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Bayesian Econometrics

3. Properties of Bayes Estimators & Tests

(1) Some general results for Bayes Decision Rules.
(i) Bayes estimators - some exact results.
(ii1) Bayes estimators - some asymptotic (large-n) results.

(iv) Bayesian interval estimation.



General Results for Bayes Decision Rules

e Recall - Bayes rules and MEL rules (generally equivalent)
o Minimum Expected Loss (MEL) Rule:

"Act so as to Minimize (posterior) Expected Loss"

jﬂ L(6,0)p(0]y)do

e Bayes' Rule:
"Act so as to Minimize Average Risk."
(Often called the "Bayes' Risk"):
r(8) = [R(6,0)p(0)do
e The action will involve selecting an Estimator, or rejecting some

Hypothesis, for instance.



e We have the following general results —

(1)
(1)

(iii)

(v)
(V)

A Mini-max Rule always exists.

Any decision rule that is Admissible must be a Bayes” Rule with
respect to some prior distribution.

If the prior distribution is “proper”, every Bayes’ Rule Is
Admissible.

If a Bayes’ Rule has constant risk, then it is Mini-max.

If a Mini-max Rule corresponds to a unigue Bayes’ Rule, then

this Mini-max Rule is also unique.



Bayes Estimators — Some Exact Results

e As long as the prior p.d.f., p(0) is “proper”, the corresponding Bayes’
estimator is Admissible.

e Bayesians are not really interested in the properties of their estimators in a
“repeated sampling” situation.

e Interested in behaviour that’s conditional on the data in the current sample.

e Contrast “Bayesian Posterior Probability Intervals™ (or, “Bayesian Credible
Intervals™) with “Confidence Intervals”.

e However, note that Bayes’ estimators may be biased or unbiased in finite

samples.



Bayes Estimators — Some Asymptotic Results
o Intuitively, we’d expect that as the sample size grows, the Likelihood

Function will dominate the Prior.

e In the limit, we might expect that Bayes’ estimators will converge to

MLE’s.
e An exception will be if the prior is “totally dogmatic” (degenerate).
e S0, not surprisingly, Bayes estimators are weakly consistent.

e The principal asymptotic result associated with Bayes’ estimators is the so-

called “Bernstein-von Mises Theorem”.



Sergei Bernstein Richard von Mises

(1880 — 1968) (1883 — 1953)



Theorem:

Unless p(0) is degenerate, lim {p(@|y)} = N[0,1(0)1] ; where 0 is the MLE
Nn—>00
of 4.

Proof: (for the scalar case)

From Bayes’ Theorem —

p(0ly) < p(0)L(8]y) = p(0)exptlogL(6]y)}
e Take a Taylor’s series expansion for p(8) about the MLE, 6 —

n(©) = p(8) + (6 — 6)p' () + % (6 - 5)’p"(5) + -

@)1+ (0-8)P D+ 20—y
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o Letl(0) =logL(0).

e exp{logL(8]y)} = exp{l(6)}
= exp{l() + (0 - 8)1'(8) +- (6 — )1"(8) + -}

e Note that I'(§) = 0.

e SO,

~ 1 ~ ~ 1 ~ ~
exp(L(0)} = exp{1(0)} exp(5 (6 — 0) 1'(8)} exp(z (6 - ) 1"(9)} ...



Or,

1 ~ ~ 1 ~ ~
exp{l(6)} «x exp{z (0 - H)ZZ"(H)} exp{g (0 - 9)31’”(9)}

e Expand this exponential:

1, 2. 1, s
exp(L(0)} o exp(; (6 — 8) 1"()} [1+(= (6 - 8) 1" (8)} + -]

e The leading termis

1, 2
exp{L(0)} « exp(5 (6 - 0)"1'()}

e This will apply for large n

In this case,

p(8ly) < exp{l(8)}p(0)



«exp{3(0-0)r@)}[1+(0-0) L +2(0-0) ) + -

p(6) p(6)

If nis large enough —
p(0|y) < exp {% (0 - é)zl"(é)} .

