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David Giles 

Bayesian Econometrics 

 

3. Properties of Bayes Estimators & Tests 

 

(i)  Some general results for Bayes Decision Rules. 

(ii)  Bayes estimators - some exact results. 

(iii)  Bayes estimators - some asymptotic (large-n) results. 

(iv)  Bayesian interval estimation. 
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General Results for Bayes Decision Rules 

• Recall - Bayes rules and MEL rules (generally equivalent) 

• Minimum Expected Loss (MEL) Rule: 

"Act so as to Minimize (posterior) Expected Loss" 

∫ 𝐿(𝜽, �̂�)𝑝(𝜽|𝒚)𝑑𝜽
Ω

 

• Bayes' Rule: 

"Act so as to Minimize Average Risk."  

(Often called the "Bayes' Risk"): 

𝑟(�̂�) = ∫𝑅 (𝜽, �̂�)𝑝(𝜽)𝑑𝜽     

• The action will involve selecting an Estimator, or rejecting some 

Hypothesis, for instance. 
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• We have the following general results – 

 

(i) A Mini-max Rule always exists. 

(ii) Any decision rule that is Admissible must be a Bayes’ Rule with 

respect to some prior distribution. 

(iii) If the prior distribution is “proper”, every Bayes’ Rule is 

Admissible. 

(iv) If a Bayes’ Rule has constant risk, then it is Mini-max. 

(v) If a Mini-max Rule corresponds to a unique Bayes’ Rule, then 

this Mini-max Rule is also unique. 
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Bayes Estimators – Some Exact Results 

• As long as the prior p.d.f., 𝑝(𝜽) is “proper”, the corresponding Bayes’ 

estimator is Admissible. 

• Bayesians are not really interested in the properties of their estimators in a 

“repeated sampling” situation. 

• Interested in behaviour that’s conditional on the data in the current sample. 

• Contrast “Bayesian Posterior Probability Intervals” (or, “Bayesian Credible 

Intervals”) with “Confidence Intervals”. 

• However, note that Bayes’ estimators may be biased or unbiased in finite 

samples. 
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Bayes Estimators – Some Asymptotic Results 

• Intuitively, we’d expect that as the sample size grows, the Likelihood 

Function will dominate the Prior. 

• In the limit, we might expect that Bayes’ estimators will converge to 

MLE’s. 

• An exception will be if the prior is “totally dogmatic” (degenerate). 

• So, not surprisingly, Bayes estimators are weakly consistent. 

• The principal asymptotic result associated with Bayes’ estimators is the so-

called “Bernstein-von Mises Theorem”. 
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              Sergei Bernstein                                         Richard von Mises 

                (1880 – 1968)                                              (1883 – 1953)  
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Theorem: 

Unless 𝑝(𝜽) is degenerate, lim
𝑛→∞

{𝑝(𝜽|𝒚)} = 𝑁[�̃�, 𝐼(�̃�)−1] ; where �̃� is the MLE 

of 𝜽. 

 

Proof:                   (for the scalar case) 

From Bayes’ Theorem – 

𝑝(𝜃|𝒚) ∝ 𝑝(𝜃)𝐿(𝜃|𝒚) = 𝑝(𝜃)𝑒𝑥𝑝{𝑙𝑜𝑔𝐿(𝜃|𝒚)} 

• Take a Taylor’s series expansion for 𝑝(𝜃) about the MLE, �̃� – 

𝑝(𝜃) = 𝑝(�̃�) + (𝜃 − �̃�)𝑝′(�̃�) +
1

2
(𝜃 − �̃�)

𝟐
𝑝′′(�̃�) + ⋯ 

= 𝑝(�̃�)[1 + (𝜃 − �̃�)
𝑝′(�̃�)

𝑝(�̃�)
+
1

2
(𝜃 − �̃�)

𝟐 𝑝′′(�̃�)

𝑝(�̃�)
+ ⋯ ] 
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                       ∝ [1 + (𝜃 − �̃�)
𝑝′(�̃�)

𝑝(�̃�)
+
1

2
(𝜃 − �̃�)

𝟐 𝑝′′(�̃�)

𝑝(�̃�)
+ ⋯ ] 

• Let 𝑙(𝜃) = 𝑙𝑜𝑔𝐿(𝜃). 

 

• 𝑒𝑥𝑝{𝑙𝑜𝑔𝐿(𝜃|𝒚)} = 𝑒𝑥𝑝{𝑙(𝜃)}   

                           = 𝑒𝑥𝑝{𝑙(�̃�) + (𝜃 − �̃�)𝑙′(�̃�) +
1

2
(𝜃 − �̃�)

𝟐
𝑙′′(�̃�) + ⋯ } 

• Note that 𝑙′(�̃�) = 0. 

