
1 
 

David Giles 

Bayesian Econometrics 

 

2. Constructing Prior Distributions 

• Constructing a Prior Distribution to reflect our a priori information / beliefs 

about the values of parameters is a key component of Bayesian analysis. 

• This can be challenging! 

• Prior information may be Data-based, or Non-data-based. 

• Recall  - we need to do this before we observe the current sample of data. 

• One way to proceed is by using subjective "Betting Odds" . 
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Example 

• Suppose we have 2 analysts wishing to construct a prior p.d.f. for a 

parameter, 𝜃 ∈ (−∞ , ∞). 

• Decide to use a Normal prior. 

• A: 𝑝𝐴(𝜃) =
1

20√2𝜋
exp {−

1

2
(

𝜃−900

20
)

2
} 

• B: 𝑝𝐵(𝜃) =
1

80√2𝜋
exp {−

1

2
(

𝜃−800

80
)

2
} 

• In the case of analyst A: 

        𝑃𝑟. [860 < 𝜃 < 940] = 𝑃𝑟. [−2 < 𝑍 < 2] = 0.95 

 

Only if offered odds of at least 20:1 would she bet that 𝜃 differs from 900 

by more than 40. 
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• In the case of analyst B: 

      𝑃𝑟. [700 < 𝜃 < 900] = 𝑃𝑟. [−1.25 < 𝑍 < 1.25] = 0.8 

 

Only if offered odds of at least 5:1 would she bet that 𝜃 differs from 800 by 

more than 100. 

Check the odds: 

• x:1 

Bet is $1:  Lose it if wrong 

   Collect $x (including stake) if correct 

Prior expected payoff is 

   $[(x - 1)Pr.(Correct) - (1)Pr.(Wrong)] 

Least acceptable payoff is $0. 
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• In the case of analyst A: 

 

0 = [(x - 1)(5/100) - (1)(95/100)] 

So, x = 20 

(Need odds of at least 20:1 before she would bet) 

• In the case of analyst B: 

 

0 = [(x - 1)(20/100) - (1)(80/100)] 

So, x = 5 

(Need odds of at least 5:1 before she would bet) 
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(Natural) Conjugate Priors 

• We’ve already seen examples of this. 

• Advantage – computation simplicity - no need for nasty integration! 

• Disadvantage – may be unrealistic in particular cases. 

• Basic idea: 

         Prior                                  L.F.                                 Posterior            

 

• Note: we can't always construct a Conjugate Prior. 

• All distributions in the Exponential Family have conjugate priors. 

• See CourseSpaces: 

(i) A Compendium of Conjugate Priors 

(ii) Conjugate Prior Relationships 

• Also,    https://en.wikipedia.org/wiki/Conjugate_prior 

https://en.wikipedia.org/wiki/Conjugate_prior
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Introduced by Raiffa and Schlaifer, Applied Statistical Decision Theory. 

                        

 

  Robert Schlaifer (1919-1994)                       Howard Raiffa (Born, 1924) 
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John Cook's Material      

• See his notes, “Determining Distribution Parameters From Quantiles”. 

• “Parameter Solver” – free software. 

• Both are on CourseSpaces. 

• Bayesian statistics often requires eliciting prior probabilities from subject 

matter experts who are unfamiliar with statistics. 

• Most people have an intuitive understanding of the mean of a probability 

distribution. 

• Fewer people understand variance as well, particularly in the context of 

asymmetric distributions. 

• Prior beliefs may be more accurately captured by asking experts for 

quantiles rather than for means and variances. 
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Representing Prior Ignorance 

 

• What if we approach a new inference problem without having any prior 

information about the parameters? 

• Our Bayesian analysis can handle this situation. 

• It's just a matter of formulating the Prior Distribution appropriately, and 

then we proceed as usual. 

• Note - typically the results we obtain will differ (to some degree) from what 

we would obtain by using just the sample information (i.e., just the 

Likelihood Function). 
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Jeffrey's Priors - 

1.  All we know is that −∞ < 𝜃 < ∞ 

Assign  𝑝(𝜃) ∝ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

i.e.,   𝑝(𝜃)𝑑𝜃 ∝ 𝑑𝜃 

• This prior is "diffuse" over the full real line. 

• It is "improper" (it doesn't integrate to one): 

∫ 𝑝(𝜃)𝑑𝜃 ∝ ∫ 𝑑𝜃

∞

−∞

∞

−∞

= [𝜃]−∞
∞ = ∞ 
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2.  All we know is that 𝟎 < 𝜙 < ∞ 

Assign  𝑝(𝜙) ∝ 1/𝜙 

i.e.,   𝑝(𝜙)𝑑𝜙 ∝ 𝑑𝜙/𝜙 

• It is "improper" (it doesn't integrate to one): 

∫ 𝑝(𝜙)𝑑𝜙 ∝ ∫ (
1

𝜙
)𝑑𝜙

∞

0

∞

0

= [𝑙𝑜𝑔|𝜙|]0
∞ = ∞ 

• This prior is "diffuse" over the positive real half-line. 

