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David Giles 

Bayesian Econometrics 

 

5. Bayesian Computation 

• Historically, the computational "cost" of Bayesian methods greatly limited 

their application. 

• For instance, by Bayes' Theorem: 

𝑝(𝜽 |𝒚) = 𝑝(𝜽)𝑝(𝒚 |𝜽)/𝑝(𝒚) ∝ 𝑝(𝜽)𝑝(𝒚 |𝜽) 

• The proportionality constant is 

𝑝(𝒚) = ∭ 𝑝(𝜽)𝑝(𝒚 |𝜽)𝑑𝜃1 … 𝑑𝜃𝑘

∞

−∞
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• Unless this integration can be performed analytically, it will have to be done 

numerically, or an approximation will have to be used. 

• Natural-Conjugate priors are not always available, and not always 

appropriate. 

• If k > 3 (or so) conventional numerical "quadrature" (e.g., extensions of 

Simpson's rule), will be infeasible in terms of computational time. 

• Same issue arises if we want to obtain 𝜽̂ = 𝐸[𝜽 |𝒚] , or if we want to 

marginalize the joint posterior p.d.f.: 

   𝑝(𝜽 1|𝒚) = ∭ 𝑝(𝜽1, 𝜽2 |𝒚)𝑑𝜽2
∞

−∞
 



3 
 

• Starting in the late 1970’s / early 1980's, several methods for dealing with 

this issue were considered. 

• These involved approximating the required integrals. 

(i) Laplace integration                      (analytic) 

(ii) Monte Carlo integration ("importance sampling") (simulation) 

• More recently, the big breakthroughs have come by not actually attempting 

to evaluate the integrals at all! 

• Essentially simulate the densities that we're interested in - e.g., a marginal 

posterior density. 
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• The family of methods that we'll explore is called Markov Chain Monte 

Carlo (MCMC; or (MC)2) . 

• We won't go into the mathematics of Markov Chains in any detail. 

• Main group of MCMC methods we'll be concerned with is the so-called 

Metropolis-Hastings methodology. 

• A special case of M-H is the so-called Gibbs Sampler. 

• We'll start with the latter - it's easier to deal with. 

• It can be applied to Bayesian problems of high dimension. 

• However, may require some ingenuity, and may not be the most efficient 

method to use. 
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The Gibbs Sampler 

• Why the name? Who was Gibbs? 

 

Josiah Willard Gibbs (1839 – 1903)  

Co-creator of statistical mechanics; creator of vector calculus; ….. 
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• Name used by Geman & Geman, 1984: "Stochastic Relaxation, Gibbs 

Distributions, and the Bayesian Restoration of Images". 

• Let's illustrate the main steps for the Gibbs sampler. 

• Remember, we want to obtain the marginal posterior densities for some 

parameters of interest. 

• Once we have theses p.d.f.'s it will turn out to be a simple matter to use 

them to construct Bayes estimators, and BCI's, etc. 

• Applying Bayes' Theorem, we have the kernel for the joint posterior 

p.d.f. for all of the parameters: 

                 𝑝(𝜽 |𝒚) ∝ 𝑝(𝜽)𝑝(𝒚 |𝜽) 
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• For simplicity, suppose that k = 2. (In practice, k can be several 

thousands.) 

• So,       𝑝(𝜃1, 𝜃2 |𝒚) ∝ 𝑝(𝜃1, 𝜃2)𝑝(𝒚 |𝜃1, 𝜃2) . 

• Suppose that the two conditional posterior densities, 𝑝(𝜃1|𝜃2, 𝒚) and  

𝑝(𝜃2|𝜃1, 𝒚) are of some (generally different) recognizable forms. 

• (Actually, the requirements are even weaker than this, as we'll see.) 

• Then we can take a random drawing from each of 𝑝(𝜃1|𝜃2, 𝒚) and  

𝑝(𝜃2|𝜃1, 𝒚). 

• The Gibbs Sampler then proceeds as follows: 
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(i)  𝜃1
(1)

                ←             𝑝(𝜃1 |𝜃2
(0)

, 𝒚) 

(ii)        𝜃2
(1)

                ←             𝑝(𝜃2 |𝜃1
(1)

, 𝒚) 

(iii)   𝜃1
(2)

                ←             𝑝(𝜃1 |𝜃2
(1)

, 𝒚) 

(iv)   𝜃2
(2)

                ←             𝑝(𝜃2 |𝜃1
(2)

, 𝒚) 

etc............. 

