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5. Bayesian Computation

e Historically, the computational "cost" of Bayesian methods greatly limited
their application.

e For instance, by Bayes' Theorem:

p(@|y) =p@)p(y10)/p(y) x p(@)p(y |6)

e The proportionality constant is

po) = || j_ip(ra)p(y 16)do; ... d6,



e Unless this integration can be performed analytically, it will have to be done
numerically, or an approximation will have to be used.

e Natural-Conjugate priors are not always available, and not always
appropriate.

e If k> 3 (or so) conventional numerical "quadrature" (e.g., extensions of
Simpson's rule), will be infeasible in terms of computational time.

e Same issue arises if we want to obtain @ = E[ |y] , or if we want to

marginalize the joint posterior p.d.f.

p(0 11y) = [[]"._p(84,8, |y)do,



Starting in the late 1970°s / early 1980's, several methods for dealing with
this issue were considered.

These involved approximating the required integrals.

(i) Laplace integration (analytic)

(i) Monte Carlo integration ("importance sampling)  (simulation)
More recently, the big breakthroughs have come by not actually attempting
to evaluate the integrals at all!

Essentially simulate the densities that we're interested in - e.g., a marginal

posterior density.



e The family of methods that we'll explore is called Markov Chain Monte
Carlo (MCMC; or (MC)?) .
e \We won't go into the mathematics of Markov Chains in any detail.

e Main group of MCMC methods we'll be concerned with is the so-called

Metropolis-Hastings methodology.
e A special case of M-H is the so-called Gibbs Sampler.
o We'll start with the latter - it's easier to deal with.
e |t can be applied to Bayesian problems of high dimension.

e However, may require some ingenuity, and may not be the most efficient

method to use.



The Gibbs Sampler

e \Why the name? Who was Gibbs?

Josiah Willard Gibbs (1839 — 1903)

Co-creator of statistical mechanics; creator of vector calculus; .....



e Name used by Geman & Geman, 1984: "Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images".

o Let's illustrate the main steps for the Gibbs sampler.

e Remember, we want to obtain the marginal posterior densities for some
parameters of interest.

e Once we have theses p.d.f.'s it will turn out to be a simple matter to use
them to construct Bayes estimators, and BCI's, etc.

e Applying Bayes' Theorem, we have the kernel for the joint posterior

p.d.f. for all of the parameters:

p(0 |y) xp(@)p(y|0)



e For simplicity, suppose that k = 2. (In practice, k can be several
thousands.)

® S0, p(61,0;|y) xp(61,0,)p(y104,0;) .

e Suppose that the two conditional posterior densities, p(61|6,,y) and
p(6,]6,,y) are of some (generally different) recognizable forms.

e (Actually, the requirements are even weaker than this, as we'll see.)

e Then we can take a random drawing from each of p(6,|6,, y) and
p(62161, ).

e The Gibbs Sampler then proceeds as follows:



(i) o - (6 165°, )

i o - (6,165, y)
iy 6@ - p(6; 165", ¥)
iv) 65 - (6, 162, )
efC..uvnnn.n..

e S0, this gives us a string of thousands of drawings from the two
conditional posterior p.d.f.'s for the 2 parameters.
e Continuing this process long enough, eventually the drawings will

actually come from the marginal posterior p.d.f.'s for the parameters!



e \We can then continue to keep drawing values from each distribution

and we'll end up with thousands of simulated values.

We'll need to discard lots of early values obtained by this process, as
they'll actually be from the conditional posterior p.d.f.'s, and not from

the marginal posterior p.d.f.'s

This is referred to as the "Burn in".

Various tools available to help us decide the length of the Burn in.

Gibbs sampler lends itself to parallel processing - run many strings

Independently on different processors and then combine results.

Exactly the same approach applies when we have more parameters.



e For instance, suppose that k = 4:

(1)
(i)
(iii)
(iv)
(V)
(Vi)
(vii)
(viii)

oV

65"
o5V

oV

6
65

6

6.

p(6116,”,65”,6,”,)
p(6; 10,,65,6,”,7)
p(6;16:°,6,",6,”, 7)
p(6416,",6,",65", 7)
p(6116,",65",6,”.)
p(6:10,,65",6,”,)
p(6s10,°,6,°,6,", 7)

2 2 2
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Example 1:

e Let's see if this works, by considering a situation where we know the

answer.
e Note - this won't be a Bayesian example. The purpose is just to see how the
Gibbs sampler moves from the conditional densities to the marginal

densities.

e Suppose we have a random vector, (i’};) ~N KZ;) ,Z], where

s — of pP0O103
pP0O103 o3

e [t's easy to show that:
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(1) p(y1lyz2)~N :{lh + (pa_zl) (V2 — #2)} , of (1 — PZ):

(i) pO2ly)~N[{ke+ (52) 0n — w0} L o2 (1=p?)
(i) p(y) ~ N[y, of]
(iv)  p(2) ~Nly,,07]

e \We'll consider the case where uy = u, =0 ; oy =0, =1.

e The Gibbs sampler will involve the following steps:

(i) Sampley, fromp(y;|[y,) ; (ii)  Sample y, from p(y, | y;)

(ii1) Keep repeating steps (i) and (ii), lots of times.
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Eventually, p(y1 ly2) = p(y1), and p(y2 [y1) = p(2),

We'll then continue until we have a large sample of drawings from these
two marginal p.d.f.'s.

