David Giles
 Bayesian Econometrics

10. Model Selection - Applications

Baseball Example

(Hoogerheide et al., 2007)

- 2004 World Series - Boston Red Socks vs. St; Louis Cardinals

$$
\begin{aligned}
y_{t} & =1 ; \text { Red Socks win Game } t \\
& =0 ; \text { Cardinals win Game } t ; t=1,2, \ldots, T
\end{aligned}
$$

Bernoulli distribution:

$$
p\left(y_{t} \mid \theta\right)=\theta^{y_{t}}(1-\theta)^{1-y_{t}} \quad ; \quad 0 \leq \theta \leq 1
$$

- Likelihood function if Red Socks win T_{1} games and Cardinals win T_{2} games:

$$
L(\theta \mid \boldsymbol{y})=p(\boldsymbol{y} \mid \theta)=\prod_{t=1}^{T} p\left(y_{t} \mid \theta\right)=\theta^{T_{1}}(1-\theta)^{T_{2}}
$$

Prior density:

$$
p(\theta)=1 ; \quad \theta \in[0,1]
$$

- Actually, Boston won the World Series in 4 straight games.
- Apply Bayes' Theorem. After T games,

$$
p(\theta \mid \boldsymbol{y}) \propto p(\theta) L(\theta \mid \boldsymbol{y}) \propto \theta^{T} ; \quad T=1,2,3,4
$$

- Normalizing constant is $1 /\left(\int_{0}^{1} \theta^{T} d \theta\right)=(T+1)$
- So, $p(\theta \mid \boldsymbol{y})=(T+1) \theta^{T} ; \quad T=1,2,3,4$.

Posterior Densities: $\mathbf{T}=1,2,3,4$

- Now consider BPO analysis. Two "non-nested" models.
- $M_{1}: \theta \leq \frac{1}{2} \quad$ ("Cardinals are at least as good as the Red Socks")
$M_{2}: \theta>\frac{1}{2} \quad$ ("Red Socks are better than the Cardinals")
- Let $p\left(M_{1}\right)=p\left(M_{2}\right)=\frac{1}{2}$

$$
p\left(\theta \mid M_{1}\right)=2 ; 0 \leq \theta \leq \frac{1}{2} \quad \text { and } \quad p\left(\theta \mid M_{2}\right)=2 ; \frac{1}{2}<\theta \leq 1
$$

- Recall that Red Socks won all matches, so

$$
\begin{gathered}
p\left(\boldsymbol{y} \mid M_{1}\right)=\int p\left(\boldsymbol{y} \mid \theta, M_{1}\right) p\left(\theta \mid M_{1}\right) d \theta=\int_{0}^{0.5} \theta^{T} 2 d \theta=\frac{2}{(T+1)}\left(\frac{1}{2}\right)^{T+1} \\
p\left(\boldsymbol{y} \mid M_{2}\right)=\int p\left(\boldsymbol{y} \mid \theta, M_{2}\right) p\left(\theta \mid M_{2}\right) d \theta=\int_{0.5}^{1} \theta^{T} 2 d \theta=\frac{2}{(T+1)}\left[1-\left(\frac{1}{2}\right)^{T+1}\right]
\end{gathered}
$$

- $B P O_{12}=\frac{p\left(M_{1} \mid \boldsymbol{y}\right)}{p\left(M_{2} \mid \boldsymbol{y}\right)}=\frac{\left(\frac{1}{2}\right)^{T+1}}{1-\left(\frac{1}{2}\right)^{T+1}}$

$$
p\left(M_{1} \mid \boldsymbol{y}\right)=\left(\frac{1}{2}\right)^{T+1} \quad ; p\left(M_{2} \mid \boldsymbol{y}\right)=1-\left(\frac{1}{2}\right)^{T+1}
$$

- So, "the probability that the Cardinals are at least as good as the Red Socks", given $T=1,2,3$, 4 matches won by the Red Socks, is $\left(\frac{1}{2}\right)^{T+1}=$ $0.25,0.125,0.06,0.03$.
- Check the frequentist outcome when $\mathrm{H}_{0}=\mathrm{M}_{1}, \mathrm{H}_{\mathrm{A}}=\mathrm{M}_{2}$, and the test statistic is the number of games won by the Red Socks. The p-value $=(0.5)^{T}$. So, even when $T=4, p=0.0625$. We would not reject $\mathrm{H}_{0}\left(\mathrm{M}_{1}\right)$ at the 5% significance level!