This is the kernel of a Normal density, centered at 8, and with a variance of
—-1/1"(9).

o Asymptotically, our Bayes estimator under a zero-one Loss Function will
coincide with the MLE.

|
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Bayesian Interval Estimation

e Consider the Bayesian counterpart to a Confidence Interval.

o Totally different interpretation — nothing to do with repeated sampling.

e An interval of the form, (6,,6,), such that Pr.[(6, < 0 < 0y)|y] = p% ,
ISa p% Bayesian Posterior Probability Interval, or a p% Bayesian Credible
Interval for 6.

e Obvious extension to the case where 8 is a vector: a p% Bayesian Posterior

Probability Region, or a p% Bayesian Credible Region for 6.
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e \When we construct a (frequentist) Confidence Interval or Region, we
usually try to make the interval as short (small) as possible for the desired
confidence level.

e We can also consider constructing an “optimal” Bayesian Posterior
Probability Region, as follows:

Given a posterior density function, p(@ | y), let A be a subset of the
parameter space such that:
(i) Pr.[@eAdAlyl=>0-a)

(i) Forall@; €eAand B, ¢ A, p(041|y) =p(0,|y)

then A is a Highest Posterior Density (HPD) Region of content (1 — «) for 6.
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e For agiven a, the HPD has the smallest possible volume.

e If p(0 | y) is not uniform over every region of the parameter space, then the

HPD is unique.

e A BPI (BCI) can be used in obvious way to test simple null hypotheses, just

as a C.l. is used for this purpose by non-Bayesians.

e See more of this later in the course.
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Example 1

yi~N[u,0f] ; of isknown

e Before we see the sample of data, we have prior beliefs about value of u:

p(u) = p(u|o§)~N[iz, 7]

That is,
1
p(u) < exp {— > (u— 1«7)2}

e Now we take a random sample of data:

Y= 1 Y2) e Vn)
e The joint data density (i.e., the Likelihood Function) is:
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n
1
p(y|p, 08) = L(uly,of) « exp {—ﬁim — u)z}
0931

e Bayes’ Theorem:

p(uly, o8) « p(ulod)p(y|u, o)

e SO,

p(uly, a§) o« exp s -5
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e The Posterior distribution for uis N[, v], where
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e S0, a 95% HPD interval for u is obtained as follows —

Pr.[-196 < Z < 1.96] = 95%

(u— i)

Pr.|—1.96 <
NG

< 1.96| y] = 95%

Pr.[ﬁ—1.96 T<u< ﬁ+1.96\/%|y]=95%
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e The 95% HPD interval for u is the interval

(fi—196VD ; i+ 1.96V7}

e The (posterior) probability that u lies in this interval is 95%.

Example 2

e Random sample of n observations from an Exponential distribution , so
p(y; |0) = Oexp(—0y;) ; 6>0

e Prior density for 8 is chosen to be Gamma (a , £), where a, 5 > 0:

p(0) «x 8% texp(— %) f \

Shape Scale
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e S0, the likelihood function is
p(¥ 10) = 6"exp(—nyb)
e Bayes’ Theorem:
p(0|y) < 6" exp{—(ny + )0}
e This is posterior is Gamma, with parameters (n + «) and 1/(ny + ~1).
e Another example of Natural Conjugacy.
e Bayes point estimators of 6
()  Quadratic Loss: 6=mn+a) (y+pL7D).

(i)  Zero-One Loss: O=n+a—-1)/(ny+ LY.
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e Supposethata =2 and S =4.
e Ifn=2and y = 0.125, what is the posterior probability of the BCI ,

[3.49 , 15.5]?

In this case the posterior density is Gamma [4 , 2].

This is the same as a Chi-Square density with 8 degrees of freedom.

Because Gamma [(v/2) , 2] = Chi-Square (V)

Pr.[x() < 3.49] = 0.10,and . | x(s) < 15.5] = 0.95 .

So, the posterior probability for this BCl is (0.95 — 0.10) = 0.85.

e \What are the Bayes point estimates of 8 under quadratic and 0-1 losses?
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