-y_{i}\right)}\right]=\theta^{\sum y_{i}}(1-\theta)^{n-\sum\left(y_{i}\right)}
$$

Bayes' Theorem:

$$
\begin{equation*}
p(\theta \mid \boldsymbol{y}) \propto p(\theta) p(\boldsymbol{y} \mid \theta) \propto \theta^{\sum y_{i}}(1-\theta)^{n-\sum\left(y_{i}\right)} \tag{*}
\end{equation*}
$$

Apart from the normalizing constant, this is a Beta p.d.f.:

- A continuous random variable, X, has a Beta distribution if its density function is

$$
p(x \mid \alpha, \beta)=\frac{1}{B(\alpha, \beta)} x^{(\alpha-1)}(1-x)^{(\beta-1)} \quad ; 0<x<1 ; \alpha, \beta>0
$$

- Here, $B(\alpha, \beta)=\int_{0}^{1} t^{\alpha}(1-t)^{\beta-1} d t$ is the "Beta Function".
- We can write it as: $B(\alpha, \beta)=\Gamma(\alpha) \Gamma(\beta) / \Gamma(\alpha+\beta)$
where $\Gamma(t)=\int_{0}^{\infty} x^{t-1} e^{-x} d x$ is the "Gamma Function"
- See the handout, "Gamma and Beta Functions".
- $E[X]=\alpha /(\alpha+\beta) \quad ; \quad V[X]=\alpha \beta /\left[(\alpha+\beta)^{2}(\alpha+\beta+1)\right]$

Mode $[X]=(\alpha-1) /(\alpha+\beta-2) \quad ;$ if $\alpha, \beta>1$
Median $[X] \cong(\alpha-1 / 3) /(\alpha+\beta-2 / 3) \quad ;$ if $\alpha, \beta>1$

- Can extend to have support [a,b], and by adding other parameters.
- It's a very flexible and useful distribution, with a finite support.

- Going back to Slide 14 :
$p(\theta \mid \boldsymbol{y}) \propto p(\theta) p(\boldsymbol{y} \mid \theta) \propto \theta^{\Sigma y_{i}}(1-\theta)^{n-\sum\left(y_{i}\right)} \quad ; 0<\theta<1$

Or,
$p(\theta \mid \boldsymbol{y})=\frac{1}{B(\alpha, \beta)} p(\theta) p(\boldsymbol{y} \mid \theta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1} ; 0<\theta<1$
where

$$
\alpha=n \bar{y}+1 ; \beta=n(1-\bar{y})+1
$$

- So, under various loss functions, we have the following Bayes' estimators:

$$
\begin{equation*}
L_{1}: \hat{\theta}_{1}=E[\theta \mid \boldsymbol{y}]=\frac{\alpha}{\alpha+\beta}=(n \bar{y}+1) /(n+2) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
L_{3}: \hat{\theta}_{3}=\operatorname{Mode}[\theta \mid \boldsymbol{y}]=\frac{(\alpha-1)}{(\alpha+\beta-2)}=\bar{y} \tag{ii}
\end{equation*}
$$

- Note that the MLE is $\tilde{\theta}=\bar{y}$. (The Bayes' estimator under zero-one loss.)
- The MLE $\left(\hat{\theta}_{3}\right)$ is unbiased (because $E[y]=\theta$); consistent, and BAN.
- We can write: $\hat{\theta}_{1}=(\bar{y}+1 / n) /(1+2 / n)$

So, $\lim _{(n \rightarrow \infty)}\left(\hat{\theta}_{1}\right)=\bar{y}$; and $\hat{\theta}_{1}$ is also consistent and BAN.
(b) Beta prior for $\in[0,1]$:

$$
p(\theta) \propto \theta^{a-1}(1-\theta)^{b-1} \quad ; \quad a, b>0
$$

- Recall that Uniform $[0,1]$ is a special case of this.
- We can assign values to a and b to reflect prior beliefs about θ.
- e.g., $E[\theta]=a /(a+b) \quad ; \quad V[\theta]=a b /\left[(a+b)^{2}(a+b+1)\right]$
- Set values for $E[\theta]$ and $V[\theta]$, and then solve for implied values of a and b.
- Recall that the Likelihood Function is:

$$
L(\theta \mid \boldsymbol{y})=p(\boldsymbol{y} \mid \theta)=\theta^{n \bar{y}}(1-\theta)^{n(1-\bar{y})}
$$