• So, this gives us a string of thousands of drawings from the two 

conditional posterior p.d.f.'s for the 2 parameters. 

• Continuing this process long enough, eventually the drawings will 

actually come from the marginal posterior p.d.f.'s for the parameters! 
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• We can then continue to keep drawing values from each distribution 

and we'll end up with thousands of simulated values. 

• We'll need to discard  lots of early values obtained by this process, as 

they'll actually be from the conditional posterior p.d.f.'s, and not from 

the marginal posterior p.d.f.'s 

• This is referred to as the "Burn in". 

• Various tools available to help us decide the length of the Burn in. 

• Gibbs sampler lends itself to parallel processing - run many strings 

independently on different processors and then combine results. 

• Exactly the same approach applies when we have more parameters. 
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• For instance, suppose that k = 4: 

(i)  𝜃1
(1)

         ←             𝑝(𝜃1 |𝜃2
(0)

, 𝜃3
(0)

, 𝜃4
(0)

, 𝒚) 

(ii)        𝜃2
(1)

         ←             𝑝(𝜃2 |𝜃1
(1)

, 𝜃3
(0)

, 𝜃4
(0)

, 𝒚,) 

(iii)  𝜃3
(1)

        ←             𝑝(𝜃3 |𝜃1
(1)

, 𝜃2
(1)

, 𝜃4
(0)

, 𝒚) 

(iv)        𝜃4
(1)

         ←            𝑝(𝜃4 |𝜃1
(1)

, 𝜃2
(1)

, 𝜃3
(1)

, 𝒚) 

(v)  𝜃1
(2)

         ←             𝑝(𝜃1 |𝜃2
(1)

, 𝜃3
(1)

, 𝜃4
(1)

, 𝒚) 

(vi)  𝜃2
(2)

         ←             𝑝(𝜃2 |𝜃1
(2)

, 𝜃3
(1)

, 𝜃4
(1)

, 𝒚) 

(vii)  𝜃3
(2)

         ←             𝑝(𝜃3 |𝜃1
(2)

, 𝜃2
(2)

, 𝜃4
(1)

, 𝒚) 

(viii) 𝜃4
(2)

         ←             𝑝(𝜃4 |𝜃1
(2)

, 𝜃2
(2)

, 𝜃3
(2)

, 𝒚)       etc............. 
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Example 1: 

• Let's see if this works, by considering a situation where we know the 

answer. 

• Note - this won't be a Bayesian example. The purpose is just to see how the 

Gibbs sampler moves from the conditional densities to the marginal 

densities. 

• Suppose we have a random vector, (
𝑦1

𝑦2
) ~ 𝑁 [(

𝜇1

𝜇2
) , Σ], where 

Σ = [
𝜎1

2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ] 

• It's easy to show that: 
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(i)        𝑝(𝑦1 | 𝑦2) ~ 𝑁 [{𝜇1 + (
𝜌𝜎1

𝜎2
) (𝑦2 − 𝜇2)}  , 𝜎1

2(1 − 𝜌2)] 

(ii)         𝑝(𝑦2 | 𝑦1) ~ 𝑁 [{𝜇2 + (
𝜌𝜎2

𝜎1
) (𝑦1 − 𝜇1)}  , 𝜎2

2(1 − 𝜌2)] 

(iii)       𝑝(𝑦1) ~ 𝑁[𝜇1 , 𝜎1
2] 

(iv)       𝑝(𝑦2) ~ 𝑁[𝜇2 , 𝜎2
2] 

• We'll consider the case where 𝜇1 = 𝜇2 = 0  ;  𝜎1 = 𝜎2 = 1 .  

• The Gibbs sampler will involve the following steps: 

(i) Sample 𝑦1  from 𝑝(𝑦1 | 𝑦2)    ;     (ii) Sample 𝑦2  from 𝑝(𝑦2 | 𝑦1) 

(iii) Keep repeating steps (i) and (ii), lots of times. 
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• Eventually, 𝑝(𝑦1 |𝑦2)  →   𝑝(𝑦1),  and  𝑝(𝑦2 |𝑦1)  →   𝑝(𝑦2),   

• We'll then continue until we have a large sample of drawings from these 

two marginal p.d.f.'s. 

• This will give us empirical p.d.f.'s of the form that we want, without doing 

any integration of any sort! 

• We'll have to assign initial values, and decide on the length of the "Burn 

in". 