• So,  

𝑒𝑥𝑝{𝑙(𝜃)} = 𝑒𝑥𝑝{𝑙(�̃�)} 𝑒𝑥𝑝 {
1

2
(𝜃 − �̃�)

𝟐
𝑙"(�̃�)} 𝑒𝑥𝑝 {

1

6
(𝜃 − �̃�)

𝟑
𝑙′′′(�̃�)}… .   
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Or, 

𝑒𝑥𝑝{𝑙(𝜃)} ∝ 𝑒𝑥𝑝 {
1

2
(𝜃 − �̃�)

𝟐
𝑙"(�̃�)} 𝑒𝑥𝑝 {

1

6
(𝜃 − �̃�)

𝟑
𝑙′′′(�̃�)}…. 

• Expand this exponential: 

𝑒𝑥𝑝{𝑙(𝜃)} ∝ 𝑒𝑥𝑝 {
1

2
(𝜃 − �̃�)

𝟐
𝑙"(�̃�)} [1 + {

1

6
(𝜃 − �̃�)

𝟑
𝑙′′′(�̃�)} + ⋯]. 

• The leading term is 

𝑒𝑥𝑝{𝑙(𝜃)} ∝ e𝑥𝑝 {
1

2
(𝜃 − �̃�)

𝟐
𝑙"(�̃�)} 

• This will apply for large n 

 

In this case, 

    𝑝(𝜃|𝒚) ∝ 𝑒𝑥𝑝{𝑙(𝜃)}𝑝(𝜃) 
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                 ∝ 𝑒𝑥𝑝 {
1

2
(𝜃 − �̃�)

𝟐
𝑙"(�̃�)} [1 + (𝜃 − �̃�)

𝑝′(�̃�)

𝑝(�̃�)
+
1

2
(𝜃 − �̃�)

𝟐 𝑝′′(�̃�)

𝑝(�̃�)
+⋯] 

If n is large enough – 

𝑝(𝜃|𝒚) ∝ 𝑒𝑥𝑝 {
1

2
(𝜃 − �̃�)

𝟐
𝑙"(�̃�)} . 

This is the kernel of a Normal density, centered at �̃�, and with a variance of 

−1/𝑙"(�̃�). 

• Asymptotically, our Bayes estimator under a zero-one Loss Function will 

coincide with the MLE. 
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Bayesian Interval Estimation 

• Consider the Bayesian counterpart to a Confidence Interval. 

• Totally different interpretation – nothing to do with repeated sampling. 

• An interval of the form, (𝜃𝐿 , 𝜃𝑈), such that 𝑃𝑟. [(𝜃𝐿 < 𝜃 < 𝜃𝑈)|𝒚] = 𝑝% , 

is a  𝑝% Bayesian Posterior Probability Interval, or a 𝑝% Bayesian Credible 

Interval for 𝜃. 

• Obvious extension to the case where 𝜽 is a vector: a  𝑝% Bayesian Posterior 

Probability Region, or a 𝑝% Bayesian Credible Region for 𝜽. 
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• When we construct a (frequentist) Confidence Interval or Region, we 

usually try to make the interval as short (small) as possible for the desired 

confidence level. 

• We can also consider constructing an “optimal” Bayesian Posterior 

Probability Region, as follows: 

Given a posterior density function, 𝑝(𝜽 | 𝒚), let A be a subset of the 

parameter space such that: 

(i) 𝑃𝑟. [𝜽 ∈ 𝐴 | 𝒚] = (1 − 𝛼) 

(ii) For all 𝜽𝟏 ∈ 𝐴 and 𝜽𝟐 ∉ 𝐴, 𝑝(𝜽𝟏 | 𝒚) ≥ 𝑝(𝜽𝟐 | 𝒚) 

then A is a Highest Posterior Density (HPD) Region of content (1 − 𝛼) for 𝜽. 
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• For a given 𝛼, the HPD has the smallest possible volume. 

• If 𝑝(𝜽 | 𝒚) is not uniform over every region of the parameter space, then the 

HPD is unique. 

• A BPI (BCI) can be used in obvious way to test simple null hypotheses, just 

as a C.I. is used for this purpose by non-Bayesians. 

