David Giles

Bayesian Econometrics

2. Constructing Prior Distributions

- Constructing a Prior Distribution to reflect our a priori information / beliefs about the values of parameters is a key component of Bayesian analysis.
- This can be challenging!
- Prior information may be Data-based, or Non-data-based.
- Recall - we need to do this before we observe the current sample of data.
- One way to proceed is by using subjective "Betting Odds" .

Example

- Suppose we have 2 analysts wishing to construct a prior p.d.f. for a parameter, $\theta \in(-\infty, \infty)$.
- Decide to use a Normal prior.
- A: $\quad p_{A}(\theta)=\frac{1}{20 \sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{\theta-900}{20}\right)^{2}\right\}$
- B: $\quad p_{B}(\theta)=\frac{1}{80 \sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{\theta-800}{80}\right)^{2}\right\}$
- In the case of analyst \mathbf{A} :

$$
\operatorname{Pr} .[860<\theta<940]=\operatorname{Pr} .[-2<Z<2]=0.95
$$

Only if offered odds of at least 20:1 would she bet that θ differs from 900 by more than 40 .

- In the case of analyst \mathbf{B} :

$$
\operatorname{Pr} .[700<\theta<900]=\operatorname{Pr} .[-1.25<Z<1.25]=0.8
$$

Only if offered odds of at least $5: 1$ would she bet that θ differs from 800 by more than 100.

Check the odds:

- $x: 1$

Bet is $\$ 1$: Lose it if wrong
Collect $\$ x$ (including stake) if correct
Prior expected payoff is

$$
\$[(x-1) \operatorname{Pr} .(\text { Correct })-(1) \operatorname{Pr} .(\text { Wrong })]
$$

Least acceptable payoff is $\$ 0$.

- In the case of analyst \mathbf{A} :
$0=[(x-1)(5 / 100)-(1)(95 / 100)]$

So, $x=20$
(Need odds of at least 20:1 before she would bet)

- In the case of analyst B:
$0=[(x-1)(20 / 100)-(1)(80 / 100)]$
So, $x=5$
(Need odds of at least 5:1 before she would bet)

(Natural) Conjugate Priors

- We've already seen examples of this.
- Advantage - computation simplicity - no need for nasty integration!
- Disadvantage - may be unrealistic in particular cases.
- Basic idea:

- Note: we can't always construct a Conjugate Prior.
- All distributions in the Exponential Family have conjugate priors.
- See CourseSpaces:
(i) A Compendium of Conjugate Priors
(ii) Conjugate Prior Relationships
- Also, https://en.wikipedia.org/wiki/Conjugate_prior

Introduced by Raiffa and Schlaifer, Applied Statistical Decision Theory.

Robert Schlaifer (1919-1994)
Howard Raiffa (Born, 1924)

John Cook's Material

- See his notes, "Determining Distribution Parameters From Quantiles".
- "Parameter Solver" - free software.
- Both are on CourseSpaces.
- Bayesian statistics often requires eliciting prior probabilities from subject matter experts who are unfamiliar with statistics.
- Most people have an intuitive understanding of the mean of a probability distribution.
- Fewer people understand variance as well, particularly in the context of asymmetric distributions.
- Prior beliefs may be more accurately captured by asking experts for quantiles rather than for means and variances.

Calculated Values

a	2.3456393	Mean	0.58902644
b	1.6365916	Variance	0.048587531
$\operatorname{Prob}(X<0.149326)=$	0.025		
$\operatorname{Prob}(X<0.948271)=$	0.975		

Calculated Values

shape 27	Mean	5
scale 130	Variance	1
$\operatorname{Prob}(X<3.41243)=$	0.025	
$\operatorname{Prob}(X<7.30617)=$	0.975	

Representing Prior Ignorance

- What if we approach a new inference problem without having any prior information about the parameters?
- Our Bayesian analysis can handle this situation.
- It's just a matter of formulating the Prior Distribution appropriately, and then we proceed as usual.
- Note - typically the results we obtain will differ (to some degree) from what we would obtain by using just the sample information (i.e., just the Likelihood Function).