- So, applying Bayes' Theorem:

$$
p(\theta \mid \boldsymbol{y}) \propto p(\theta) p(\boldsymbol{y} \mid \theta) \propto \theta^{n \bar{y}+a-1}(1-\theta)^{n(1-\bar{y})+b-1}
$$

- This is a Beta density, with $\quad \alpha=n \bar{y}+a ; \beta=n(1-\bar{y})+b$
- An example of "Natural Conjugacy"
- So, under various loss functions, we have the following Bayes' estimators:
(i) $L_{1}: \hat{\theta}_{1}=E[\theta \mid \boldsymbol{y}]=\frac{\alpha}{\alpha+\beta}=(n \bar{y}+a) /(n+a+b)$
(ii) $L_{3}: \hat{\theta}_{3}=\operatorname{Mode}[\theta \mid \boldsymbol{y}]=\frac{(\alpha-1)}{(\alpha+\beta-2)}=(n \bar{y}+a-1) /(a+b+n-2)$
- Recall that the MLE is $\tilde{\theta}=\bar{y}$.
- We can write: $\hat{\theta}_{1}=(\bar{y}+a / n) /(1+a / n+b / n)$

So, $\lim _{(n \rightarrow \infty)}\left(\hat{\theta}_{1}\right)=\bar{y} ;$ and $\hat{\theta}_{1}$ is consistent and BAN.

- We can write: $\hat{\theta}_{3}=(\bar{y}+a / n-1 / n) /(1+a / n+b / n-2 / n)$

So, $\lim _{(n \rightarrow \infty)}\left(\hat{\theta}_{3}\right)=\bar{y} ;$ and $\hat{\theta}_{3}$ is consistent and BAN.

- In the various examples so far, the Bayes' estimators have had the same asymptotic properties as the MLE.
- We'll see later that this result holds in general for Bayes' estimators.

Example 3

$$
y_{i} \sim N\left[\mu, \sigma_{0}^{2}\right] \quad ; \quad \sigma_{0}^{2} \quad \text { is known }
$$

- Before we see the sample of data, we have prior beliefs about value of μ :

$$
p(\mu)=p\left(\mu \mid \sigma_{0}^{2}\right) \sim N[\bar{\mu}, \bar{v}]
$$

That is,

$$
\begin{array}{r}
p(\mu)=\frac{1}{\sqrt{2 \pi \bar{v}}} \exp \left\{-\frac{1}{2 \bar{v}}(\mu-\bar{\mu})^{2}\right\} \propto \exp \left\{-\frac{1}{2 \bar{v}}(\mu-\bar{\mu})^{2}\right\} \\
\text { "kernel" of the density }
\end{array}
$$

- Note: we are not saying that μ is random. Just uncertain about its value.
- Now we take a random sample of data:

$$
\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right)
$$

- The joint data density (i.e., the Likelihood Function) is:

$$
\begin{gathered}
p\left(\boldsymbol{y} \mid \mu, \sigma_{0}^{2}\right)=L\left(\mu \mid \boldsymbol{y}, \sigma_{0}^{2}\right)=\left(\frac{1}{\sigma_{0} \sqrt{2 \pi}}\right)^{n} \exp \left\{-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right\} \\
p\left(\boldsymbol{y} \mid \mu, \sigma_{0}^{2}\right) \propto \exp \left\{-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right\} \\
\text { "kernel" of the density }
\end{gathered}
$$

- Now we'll apply Bayes' Theorem:
Likelihood function

$$
p\left(\mu \mid \boldsymbol{y}, \sigma_{0}^{2}\right) \propto p\left(\mu \mid \sigma_{0}^{2}\right) p\left(\boldsymbol{y} \mid \mu, \sigma_{0}^{2}\right)
$$

- So,

$$
p\left(\mu \mid \boldsymbol{y}, \sigma_{0}^{2}\right) \propto \exp \left\{-\frac{1}{2}\left[\frac{1}{\bar{v}}(\mu-\bar{\mu})^{2}+\frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right]\right\}
$$

