David Giles Bayesian Econometrics

10. Model Selection - Applications

Baseball Example

(Hoogerheide et al., 2007)

• 2004 World Series - Boston Red Socks vs. St; Louis Cardinals

 $y_t = 1$; Red Socks win Game t = 0; Cardinals win Game t; t = 1, 2, ..., T

Bernoulli distribution:

$$p(y_t \mid \theta) = \theta^{y_t} (1 - \theta)^{1 - y_t} \quad ; \quad 0 \le \theta \le 1$$

• Likelihood function if Red Socks win *T*₁ games and Cardinals win *T*₂ games:

$$L(\theta \mid \mathbf{y}) = p(\mathbf{y} \mid \theta) = \prod_{t=1}^{T} p(y_t \mid \theta) = \theta^{T_1} (1 - \theta)^{T_2}$$

Prior density:

 $p(\theta) = 1$; $\theta \in [0, 1]$

- Actually, Boston won the World Series in 4 straight games.
- Apply Bayes' Theorem. After T games,

 $p(\theta \mid \mathbf{y}) \propto p(\theta) L(\theta \mid \mathbf{y}) \propto \theta^T$; T = 1, 2, 3, 4.

• Normalizing constant is $1/(\int_0^1 \theta^T d\theta) = (T+1)$

• So,
$$p(\theta \mid y) = (T+1) \theta^T$$
; $T = 1, 2, 3, 4$.

Posterior Densities: T = 1, 2, 3, 4

Theta

- Now consider BPO analysis. Two "non-nested" models.
- $M_1: \theta \le \frac{1}{2}$ ("Cardinals are at least as good as the Red Socks")

 $M_2: \theta > \frac{1}{2}$ ("Red Socks are better than the Cardinals")

• Let
$$p(M_1) = p(M_2) = \frac{1}{2}$$

 $p(\theta \mid M_1) = 2 \quad ; \quad 0 \le \theta \le \frac{1}{2} \quad \text{and} \quad p(\theta \mid M_2) = 2 \quad ; \quad \frac{1}{2} < \theta \le 1$

• Recall that Red Socks won all matches, so

$$p(\mathbf{y} \mid M_1) = \int p(\mathbf{y} \mid \theta, M_1) p(\theta \mid M_1) d\theta = \int_0^{0.5} \theta^T 2 d\theta = \frac{2}{(T+1)} \left(\frac{1}{2}\right)^{T+1}$$
$$p(\mathbf{y} \mid M_2) = \int p(\mathbf{y} \mid \theta, M_2) p(\theta \mid M_2) d\theta = \int_{0.5}^1 \theta^T 2 d\theta = \frac{2}{(T+1)} \left[1 - \left(\frac{1}{2}\right)^{T+1}\right]$$

•
$$BPO_{12} = \frac{p(M_1|\mathbf{y})}{p(M_2|\mathbf{y})} = \frac{\left(\frac{1}{2}\right)^{T+1}}{1-\left(\frac{1}{2}\right)^{T+1}}$$

 $p(M_1|\mathbf{y}) = \left(\frac{1}{2}\right)^{T+1} ; p(M_2|\mathbf{y}) = 1 - \left(\frac{1}{2}\right)^{T+1}$

- So, "the probability that the Cardinals are at least as good as the Red Socks", given T = 1, 2, 3, 4 matches won by the Red Socks, is $\left(\frac{1}{2}\right)^{T+1} = 0.25, 0.125, 0.06, 0.03.$
- Check the frequentist outcome when $H_0 = M_1$, $H_A = M_2$, and the test statistic is the number of games won by the Red Socks. The p-value = $(0.5)^T$. So, even when T = 4, p = 0.0625. We would not reject H_0 (M_1) at the 5% significance level!

Econometric Example - Distributed Lag Models

- Example from Giles (1975) competing "Distributed Lag" regression models with AR(1) error terms.
- Explain payments for imports into N.Z..
- 12 different models: 3 lag "shapes" (*S*); 4 maximum lag lengths (*L*)
- 4 parameters in each model. Scale parameter for errors eliminated by analytic integration.
- Rest of analysis involved 3-dimensional numerical integration. (Prior to MCMC!)
- Emphasis on:
 - (i) Posterior probabilities for each model.
 - (ii) Parameter estimates & predictions based on Bayesian Model Averaging (BMA), using model posterior probabilities as weights.

Bayesian Model Averaging Example - The BMS Package

- Basic idea estimate many competing models and then "weight" the results using the model Posterior Probabilities.
- Applies to estimates of coefficients, predictions, *etc*.
- **BMS package for R** deals with regression models where there are *K potential regressors*.
- Each regressor can be included or excluded from the model, so there are 2^{*K*} models in the full Model Space.
- *e.g.*, If K = 40, there are 1.1×10^{12} possible models!
- A Metropolis-Hasting type of MCMC is used to search the model space and obtain a manageable random selection of models that have high posterior probabilities.

• These models are then combined using the (re-weighted) posterior probabilities.