Jeffrey's Priors -

1. All we know is that $-\infty<\theta<\infty$

$$
\begin{array}{ll}
\text { Assign } & p(\theta) \propto \text { constant } \\
\text { i.e., } & p(\theta) d \theta \propto d \theta
\end{array}
$$

- This prior is "diffuse" over the full real line.
- It is "improper" (it doesn't integrate to one):

$$
\int_{-\infty}^{\infty} p(\theta) d \theta \propto \int_{-\infty}^{\infty} d \theta=[\theta]_{-\infty}^{\infty}=\infty
$$

2. All we know is that $0<\phi<\infty$

Assign $\quad p(\phi) \propto 1 / \phi$
i.e., $\quad p(\phi) d \phi \propto d \phi / \phi$

- It is "improper" (it doesn't integrate to one):

$$
\int_{0}^{\infty} p(\phi) d \phi \propto \int_{0}^{\infty}\left(\frac{1}{\phi}\right) d \phi=[\log |\phi|]_{0}^{\infty}=\infty
$$

- This prior is "diffuse" over the positive real half-line.
- To see where this comes from:

Let $\quad \theta=\log (\phi) \quad ; \quad-\infty<\theta<\infty$
Assign $\quad p(\theta) \propto$ constant

So, $p(\phi)=p(\theta)\left|\frac{d \theta}{d \phi}\right| \propto \phi^{-1} \quad ; \quad$ recall that $\phi>0$

- Note that $p(\phi)$ is invariant to power transformations:

Let $\varphi=\phi^{m}$, so that $\left(\frac{d \varphi}{d \phi}\right)=m \phi^{m-1}$
So, $(d \varphi / \varphi)=m(d \phi / \phi) \propto(d \phi / \phi)$
For instance, it doesn't matter if we work with σ or with σ^{2}.

- If $-\infty<\theta<0$ then just re-parameterize, and define $\varphi=-\theta$.
- Note that even though both of the diffuse priors we've considered are "improper", when we apply Bayes' Theorem the posterior p.d.f. will be "proper" - it will integrate to one.

In what sense do these priors represent "total ignorance"?

All we know is that $-\infty<\theta<\infty$

- $p(\theta) \propto$ constant
- Pr. $[a<\theta<b] / \operatorname{Pr} .[c<\theta<d]=(0 / 0) \quad ; \quad$ indeterminate

All we know is that $0<\phi<\infty$

- $p(\phi) \propto 1 / \phi$
- $\int_{0}^{a} p(\phi) d \phi \propto \int_{0}^{a} d \phi / \phi=[\log |\phi|]_{0}^{a}=\infty$
- $\int_{a}^{\infty} p(\phi) d \phi \propto \int_{a}^{\infty} d \phi / \phi=[\log |\phi|]_{a}^{\infty}=\infty$
- Pr. $[0<\theta<a] / \operatorname{Pr} .[a<\theta<\infty]=(\infty / \infty) \quad ; \quad$ indeterminate

Sir Harold Jeffreys (1891-1989)

Jeffreys' Priors - More Formally

$$
p(\boldsymbol{\theta}) \propto \sqrt{\operatorname{det} .(I(\boldsymbol{\theta}))}
$$

where $I(\boldsymbol{\theta})$ is Fisher's Information matrix, which can be written as

$$
\begin{align*}
I(\boldsymbol{\theta}) & =-E\left[\frac{\partial^{2} \log L}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right] \\
& =E\left[(\partial \log L / \partial \boldsymbol{\theta})((\partial \log L / \partial \boldsymbol{\theta}))^{\prime}\right] \tag{OPG}
\end{align*}
$$

Example

$$
\begin{aligned}
& p(y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma^{2}}(y-\mu)^{2}\right] \quad ;-\infty<\mu<\infty ; 0<\sigma<\infty \\
& n=1
\end{aligned}
$$

$$
\log L=-\log (\sigma)-\frac{1}{2} \log (2 \pi)-\frac{1}{2 \sigma^{2}}(y-\mu)^{2}
$$

(i) $\partial \log L / \partial \mu=(y-\mu) / \sigma^{2}$

$$
I(\mu)=E\left[\left\{(y-\mu) / \sigma^{2}\right\}^{2}\right]=1 / \sigma^{2}
$$

So,

$$
p(\mu)=\sqrt{1 / \sigma^{2}}=1 / \sigma \propto \text { constant }
$$

(ii) $\partial \log L / \partial \sigma=-1 / \sigma+(y-\mu)^{2} / \sigma^{3}$

$$
I(\sigma)=E\left[\left\{-\frac{1}{\sigma}+(y-\mu)^{2} / \sigma^{3}\right\}^{2}\right]=2 / \sigma^{2}
$$

So,

$$
p(\sigma)=\sqrt{2 / \sigma^{2}}=\sqrt{2} / \sigma \propto 1 / \sigma
$$