Econometric Example - Distributed Lag Models

- Example from Giles (1975) - competing "Distributed Lag" regression models with $\operatorname{AR}(1)$ error terms.
- Explain payments for imports into N.Z..
- 12 different models: 3 lag "shapes" $(S) ; 4$ maximum lag lengths (L)
- 4 parameters in each model. Scale parameter for errors eliminated by analytic integration.
- Rest of analysis involved 3-dimensional numerical integration. (Prior to MCMC!
- Emphasis on:
(i) Posterior probabilities for each model.
(ii) Parameter estimates \& predictions based on Bayesian Model Averaging (BMA), using model posterior probabilities as weights.

Bayesian Model Averaging Example - The BMS Package

- Basic idea - estimate many competing models and then "weight" the results using the model Posterior Probabilities.
- Applies to estimates of coefficients, predictions, etc.
- BMS package for \mathbf{R} deals with regression models where there are K potential regressors.
- Each regressor can be included or excluded from the model, so there are 2^{K} models in the full Model Space.
- e.g., If $K=40$, there are 1.1×10^{12} possible models!
- A Metropolis-Hasting type of MCMC is used to search the model space and obtain a manageable random selection of models that have high posterior probabilities.
- These models are then combined using the (re-weighted) posterior probabilities.

Some R code

library(BMS)
data(datafls)
set.seed(12345)
\# Total number of models = $2^{\wedge} 41=2.2^{*} 10^{\wedge} 12$
\# "PIP" denotes "Prior Inclusion Probability"
\# NOTE: With 1,000,000 drawings, the next line will take approximately 1.5 minutes to execute
\#
growth <- bms(datafls, burn = 50000, iter $=1 \mathrm{e}+06, \mathrm{~g}=$ "BRIC", mprior $=$ "uniform", nmodel = 2000, mcmc = "bd", user.int = F)
growth