Some R code

library(BMS)

data(datafls)

set.seed(12345)

Total number of models = $2^{41} = 2.2^{10^{12}}$

"PIP" denotes "Prior Inclusion Probability"

NOTE: With 1,000,000 drawings, the next line will take approximately 1.5 minutes to execute

```
growth <- bms(datafls, burn = 50000, iter = 1e+06, g = "BRIC", mprior = "uniform", nmodel = 2000, mcmc = "bd", user.int = F)
```

growth

		Dece Me	Dente CD	Cond. Doc. 24	Tele
000.00	PIP			Cond.Pos.Sign	
GDP60		-1.615045e-02			
Confucian	0.989107	5.647854e-02 1.611110e-01	1.457507e-02	1.00000000	
		8.345725e-04			
SubSahara	0.728207	-1.140227e-02 9.023585e-03	8.508603e-03	0.0000000	7
Muslim	0.655289	9.023585e-03	7.775526e-03	0.99894093	23
YrsOpen	0.512421	7.303333e-03	7.983056e-03	0.99988486	15
RuleofLaw	0.498742	7.400353e-03	8.320895e-03	1.00000000	26
EcoOrg	0.458943	1.191827e-03	1.439255e-03	0.99994771	14
Mining	0.453810	1.865991e-02	2.320524e-02	1.00000000	13
Protestants	0.443457	-5.531704e-03	7.006628e-03	0.0000000	25
		2.479481e-02			39
PrScEnroll	0.220389	4.594347e-03	9.956695e-03	0.99091606	10
LatAmerica	0.205092	-1.739452e-03	4.123220e-03	0.05577497	6
		2.560094e-03			17
BlMktPm	0.180562	-1.372529e-03	3.329068e-03	0.00036553	41
CivlLib	0.133006	-3.042498e-04	9.129109e-04	0.00580425	34
		-2.247763e-04			18
Hindu	0.125245	-3.436461e-03	1.196617e-02	0.05214579	21
PrExports	0.099785	-9.835269e-04	3.550193e-03	0.00412888	24
		-1.440864e-04			33
Age	0.082319	-3.795793e-06	1.537440e-05	0.00041303	16
		-4.136241e-06			37
LabForce	0.074980	7.426586e-09	4.015423e-08	0.84526540	29
√arDummy	0.071575	-2.706038e-04	1.205524e-03	0.00292001	5
Foreign	0 069527	2 9276769-04	1 4119990-03	0 02402004	36
English	0.068469	-4.336655e-04	1.985764e-03	0.00074486	
EthnoL	0.060665	3.511486e-04	1.924021e-03	0.94166323	
		2.525208e-04			
stdBMP	0.048867	-6.083865e-07	3.851397e-06	0.04107066	_
French	0.048807	1.937706e-04	1.178806e-03	0.97615096	
HighEnroll	0.047371	-1.682002e-03	1.138897e-02	0.03696354	-
WorkPop	0.044402	-3.043240e-04	2.366836e-03	0.15125445	
Abslat	0.043675	-1.682002e-03 -3.043240e-04 1.285909e-06	3.302464e-05	0.55532914	
	0.037489	-6.814124e-05	5.830504e-04	0.08946624	_
Popg	0.036089	5.098816e-03	4.696447e-02	0.87323007	
	0.034901	-2.435773e-04	2.817309e-03	0.19838973	
		-6.146858e-05			
RevnCoup	0.032384	-5.458105e-06	1.012380e-03	0.49814723	
PublEdupct	0.031817	6.523282e-04	2.540805e-02	0.52943395	
Area		-4.484178e-09			
					-
fean no. re	gressors	1	Draws	Burnins	

Mean no. regressors	Draws	Burnins	Time	No. models visited
"10.4456"	"1e+06"	"50000"	"1.518669 mins"	"182877"
Modelspace 2^K	<pre>% visited</pre>	% Topmodels	Corr PMP	No. Obs.
"2.2e+12"	"8.3e-06"	"38"	"0.9883"	"72"
Model Prior	g-Prior	Shrinkage-Stats		
"uniform / 20.5"	"BRIC"	"Av=0.9994"		

```
> # In the next plot, BLUE corresponds to a +ve coefficient,
> # and RED corresponds to a -ve coefficient.
> # WHITE implies non-inclusion in the model:
> image(growth[1:50])
```


Model Inclusion Based on Best 50 Models

Cumulative Model Probabilities

> # (Weighted) posterior density for coefficient of just one important regressor
> density(growth, reg="LifeExp")

```
> # Predictive densities for the U.K. and the U.S.
> pdens = pred.density(growth, newdata = datafls[66:67, ])
> pdens
Call:
pred.density(growth, newdata = datafls[66:67, ])
Densities for conditional forecast(s)
300 data points, based on 2000 models;
     Exp.Val.
                 Std.Err.
UK 0.01929568 0.007780345
US 0.01698227 0.007820930
                                          Posterior Means and Std. Deviations
> quantile(pdens, c(0.05,0.50, 0.95))
            5%
                      50%
                                  95%
UK 0.005250805 0.01924536 0.03355155
US 0.003771534 0.01691727 0.03044644
> par(mfrow=c(2,1))
> plot(pdens,1)
> plot(pdens,2)
> par(mfrow=c(1,1))
                                          Medians
```


Predictive Density Obs ZM (2000 Models)

Response variable

Predictive Density Obs ZW (2000 Models)

Response variable