This will give us empirical p.d.f.'s of the form that we want, without doing

any integration of any sort!

We'll have to assign initial values, and decide on the length of the "Burn

in".
Recall - in this illustration we actually know what the marginal p.d.f.'s look
like, so we'll know if the Gibbs sampler is really working.

If you're convinced, then we can move to some real Bayesian examples.
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e Code to do this using R:

library(tseries)

set.seed(123)

nrep<- 100000 # Total number of MC replications

nb<- 2000 # Number of observations for the "Burn-in"
yyl<- array(,nrep)

yy2<- array(,nrep)

rho<- 0.5 # Set the correlation between Y1 and Y2
sd<- sqrt(1-rho”2)

y2<-rnorm(1,0,sd) # Initialize Y2
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for (i in 1:nrep) {

yl<- rnorm(1,0,sd)+rho*y2
y2<- rnorm(1,0,sd)+rho*y1
yy1[il<-y1

yy2[i]<-y2

}

# Drop the first "nb" repetitions for the "Burn-in"
nbl<- nb+1
yylb<-yyl[nbl:nrep]

yy2b<-yy2[nbl:nrep]

THE GIBBS
SAMPLER
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# Plot the “Trace” results for the 2 p.d.f.’s

plot(yylb, col=2, main="MCMC for Bivariate Normal - Part 1", xlab="Repetitions",
ylab="Y1")

abline(h=3,lty=2)
abline(h=-3,lty=2)

plot(yy2b, col=4, main="MCMC for Bivariate Normal - Part 2", xlab="Repetitions",
ylab="Y2")

abline(h=3,lty=2)
abline(h=-3,lty=2)
# Determine the moments of the Marginal Posterior p.d.f.’s
summary(yylb)
var(yy1b)
summary(yy2b)

var(yy2b)
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# Plot the histograms for the 2 marginal posterior p.d.f.’s

hist(yylb, prob=T,col=2, main="MCMC for Bivariate Normal - Part 1", xlab="Y1",
ylab="Marginal PDF for Y1")

hist (yy2b,prob=T,col=4, main="MCMC for Bivariate Normal - Part 2", xlab="Y2",
ylab="Marginal PDF for Y2")

# Check for Normality of the marginal posteriors

ggnorm(yylb) # Q-Q Plots
gqline(yylb,col=2)

qggnorm(yy2b)

gqline(yy2b,col=4)

jarque.bera.test(yylb) ; jarque.bera.test(yy2b)
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Y1

MCMC for Bivariate Normal - Part 1

q‘_

|
Oe+00

Ze+04

4e+04 Ge+04

Repetitions

|
Be+04

|
1e+05
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Y2

MCMC for Bivariate Normal - Part 2

|
Oe+00

| | | |
2e+04 4e+04 Ge+04 Be+04

Repetitions

|
1e+05
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> summary (vvlilk)

Min. 1=t {m. Hedian
-4 ,285000 -0,.668500 0.006683
> war(yvlib)
[1] 1.003738
> summary (vvelk)

Min. 1=t {m. Median
-4 .,3896000 -0.671000 0.006226
> war(yyvZhb)
{1; 0.9953644

> jarque.bera.test (vvlb) ;
Jargue Bera Test

data: vvilb

X-squared = 1.4732, df = 2,
Jargque Bera Test

data: vyZhb
X—-=squared = 0.79859, 4df = 2,

Mean 3rd {m. Max.
0.006148 0.679600 4.111000
Mean 3rd {mu. Max.
0.004281 0.675800 4.448000
jarque.bera.test (vvib)
p-value = 0.4787
p—-value = 0.6707
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Marginal FDF for Y 1
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Marginal PDF for Y 2
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Sample Quantiles

Normal Q-Q Plot

|
0

Theoretical Quantiles

Q-Q Plot for p(y4)
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Sample Quantiles

Normal Q-Q Plot

|
0

Theoretical Quantiles

Q-Q Plot for p(y,)
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Example 2:

e Let's consider another example where we know the answer.

e However, this one is a Bayesian example.
e \We want to estimate the 2 unknown parameters of a Normal population -

the mean, u, and the precision, t (= 1/ ¢?).