• To see where this comes from: 

Let     𝜃 = 𝑙𝑜𝑔 (𝜙)        ;        −∞ < 𝜃 < ∞ 

Assign    𝑝(𝜃) ∝ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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So,   𝑝(𝜙) = 𝑝(𝜃) |
𝑑𝜃

𝑑𝜙
| ∝ 𝜙−1   ;     recall that 𝜙 > 0 

• Note that 𝑝(𝜙) is invariant to power transformations: 

Let 𝜑 = 𝜙𝑚, so that (
𝑑𝜑

𝑑𝜙
) = 𝑚𝜙𝑚−1 

So,  (𝑑𝜑/𝜑) = 𝑚(𝑑𝜙/𝜙) ∝ (𝑑𝜙/𝜙) 

For instance, it doesn't matter if we work with 𝜎 or with 𝜎2. 

• If  −∞ < 𝜃 < 0 then just re-parameterize, and define 𝜑 = −𝜃. 

• Note that even though both of the diffuse priors we've considered are 

"improper", when we apply Bayes' Theorem the posterior p.d.f. will be 

"proper" - it will integrate to one. 
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In what sense do these priors represent "total ignorance"? 

All we know is that −∞ < 𝜃 < ∞ 

• 𝑝(𝜃) ∝ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

• 𝑃𝑟. [𝑎 < 𝜃 < 𝑏] / 𝑃𝑟. [𝑐 < 𝜃 < 𝑑] = (0/0)        ;      indeterminate 

All we know is that 𝟎 < 𝜙 < ∞ 

• 𝑝(𝜙) ∝ 1/𝜙 

• ∫ 𝑝(
𝑎

0
𝜙)𝑑𝜙 ∝ ∫ 𝑑𝜙/𝜙 =

𝑎

0
[𝑙𝑜𝑔|𝜙|]0

𝑎 = ∞ 

• ∫ 𝑝(
∞

𝑎
𝜙)𝑑𝜙 ∝ ∫ 𝑑𝜙/𝜙 =

∞

𝑎
[𝑙𝑜𝑔|𝜙|]𝑎

∞ = ∞ 

• 𝑃𝑟. [0 < 𝜃 < 𝑎] / 𝑃𝑟. [𝑎 < 𝜃 < ∞] = (∞/∞)        ;      indeterminate 
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Sir Harold Jeffreys (1891-1989) 
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Jeffreys' Priors – More Formally 

    𝑝(𝜽) ∝ √𝑑𝑒𝑡. (𝐼(𝜽))                      (Invariant under re-parameterization) 

where 𝐼(𝜽) is Fisher’s Information matrix, which can be written as 

𝐼(𝜽) = −𝐸 [
𝜕2𝑙𝑜𝑔𝐿

𝜕𝜽𝜕𝜽′
] 

    = 𝐸[(𝜕𝑙𝑜𝑔𝐿/𝜕𝜽)((𝜕𝑙𝑜𝑔𝐿/𝜕𝜽))′]                                    (OPG) 

Example 

𝑝(𝑦) =
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

1

2𝜎2 (𝑦 − 𝜇)2]         ;    −∞ < 𝜇 < ∞ ;   0 < 𝜎 < ∞         

n = 1 
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 𝑙𝑜𝑔𝐿 = −log (𝜎) −
1

2
log(2𝜋) −

1

2𝜎2 (𝑦 − 𝜇)2 

(i) 𝜕𝑙𝑜𝑔𝐿/𝜕𝜇 = (𝑦 − 𝜇)/𝜎2 

𝐼(𝜇) = 𝐸[{(𝑦 − 𝜇)/𝜎2}2] = 1/𝜎2 

So, 

 𝑝(𝜇) = √1/𝜎2 = 1/𝜎 ∝ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                            (doesn’t depend on 𝜇) 

 

(ii) 𝜕𝑙𝑜𝑔𝐿/𝜕𝜎 = −1/𝜎 + (𝑦 − 𝜇)2/𝜎3 

𝐼(𝜎) = 𝐸 [{−
1

𝜎
+ (𝑦 − 𝜇)2/𝜎3}

2

] = 2/𝜎2 

So, 

 𝑝(𝜎) = √2/𝜎2 = √2/𝜎 ∝ 1/𝜎  