We can write:

$$
\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}+n(\bar{y}-\mu)^{2}
$$

So,

$$
\begin{aligned}
p\left(\mu \mid \boldsymbol{y}, \sigma_{0}^{2}\right) & \propto \exp \left\{-\frac{1}{2}\left[\frac{1}{\bar{v}}(\mu-\bar{\mu})^{2}+\frac{1}{\sigma_{0}^{2}}\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}+n(\bar{y}-\mu)^{2}\right)\right]\right\} \\
& \propto \exp \left\{-\frac{1}{2}\left[\mu^{2}\left(\frac{1}{\bar{v}}+\frac{n}{\sigma_{0}^{2}}\right)-2 \mu\left(\frac{\bar{\mu}}{\bar{v}}+\frac{n \bar{y}}{\sigma_{0}^{2}}\right)+\text { constant }\right]\right\}
\end{aligned}
$$

$$
p\left(\mu \mid \boldsymbol{y}, \sigma_{0}^{2}\right) \propto \exp \left\{-\frac{1}{2}\left[\mu^{2}\left(\frac{1}{\bar{v}}+\frac{n}{\sigma_{0}^{2}}\right)-2 \mu\left(\frac{\bar{\mu}}{\bar{v}}+\frac{n \bar{y}}{\sigma_{0}^{2}}\right)\right]\right\}
$$

- "Complete the square":

$$
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right)
$$

- In our case,

$$
x=\mu
$$

$$
a=\left(\frac{1}{\bar{v}}+\frac{n}{\sigma_{0}^{2}}\right)
$$

$$
b=-2\left(\frac{\bar{\mu}}{\bar{v}}+\frac{n \bar{x}}{\sigma_{0}^{2}}\right)
$$

$$
c=0
$$

- So, we have:

$$
p\left(\mu \mid \boldsymbol{y}, \sigma_{0}^{2}\right) \propto \exp \left\{-\frac{1}{2}\left[\left(\frac{1}{\bar{v}}+\frac{n}{\sigma_{0}^{2}}\right)\left(\mu-\frac{\left(\frac{\bar{\mu}}{\bar{v}}+\frac{n \bar{y}^{2}}{\sigma_{0}^{2}}\right)}{\left(\frac{1}{\bar{v}}+\frac{n}{\sigma_{0}^{2}}\right)}\right)^{2}\right]\right\}
$$

- The Posterior distribution for μ is $N[\overline{\bar{\mu}}, \overline{\bar{v}}]$, where

$$
\begin{aligned}
& \overline{\bar{\mu}}=\frac{\left(\left(\frac{1}{\bar{v}}\right) \bar{\mu}+\left(\frac{n}{\sigma_{0}^{2}}\right) \bar{y}\right)}{\left(\frac{1}{\bar{v}}+\frac{n}{\sigma_{0}^{2}}\right)} ; \quad \text { weighted average interpretation? } \\
& \frac{1}{\overline{\bar{v}}}=\left(\frac{1}{\bar{v}}+\frac{n}{\sigma_{0}^{2}}\right)
\end{aligned}
$$

- $\overline{\bar{\mu}}$ is the MEL (Bayes) estimator of μ under loss functions L_{1}, L_{2}, L_{3}.
- Another example of "Natural Conjugacy".
- Show that $\lim _{(n \rightarrow \infty)}(\overline{\bar{\mu}})=\bar{y} \quad(=$ MLE: consistent, BAN $)$

Prior, Likelihood, \& Posterior for Mean of a Normal

Distribution ($\mathrm{n}=1$)

Dealing With "Nuisance Parameters"

- Typically, $\boldsymbol{\theta}$ is a vector: $\boldsymbol{\theta}^{\prime}=\left(\theta_{1}, \theta_{2}, \ldots \ldots, \theta_{p}\right)$

$$
\text { e.g., } \quad \boldsymbol{\theta}^{\prime}=\left(\beta_{1}, \beta_{2}, \ldots \ldots, \beta_{k} ; \sigma\right)
$$

- Often interested primarily in only some (one?) of the parameters. The rest are "nuisance parameters".
- However, they can't be ignored when we draw inferences about parameters of interest.
- Bayesians deal with this in a very flexible way - they construct the Joint Posterior density for the full $\boldsymbol{\theta}$ vector; and then they marginalize this density by integrating out the nuisance parameters.
- For instance:

$$
p(\boldsymbol{\theta} \mid \boldsymbol{y})=p(\boldsymbol{\beta}, \sigma \mid \boldsymbol{y}) \propto p(\boldsymbol{\beta}, \sigma) L(\boldsymbol{\beta}, \sigma \mid \boldsymbol{y})
$$

