David Giles

Bayesian Econometrics

2. Constructing Prior Distributions

Constructing a Prior Distribution to reflect our a priori information / beliefs

about the values of parameters is a key component of Bayesian analysis.

This can be challenging!

Prior information may be Data-based, or Non-data-based.

Recall - we need to do this before we observe the current sample of data.

One way to proceed is by using subjective "Betting Odds" .



Example

e Suppose we have 2 analysts wishing to construct a prior p.d.f. for a

parameter, 8 € (—oo, ).

Decide to use a Normal prior.

_ 1 1 (6-900)2
A pA(Q)_ZO\/EEXp{_E( 20 )}

_ 1 1 (6-800)2
5: pB(H)_sox/ﬁeXp{_E( 80 )}

In the case of analyst A:
Pr.[860 < 0 <940] =Pr.[-2< Z < 2] =0.95

Only if offered odds of at least 20:1 would she bet that 8 differs from 900
by more than 40.



¢ |n the case of analyst B:

Pr.[700 < 8 <900] = Pr.|-1.25< Z < 1.25] =0.8

Only if offered odds of at least 5:1 would she bet that 6 differs from 800 by

more than 100.

Check the odds:
o X1
Bet is $1.: Lose it if wrong
Collect $x (including stake) if correct
Prior expected payoff is
$[(x - 1)Pr.(Correct) - (1)Pr.(Wrong)]
Least acceptable payoff is $0.



e In the case of analyst A:

0 =[(x - 1)(5/100) - (1)(95/100)]
S0, x=20
(Need odds of at least 20:1 before she would bet)

¢ In the case of analyst B:

0 =[(x - 1)(20/100) - (1)(80/100)]
So,x=5

(Need odds of at least 5:1 before she would bet)



(Natural) Conjugate Priors

o We’ve already seen examples of this.

e Advantage — computation simplicity - no need for nasty integration!
e Disadvantage — may be unrealistic in particular cases.

e Basic idea:

[ Prior }@ l Posterior }

=

e Note: we can't always construct a Conjugate Prior.
e All distributions in the Exponential Family have conjugate priors.
e See CourseSpaces:

(i) A Compendium of Conjugate Priors

(i) Conjugate Prior Relationships

e Also, https://en.wikipedia.org/wiki/Conjugate prior



https://en.wikipedia.org/wiki/Conjugate_prior

Introduced by Raiffa and Schlaifer, Applied Statistical Decision Theory.

Robert Schlaifer (1919-1994) Howard Raiffa (Born, 1924)



John Cook's Material

e Sce his notes, “Determining Distribution Parameters From Quantiles”.

e “Parameter Solver” — free software.

e Both are on CourseSpaces.

e Bayesian statistics often requires eliciting prior probabilities from subject
matter experts who are unfamiliar with statistics.

e Most people have an intuitive understanding of the mean of a probability
distribution.

e Fewer people understand variance as well, particularly in the context of
asymmetric distributions.

e Prior beliefs may be more accurately captured by asking experts for

quantiles rather than for means and variances.
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Representing Prior Ignorance

What if we approach a new inference problem without having any prior

Information about the parameters?

e Our Bayesian analysis can handle this situation.

It's just a matter of formulating the Prior Distribution appropriately, and
then we proceed as usual.

e Note - typically the results we obtain will differ (to some degree) from what
we would obtain by using just the sample information (i.e., just the

Likelihood Function).
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Jeffrey's Priors -

1. All we know Is that —c0 < 0 <
Assign p(8) < constant

ie., p(0)dO x d

e This prior is "diffuse” over the full real line.

e [t is "Iimproper” (it doesn't integrate to one):

(00}

f p(6)do foode = [0]% =

— 00
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2. All we know isthat 0 < ¢p < o0

Assign p(¢) x1/¢
Le., p(¢)dp x dp/¢

e [t is "Improper” (it doesn't integrate to one):

00 00 ,
J p($)de o J ) = [Loglgl]§ = oo

e This prior is "diffuse" over the positive real half-line.

e To0 see where this comes from:
Let 0 =log(p) : —00 < 0 <o

Assign p(8) < constant
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So, p(¢) =p(0) ‘% o« ¢t : recall that ¢ > 0
e Note that p(¢) is invariant to power transformations:
— Am d_§0 — m-—1
Let g = ¢ ,sothat(d¢) = m¢
So, (do/p) =m(dp/p) « (dop/P)
For instance, it doesn't matter if we work with ¢ or with o2.

o |f —oo < 68 < 0 then just re-parameterize, and define ¢ = —86.

o Note that even though both of the diffuse priors we've considered are
"Improper", when we apply Bayes' Theorem the posterior p.d.f. will be

"proper” - it will integrate to one.
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In what sense do these priors represent "total ignorance™?

All we know is that —o0 < § <

e p(0) x constant

e Pr.[a< 6 < b]/Pr.[c<6<d]=(0/0) ;

All we know isthat 0 < ¢ <

* p(¢p) x1/¢
o [Tp($)dd « [ de/¢p =[log|p|]§ = oo

o [Tp($)de o< [T de/¢ =[log|¢|]P = o

e Pr.[0< 6 <a]l/Pr.la<8 < x»] = (c0/x0) ,

indeterminate

Indeterminate
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Sir Harold Jeffreys (1891-1989)
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Jeffreys' Priors — More Formally

p(0) o« /det.(1(0)) (Invariant under re-parameterization)

where 1(0) is Fisher’s Information matrix, which can be written as

0%logL
10) =k [aegz']
= E|(dlogL/26)((dlogL/20))'] (OPG)
Example
PO =—=exp|--5-w?| i —w<u<o; 0<o<om

n=1
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1 1
logL = —log(0) — log(2m) — — (v — u)°

(i)  dlogL/ou= (y —w/o*
I(w) = E[{(y —w)/o?}’] = 1/0°

So,

p(u) =+/1/0% =1/0 < constant

(i) odlogL/do = -1/ + (y — u)?/o3
1 2
I(c) =E [{—g"‘ (y—M)Z/UB} ] =2/0?
So,

p(0) =+/2/02 =~2/0 x1/0

(doesn’t depend on )
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