• Recall - in this illustration we actually know what the marginal p.d.f.'s look 

like, so we'll know if the Gibbs sampler is really working. 

• If you're convinced, then we can move to some real Bayesian examples. 
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• Code to do this using R: 

library(tseries) 

 

set.seed(123) 

nrep<- 100000                 # Total number of MC replications 

nb<- 2000                         # Number of observations for the "Burn-in" 

yy1<- array(,nrep) 

yy2<- array(,nrep) 

 

rho<- 0.5                         # Set the correlation between Y1 and Y2 

sd<- sqrt(1-rho^2) 

y2<- rnorm(1,0,sd)        # Initialize Y2 
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for (i in 1:nrep) {            

y1<-  rnorm(1,0,sd)+rho*y2 

y2<-  rnorm(1,0,sd)+rho*y1 

yy1[i]<- y1                                                     

yy2[i]<- y2 

} 

                              

                 # Drop the first "nb" repetitions for the "Burn-in" 

nb1<- nb+1 

yy1b<-yy1[nb1:nrep] 

yy2b<- yy2[nb1:nrep] 

    

  

THE GIBBS 

SAMPLER 
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# Plot the “Trace” results for the 2 p.d.f.’s 

plot(yy1b, col=2, main="MCMC for Bivariate Normal - Part 1", xlab="Repetitions", 

ylab="Y1") 

abline(h=3,lty=2) 

abline(h=-3,lty=2) 

plot(yy2b, col=4, main="MCMC for Bivariate Normal - Part 2", xlab="Repetitions", 

ylab="Y2") 

abline(h=3,lty=2) 

abline(h=-3,lty=2) 

    # Determine the moments of the Marginal Posterior p.d.f.’s 

summary(yy1b) 

var(yy1b) 

summary(yy2b) 

var(yy2b) 
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             # Plot the histograms for the 2 marginal posterior p.d.f.’s 

hist(yy1b, prob=T,col=2, main="MCMC for Bivariate Normal - Part 1", xlab="Y1", 

ylab="Marginal PDF for Y1") 

hist (yy2b,prob=T,col=4, main="MCMC for Bivariate Normal - Part 2", xlab="Y2",      

ylab="Marginal PDF for Y2") 

# Check for Normality of the marginal posteriors 

 

qqnorm(yy1b)                                   # Q-Q Plots 

qqline(yy1b,col=2) 

qqnorm(yy2b) 

qqline(yy2b,col=4) 

 

jarque.bera.test(yy1b)  ;   jarque.bera.test(yy2b) 
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23 
 

 

Q-Q Plot for 𝑝(𝑦1) 
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Q-Q Plot for 𝑝(𝑦2) 
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Example 2: 

• Let's consider another example where we know the answer. 

• However, this one is a Bayesian example. 

• We want to estimate the 2 unknown parameters of a Normal population - 

the mean, μ, and the precision, τ  (= 1 / σ2). 

• Diffuse (Jeffrey's) prior p.d.f.: 𝑝(𝜇, 𝜏) = 𝑝(𝜇) 𝑝(𝜏) ∝ 1/𝜏 

• Likelihood function:   

𝑝(𝒚 |𝜇, 𝜏) ∝ 𝜏𝑛/2𝑒𝑥𝑝 {−𝜏/2 ∑(𝑦𝑖 − 𝜇)2

𝑛

𝑖=1

} 

• Bayes' Theorem: 
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𝑝(𝜇, 𝜏 |𝒚) ∝ 𝜏
𝑛
2

−1𝑒𝑥𝑝 {−(
𝜏

2
) ∑(𝑦𝑖 − 𝜇)2

𝑛

𝑖=1

} 

• Consider the conditional posterior densities. 

• 𝑝(𝜇 |𝜏, 𝒚) ∝ 𝑒𝑥𝑝 {−(
𝜏

2
) ∑ (𝑦𝑖 − 𝜇)2𝑛

𝑖=1 } 

∝ 𝑒𝑥𝑝 {−(
𝜏

2
)[𝑣𝑠2 + 𝑛(𝑦̅ − 𝜇)2]} 

∝ 𝑒𝑥𝑝 {−(
𝑛𝜏

2
)(𝜇 − 𝑦̅)2} 

• This is the kernel of a 𝑁[𝑦̅ , (𝑛𝜏)−1] density. 

