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Topic 3 

Bayesian Econometrics 
4. Bayesian Inference for the Linear Regression Model 

 
Arnold Zellner (1927 -2010) 
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          ;        	~	 0	,      

            ;    X is non-random 

 Consider two situations: 

(i) “Diffuse” Prior 

(ii) Natural-Conjugate Prior 

 

 Likelihood Function: 

 , 	| 	| , ∝ exp	 ′  

 Re-write the Likelihood function – 

Let      ′   . 

Then: 
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′  

Note that     0 

 So,  

′ ′ ′  

′ ′  

 Here,     and /  ;  where       . 

 So, the Likelihood function becomes: 

, 	| ∝ exp	
1
2  

(i) Diffuse Prior: 

 ,  
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 ∝       ;     ∞ ∞   ;      1, 2, …… ,  

 ∝ 1/                  ;      0 ∞ 

 So,    , ∝ 1/  

 Apply Bayes’ Theorem – 

, 	| ∝ exp	
1
2  

 First, let’s condition on , and see what we can observe. 

 Then we’ll marginalize and focus just on the  vector. 

 Conditioning: 

 | , ∝ exp	  
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∝ exp
1
2 exp	

1
2  

∝ exp	
1
2  

 So, the Conditional Posterior is multivariate Normal with a mean of  and a 

covariance matrix of . 

 Recall that  is the MLE for the coefficient vector (= OLS). 

 So,  is the Bayes estimator under various symmetric Loss Functions. 

 Marginalizing: 

| , 	|  
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∝ exp	
1
2  

 Change of variables:    

/  

 So:  	

  ; /2   ; /  

 

 	| ∝ exp	  

∝ / / /2  
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∝
1
2

1 1
 

∝ / 	 	 /  

Kernel of a Gamma density with shape = (n / 2), scale = ½ 

The integral = Γ /        It’s a finite constant. 

 	| ∝ 	 	 /  

 This is the kernel of a Multivariate Student-t density. 

 Specifically, it’s MVST   		; 	  . 
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 Once again,  is the Bayes’ estimator under various symmetric Loss 

Functions. 

 The marginal densities of a MVST density are univariate Student-t 

densities, so the Marginal Posterior p.d.f. for each  is Student-t, with a 

mean (= median = mode) equal to . 

 Similarly, we can obtain the Marginal Posterior p.d.f. for  : 

	|	 , 	|  

… , 	| … 	  

 It turns out that 
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	|	 	∝ 	 /2  

 This is the density for an Inverted Gamma distribution. 

 It has the following features – 

(i) Single mode at 
/

 . 

(ii) 	|	 Γ / Γ         ;   1 . 

(iii) . 	|	 	|	       ;   2 . 

(iv) 	|	
/

/ . 	|	           

;   2 . 
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 Generally, the Skewness is positive. 

 Under our standard Loss Functions, the Bayes estimator of  differs from 

the OLS – associated estimator  (= s). 

 However, recall that , so  → ∞  when  → ∞ . 

 So,   lim →      . 

 Also,     	 Γ 1 Γ / Γ  , 

So,   lim → 	|      . 
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(ii) Natural Conjugate Prior: 

 Given the Normal Likelihood function, the N.C. prior is   

 , 	|  

where 

	|    is a (conditional) Multivariate Normal [ ̅ 		; 	 	] 

  is  Inverted Gamma  (w , c) 

 	| ∝ | | / ′     ;     A  is  p.d.s. 

∝ / 2       ;     	, 0 

 Choose values of w, c,  and A to reflect our prior beliefs. 
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 Recall that the Likelihood Function is 

 , 	| 	| , ∝ exp	 ′  

 Apply Bayes’ Theorem: 

, 	| ∝ , , 	|  

 So, , 	| ∝ 

1
2 ′  

 Define:    ′  

 2 ′  

 This is Quadratic in the  vector – we’ll “complete the square”. 
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 ∗ ′ 	 ∗ ′ ∗ ∗ 	 

1
4 ′ ∗  

 So, 

′

′ 	 ′ ′  

 Define:   ′  . 
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 So,  , 	| ∝

																															 ′ ′ ′  

∝
1
2 ′ ′  

where:      

′ ′  

 As before, let’s first condition on , and see what we can observe. 

 Then we’ll marginalize and focus just on the  vector. 
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Conditioning: 

 The conditional posterior p.d.f. for  should be Multivariate Normal as a 

consequence of the Natural Conjugacy of the prior. 

 	| , ∝ ′  

 This is MVN 	 	, 	  . 

Marginalizing: 

 	| , |  

 In the case of the “Diffuse” Prior, we evaluated the integral: 

exp	
1
2  
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 We showed that it was proportional to 

/  

 Here, we need to integrate  

1
2 ′ ′  

with respect to  . 

 Immediately, then: 

	| ∝ ′ ′
/

 

 This is the kernel for the density of a Multivariate Student-t distribution. 
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 	|   is   MVST 		; 			 ′ / 2  

 So, the Bayes estimator of , under our standard Loss Functions, is 

′  

 Recall that the marginal densities of a MVST are univariate Student-t, 

centered at the  elements. 

 If we want to draw inferences about , we can obtain the marginal posterior 

p.d.f. for this parameter. Conjugacy tells us that it will be Inverted Gamma. 

 	|	 , 	|	  

∝
′
2  
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 This is indeed the kernel of an Inverted Gamma density. 

 Now, let’s note some interesting and important features of the N.C. Bayes 

estimator of :   

′         ;   doesn’t depend on w or c 

(i) A is positive-definite, so the estimator is defined even if rank(X) < k. 

(ii) How does this relate to the “problem” of Multicollinearity? 

(iii) We can write 	

1 1
′

1 1
 

(iv)  is a matrix weighted average of  and  (= OLS = MLE). 
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(v) Individual elements of  need not lie “between” the corresponding 

individual elements of  and . 

(vi) If  then   . (This makes intuitive sense.) 

(vii) Some non-Bayesian estimators of  are can be interpreted as special 

cases of this N.C. Bayes estimator: 

 The “Ridge” estimator: 

    

    and 0  .  Why “shrink” the estimator towards zero? 

 James-Stein  & Theil’s “mixed” regression estimators are other examples. 