Then,

$$
p(\boldsymbol{\beta} \mid \boldsymbol{y})=\int_{0}^{\infty} p(\boldsymbol{\beta}, \sigma \mid \boldsymbol{y}) d \sigma
$$

$$
p\left(\beta_{i} \mid \boldsymbol{y}\right)=\iint \ldots . \int p(\boldsymbol{\beta} \mid \boldsymbol{y}) d \beta_{1} \ldots . d \beta_{i-1} d \beta_{i+1} \ldots . d \beta_{k}
$$

$$
p(\sigma \mid y)=\int p(\boldsymbol{\beta}, \sigma \mid \boldsymbol{y}) d \boldsymbol{\beta}=\iint \ldots . \int p(\boldsymbol{\beta}, \sigma \mid \boldsymbol{y}) d \beta_{1} \ldots d \beta_{k}
$$

- Computational issue - can the integrals be evaluated analytically?
- If not, we'll need to use numerical procedures.
- Standard numerical "quadrature" infeasible if $p>3,4$.
- Need to use alternative methods for obtaining the Marginal Posterior densities from the Joint Posterior density.
- Once we have a Marginal Posterior density, such as $p\left(\beta_{i} \mid \boldsymbol{y}\right)$, we can obtain a Bayes point estimator for β_{i}.
- For example:

$$
\begin{aligned}
& \widehat{\beta}_{l}=E\left[\beta_{i} \mid \boldsymbol{y}\right]=\int_{-\infty}^{\infty} \beta_{i} p\left(\beta_{i} \mid \boldsymbol{y}\right) d \beta_{i} \\
& \widetilde{\beta}_{l}=\operatorname{argmax} .\left\{p\left(\widetilde{\widetilde{\beta}}_{l} \mid \boldsymbol{y}\right)\right\} \\
& \widetilde{\beta}_{l}=M, \text { such that } \int_{-\infty}^{M} p\left(\beta_{i} \mid \boldsymbol{y}\right) d \beta_{i}=0.5
\end{aligned}
$$

- The "posterior uncertainty" about β_{i} can be measured, for instance, by computing

$$
\operatorname{var} .\left(\beta_{i} \mid \boldsymbol{y}\right)=\int_{-\infty}^{\infty}\left(\beta_{i}-\widehat{\beta_{l}}\right)^{2} p\left(\beta_{i} \mid \boldsymbol{y}\right) d \beta_{i}
$$

Bayesian Updating

- Suppose that we apply our Bayesian analysis using a first sample of data, y_{1} :

$$
p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1}\right) \propto p(\boldsymbol{\theta}) p\left(\boldsymbol{y}_{1} \mid \boldsymbol{\theta}\right)
$$

- Then we obtain a new independent sample of data, \boldsymbol{y}_{2}.
- The previous Posterior becomes our new Prior for $\boldsymbol{\theta}$ and we apply Bayes' Theorem again:

$$
\begin{aligned}
p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) & \propto p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1}\right) p\left(\boldsymbol{y}_{2} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1}\right) \\
& \propto p(\boldsymbol{\theta}) p\left(\boldsymbol{y}_{1} \mid \boldsymbol{\theta}\right) p\left(\boldsymbol{y}_{2} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1}\right) \\
& \propto p(\boldsymbol{\theta}) p\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2} \mid \boldsymbol{\theta}\right)
\end{aligned}
$$

- The Posterior is the same as if we got both samples of data at once.
- The Bayes updating procedure is "additive" with respect to the available information set.

Advantages \& Disadvantages of Bayesian Approach

1. Unity of approach regardless of inference problem: Prior, Likelihood function, Bayes' Theorem, Loss function, MEL rule.
2. Prior information (if any) incorporated explicitly and flexibly.
3. Explicit use of a Loss function and Decision Theory.
4. Nuisance parameters can be handled easily - not ignored.
5. Decision rules (estimators, tests) are Admissible.
6. Small samples are alright (even $n=1$).
7. Good asymptotic properties - same as MLE.

However:

1. Difficulty / cost of specifying the Prior for the parameters.
2. Results may be sensitive to choice of Prior - need robustness checks.
3. Possible computational issues.