• Similarly, we can get the conditional posterior for 𝜏 : 
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𝑝(𝜏 |𝜇, 𝒚) ∝ 𝜏
𝑛
2

−1exp {−𝜏 ((
1

2
) ∑(𝑦𝑖 − 𝜇)2

𝑛

𝑖=1

)} 

• This is the kernel of a Gamma density, Γ(𝑟, 𝜆), with shape & scale 

parameters, 𝑟 = 𝑛/2  ;  𝜆 = [(
1

2
) ∑ (𝑦𝑖 − 𝜇)2𝑛

𝑖=1 ]
−1

. 

• Now, in fact we know that for this problem, the marginal posterior for μ is 

Student –t, centered at 𝑦̅; and the marginal posterior for τ is Gamma. 

• Suppose that we don't know this, and we decide to use the Gibbs sampler. 

• Let's see what we get, with n = 10. 

• Here is the R code: 
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library(moments) 

set.seed(123) 

nrep<- 105000                                            # Total number of MC replications 

nb<- 5000                                                    # Number of observations for the "Burn-in" 

n<- 10                                                          # Sample size 

tau<- array(,nrep)                                     # Set up vectors for storing results 

mu<- array(,nrep) 

 

y<- rnorm(n,mean=1,sd=1)                    #  Create a sample of data:   N[1,1] 

                            # True values of Mu and Tau are each 1 

ybar<- mean(y) 

yy<- sum(y^2) 

lambda<- 1/(0.5*n*var(y)) 
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ttau<- rgamma(1, shape = n/2, scale = lambda)       #initialize Tau 

 

   #START OF THE MCMC LOOP: 

for (i in 1:nrep) { 

mmu<-rnorm(1,mean = ybar,sd = 1/sqrt(n*ttau))   

scal<- 1 / (0.5*(yy+n*mmu^2-2*n*mmu*ybar)) 

ttau<- rgamma(1, shape=n/2, scale=scal) 

tau[i]<- ttau 

mu[i]<- mmu 

} 

                          # END OF THE MCMC LOOP 
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# Drop the first "nb" repetitions for the "Burn-in" 

# We have 100,000 values for the marginal posteriors 

# Let's see if the results seem to be accurate: 

 

nb1<-nb+1 

taub<-tau[nb1:nrep] 

mub<- mu[nb1:nrep] 

 

# Plot the traces for the marginal p.d.f.'s 

plot(mub, col=2, main="MCMC for Normal-Gamma - Trace for Mu", xlab="Repetitions", 

ylab="Mu") 

plot(taub, col=4, main="MCMC for Normal-Gamma - Trace for Tau", xlab="Repetitions", 

ylab="Tau") 
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# The marginal posteriors for Mu and Tau should be Student-t (n-1), and Gamma, 

respectively 

 

summary(mub)  ; var(mub)  

ybar         # The mean of the marginal posterior for Mu should be ybar ( = 1.0746) 

 

skewness(mub)           #  the skewness of Student-t is zero 

kurtosis(mub)       

   # The EXCESS kurtosis for Student-t (n-1) is 6/(n-5)=1.2; so kurtosis = 4.2 

summary(taub)  ; var(taub) 

skewness(taub)        #  the skewness of Gamma is (2/sqrt(shape)) =  (2/sqrt(n/2) = 0.8944 

kurtosis(taub)          # excess kurtosis for Gamma is  (6/shape) = 6/(n/2) = 1.2 
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# Plot the marginal posterior p.d.f.'s, using nonparametric smoothing 

plot(density(mub), col=2,main="Marginal Posterior for Mu: Student-t", xlab="Mu", 

ylab="Marginal PDF for Mu") 

 

plot(density(taub), col=4, main="Marginal Posterior for Tau: Gamma", xlab="Tau", 

ylab="Marginal PDF for Tau") 
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Bayes estimate of  μ is 1.075, if we have a Quadratic loss function, or if we have 

an Absolute-error loss function. 

 

A 50% BCI ( & HPD interval) for μ is [0.8629 ; 1.2850]  
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Bayes estimate of  τ is 1.102, if we have a Quadratic loss function, and 1.022 if 

we have an Absolute-error loss function. 

 

A 50% BCI for τ is [0.7194 ; 1.3960]  
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• Get other quantiles of the marginal posteriors so we can create BCI’s: 

𝜇̂ = 1.075 

 

𝜏̂ = 1.10 

• Next, we'll look at some examples involving the Gibbs sampler in situations 

where we don't know the forms of the marginal posterior p.d.f.'s. 

• That is, there will be a genuine need for the G.S. 