• See more of this later in the course. 
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[a1  ,  a2]            [b1  ,  b2] ∪ [b3  ,  b4]          [c1  ,  c2]             

Posterior p.d.f. 
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Example 1 

𝑦𝑖~𝑁[𝜇 , 𝜎0
2]      ;      𝜎0

2     is known 

• Before we see the sample of data, we have prior beliefs about value of 𝜇: 

𝑝(𝜇) = 𝑝(𝜇|𝜎0
2)~𝑁[�̅� , �̅�] 

That is, 

𝑝(𝜇) ∝ 𝑒𝑥𝑝 {−
1

2�̅�
(𝜇 − �̅�)2}  

• Now we take a random sample of data: 

𝒚 = (𝑦1, 𝑦2, …… , 𝑦𝑛) 

• The joint data density (i.e., the Likelihood Function) is: 
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𝑝(𝒚|𝜇, 𝜎0
2) = 𝐿(𝜇|𝒚, 𝜎0

2) ∝  𝑒𝑥𝑝 {−
1

2𝜎0
2∑(𝑦𝑖 − 𝜇)

2

𝑛

𝑖=1

} 

• Bayes’ Theorem: 

 

𝑝(𝜇|𝒚, 𝜎0
2) ∝ 𝑝(𝜇|𝜎0

2)𝑝(𝒚|𝜇, 𝜎0
2) 

• So,  

𝑝(𝜇|𝒚, 𝜎0
2) ∝ 𝑒𝑥𝑝

{
 
 

 
 

−
1

2

[
 
 
 
 

(
1

�̅�
+
𝑛

𝜎0
2)(𝜇 −

(
�̅�
�̅�
+
𝑛�̅�
𝜎0
2)

(
1
�̅�
+
𝑛
𝜎0
2)
)

2

]
 
 
 
 

}
 
 

 
 

 

 

• The Posterior distribution for μ is 𝑁[�̿�, �̿�], where 
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�̿� =
((

1

�̅� 
)𝜇 ̅+(

𝑛

𝜎0
2)�̅�)

(
1

�̅�
+
𝑛

𝜎0
2)

        

1

�̿�
= (

1

�̅�
+
𝑛

𝜎0
2) 

 

• So, a 95% HPD interval for 𝜇 is obtained as follows – 

 

𝑃𝑟. [−1.96 < 𝑍 < 1.96] = 95% 

 

𝑃𝑟. [−1.96 <
(𝜇 − �̿�)

√�̿�
< 1.96 | 𝒚] = 95% 

 

𝑃𝑟. [�̿� − 1.96√�̿� < 𝜇 <  �̿� + 1.96√�̿� | 𝒚] = 95% 
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• The 95% HPD interval for 𝜇 is the interval 

 

  { �̿� − 1.96√�̿�   ;   �̿� + 1.96√�̿� } 

 

• The (posterior) probability that 𝜇 lies in this interval is 95%. 

 

Example 2 

• Random sample of n observations from an Exponential distribution , so  

𝑝(𝑦𝑖  |𝜃) = 𝜃exp (−𝜃𝑦𝑖)   ;     𝜃 > 0              

• Prior density for 𝜃 is chosen to be Gamma (α , β), where 𝛼, 𝛽 > 0: 

𝑝(𝜃) ∝ 𝜃𝛼−1exp (−
𝜃

𝛽
) 

Shape         Scale 
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• So, the likelihood function is 

𝑝(𝒚 |𝜃) =  𝜃𝑛exp (−𝑛�̅�𝜃) 

• Bayes’ Theorem: 

𝑝(𝜃 | 𝒚) ∝  𝜃𝑛+𝛼−1exp {−(𝑛�̅� + 𝛽−1)𝜃} 

• This is posterior is Gamma, with parameters (𝑛 + 𝛼) and 1/ (𝑛�̅� + 𝛽−1). 

• Another example of Natural Conjugacy. 

• Bayes point estimators of  𝜃 

(i) Quadratic Loss:     𝜃 = (𝑛 + 𝛼)/  (𝑛�̅� + 𝛽−1). 

(ii) Zero-One Loss:    𝜃 = (𝑛 + 𝛼 − 1)/  (𝑛�̅� + 𝛽−1). 
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• Suppose that 𝛼 = 2  and  𝛽 = 4 .  

• If n = 2, and �̅� = 0.125 , what is the posterior probability of the BCI ,  

[3.49 , 15.5]? 

• In this case the posterior density is Gamma [4 , 2]. 

• This is the same as a Chi-Square density with 8 degrees of freedom. 

• Because Gamma [(v / 2)  ,  2] = Chi-Square (v) 

• 𝑃𝑟. [𝜒(8)
2 < 3.49] = 0.10, and . [𝜒(8)

2 < 15.5] = 0.95 . 

• So, the posterior probability for this BCI is (0.95 – 0.10) = 0.85. 

• What are the Bayes point estimates of  𝜃 under quadratic and 0-1 losses? 