	PIP	Post Mean	Post SD	Cond.Pos.Sign	Idx		
GDP60	0.999312	-1.615045e-02	$3.124842 \mathrm{e}-03$	0.00000000	12		
Confucian	0.989107	$5.647854 \mathrm{e}-02$	$1.457507 \mathrm{e}-02$	1.00000000	19		
EquipInv	0.930196	$1.611110 \mathrm{e}-01$	6.741018e-02	1.00000000	38		
LifeExp	0.928943	$8.345725 \mathrm{e}-04$	$3.462344 \mathrm{e}-04$	1.00000000	11		
SubSahara	0.728207	-1.140227e-02	$8.508603 \mathrm{e}-03$	0.00000000		7	
Muslim	0.655289	$9.023585 \mathrm{e}-03$	$7.775526 \mathrm{e}-03$	0.99894093	23		
YrsOpen	0.512421	$7.303333 \mathrm{e}-03$	$7.983056 \mathrm{e}-03$	0.99988486	15		
RuleofLaw	0.498742	$7.400353 \mathrm{e}-03$	$8.320895 \mathrm{e}-03$	1.00000000	26		
EcoOrg	0.458943	$1.191827 \mathrm{e}-03$	$1.439255 \mathrm{e}-03$	0.99994771	14		
Mining	0.453810	$1.865991 \mathrm{e}-02$	$2.320524 \mathrm{e}-02$	1.00000000	13		
Protestants	0.443457	-5.531704e-03	$7.006628 \mathrm{e}-03$	0.00000000	25		
NequipInv	0.434420	$2.479481 \mathrm{e}-02$	$3.173819 \mathrm{e}-02$	1.00000000	39		
PrScEnroll	0.220389	$4.594347 \mathrm{e}-03$	$9.956695 \mathrm{e}-03$	0.99091606	10		
LatAmerica	0.205092	-1.739452e-03	$4.123220 \mathrm{e}-03$	0.05577497		6	
Buddha	0.194909	$2.560094 \mathrm{e}-03$	$5.936916 \mathrm{e}-03$	0.99990252	17		
BlMktPm	0.180562	-1.372529e-03	$3.329068 \mathrm{e}-03$	0.00036553	41		
CivlLib	0.133006	-3.042498e-04	9.129109e-04	0.00580425	34		
Catholic	0.125844	-2.247763e-04	$3.044196 \mathrm{e}-03$	0.40133022	18		
Hindu	0.125245	-3.436461e-03	$1.196617 \mathrm{e}-02$	0.05214579	21		
PrExports	0.099785	-9.835269e-04	$3.550193 \mathrm{e}-03$	0.00412888	24		
PolRights	0.090776	-1.440864e-04	5.603911e-04	0.01880453	33		
Age	0.082319	-3.795793e-06	$1.537440 \mathrm{e}-05$	0.00041303	16		
RFEXDist	0.081073	-4.136241e-06	$1.724494 \mathrm{e}-05$	0.02954128	37		
LabForce	0.074980	$7.426586 \mathrm{e}-09$	$4.015423 \mathrm{e}-08$	0.84526540	29		
WarDummy	0.071575	-2.706038e-04	$1.205524 \mathrm{e}-03$	0.00292001		5	
Foreign	0.068527	$2.827676 \mathrm{e}-04$	$1.411898 \mathrm{e}-03$	0.92402994	36		
English	0.068469	-4.336655e-04	$1.985764 \mathrm{e}-03$	0.00074486	35		
EthnoL	0.060665	$3.511486 \mathrm{e}-04$	$1.924021 \mathrm{e}-03$	0.94166323	20		
Spanish	0.059576	$2.525208 \mathrm{e}-04$	$1.619391 \mathrm{e}-03$	0.85871828		2	
stdBMP	0.048867	-6.083865e-07	$3.851397 e-06$	0.04107066	40		
French	0.048807	$1.937706 \mathrm{e}-04$	$1.178806 \mathrm{e}-03$	0.97615096		3	
HighEnroll	0.047371	-1.682002e-03	$1.138897 \mathrm{e}-02$	0.03696354	30		
WorkPop	0.044402	-3.043240e-04	$2.366836 \mathrm{e}-03$	0.15125445	28		
Abslat	0.043675	$1.285909 \mathrm{e}-06$	3.302464e-05	0.55532914		1	
Outwaror	0.037489	-6.814124e-05	5.830504e-04	0.08946624		8	
Popg	0.036089	$5.098816 \mathrm{e}-03$	$4.696447 \mathrm{e}-02$	0.87323007	27		
Jewish	0.034901	-2.435773e-04	$2.817309 \mathrm{e}-03$	0.19838973	22		
Brit	0.034349	-6.146858e-05	$6.223336 \mathrm{e}-04$	0.13595738		4	
RevnCoup	0.032384	-5.458105e-06	$1.012380 \mathrm{e}-03$	0.49814723	32		
PublEdupet	0.031817	$6.523282 \mathrm{e}-04$	$2.540805 \mathrm{e}-02$	0.52943395	31		
Area	0.029769	-4.484178e-09	$1.006330 \mathrm{e}-07$	0.29335886		9	
Mean no. regressors		Draws		Burnins	Time		No. models visited
"10.4456"			e+06"	"50000"		"1.518669 mins"	"182877"
Modelspace $2^{\wedge} \mathrm{K}$		\% vis	sited	\% Topmodels		Corr PMP	No. Obs.
"2.2e+12"		"8.3e	e-06"	"38"		"0.9883"	"72"
Model Prior		g-Prior Shri		inkage-Stats			
"uniform / 20.5"				"Av=0.9994"			

```
> # In the next plot, BLUE corresponds to a +ve coefficient,
> # and RED corresponds to a -ve coefficient.
> WHITE implies non-inclusion in the model:
> image(growth[1:50])
```

Model Inclusion Based on Best 50 Models

Marginal Density: LifeExp (PIP 96.33 \%)

[^0]```
> # Predictive densities for the U.K. and the U.S.
> pdens = pred.density(growth, newdata = datafls[66:67,])
> pdens
Call:
pred.density(growth, newdata = datafls[66:67,])
Densities for conditional forecast(s)
300 data points, based on 2000 models;
 Exp.Val. Std.Err.
UK 0.01929568 0.007780345
US 0.01698227 0.007820930
> quantile(pdens, c(0.05,0.50, 0.95))
 5% 50% 95%
UK 0.005250805 0.01924536 0.03355155
US 0.003771534 0.01691727 0.03044644
> par(mfrow=c(2,1))
> plot(pdens,1)
> plot(pdens,2)
> par(mfrow=c(1,1))
Medians
```

Predictive Density Obs ZM ( 2000 Models)


Predictive Density Obs ZW (2000 Models)



[^0]:    $>$ \# (Weighted) posterior density for coefficient of just one important regressor
    > density (growth, reg="LifeExp")