Diffuse (Jeffrey's) prior p.d.f.: p(u, ) = p(u) p(r) x 1/1

Likelihood function:

p(y |, 7) o« T 2exp {—T/Z z(yi — u)z}

1=1

e Bayes' Theorem:



n_, T % 5
P, 1y) < 17 texp =) ) (i — )
=1
e Consider the conditional posterior densities.
o p(uln,y) o« exp{—() Tii (i — )%}
—(N[vs? 4+ (5 — 1)2
o exp{ DMvs+ny —w ]}
nt
( _ S\2
o exp{~(5)(u — 7)?

e This is the kernel of a N[y, (nt) 1] density.

e Similarly, we can get the conditional posterior for 7 :
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n 1 n
p(T|wy) o ﬁ‘lexp{—r (@ D G- u)2>}
=1

e This is the kernel of a Gamma density, I'(r, A1), with shape & scale

-1
parameters,r =n/2 ; 1= [(%) Yic (i — “)2] .

Now, in fact we know that for this problem, the marginal posterior for u is

Student —t, centered at y; and the marginal posterior for t is Gamma.

e Suppose that we don't know this, and we decide to use the Gibbs sampler.
e | et's see what we get, with n = 10.

e Here is the R code;
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library(moments)

set.seed(123)

nrep<- 105000 # Total number of MC replications

nb<- 5000 # Number of observations for the "Burn-in"
n<- 10 # Sample size

tau<- array(,nrep) # Set up vectors for storing results

mu<- array(,nrep)

y<- rnorm(n,mean=1,sd=1) # Create a sample of data: N[1,1]
# True values of Mu and Tau are each 1

ybar<- mean(y)

yy<- sum(y”2)

lambda<- 1/(0.5*n*var(y))
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ttau<- rgamma(l, shape = n/2, scale =lambda)  #initialize Tau

#START OF THE MCMC LOQOP:
for (iin 1:nrep) {
mmu<-rnorm(1,mean = ybar,sd = 1/sqrt(n*ttau))
scal<- 1/ (0.5*(yy+n*mmu”2-2*n*mmu*ybar))
ttau<- rgammal(l, shape=n/2, scale=scal)
tau[i]<- ttau
mul[i]<- mmu

}

# END OF THE MCMC LOOP
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# Drop the first "nb" repetitions for the "Burn-in"
# We have 100,000 values for the marginal posteriors

H# Let's see if the results seem to be accurate:

nbl<-nb+1
taub<-tau[nbl:nrep]

mub<- mu[nbl:nrep]

# Plot the traces for the marginal p.d.f.'s

plot(mub, col=2, main="MCMC for Normal-Gamma - Trace for Mu", xlab="Repetitions",
ylab="Mu")

plot(taub, col=4, main="MCMC for Normal-Gamma - Trace for Tau", xlab="Repetitions",
ylab="Tau")
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# The marginal posteriors for Mu and Tau should be Student-t (n-1), and Gamma,
respectively

summary(mub) ; var(mub)

ybar # The mean of the marginal posterior for Mu should be ybar ( = 1.0746)

skewness(mub) # the skewness of Student-t is zero
kurtosis(mub)
# The EXCESS kurtosis for Student-t (n-1) is 6/(n-5)=1.2; so kurtosis = 4.2
summary(taub) ; var(taub)
skewness(taub) # the skewness of Gamma is (2/sqrt(shape)) = (2/sqrt(n/2) = 0.8944

kurtosis(taub) # excess kurtosis for Gamma is (6/shape) =6/(n/2) =1.2
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# Plot the marginal posterior p.d.f.'s, using nonparametric smoothing

plot(density(mub), col=2,main="Marginal Posterior for Mu: Student-t", xlab="Mu",
ylab="Marginal PDF for Mu")

plot(density(taub), col=4, main="Marginal Posterior for Tau: Gamma", xlab="Tau",
ylab="Marginal PDF for Tau")
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Marginal PDF for Mu

Marginal Posterior for Mu: Student-t
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Tau

MCMC for Normal-Gamma - Trace for Tau

T T T T
2e+04 4e+04 Be+04 Be+04

Repetitions

35



Marginal PDF for Tau
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> summary (mub) s var (mub)

Min. 1=t u. Median Mean 3rd Ou. Max.
-2.7570 0.8B829% 1.0760 1.0750 1.2850 3.89620
[1] ©.1160567

> vbar $# The mean of the poterior for Mu should be vbar ( = 1.0746)

[1] 1.074626

>

> skewness (mub) # the skewness of Student-t is zero

[1] -0.0076089531

> kurtosis(mub) # The EXCE3ZS kurtosis for Student-t (n-1) is &/ (n-5)=1.2; S50 kurtosis = 4.2

[1] 4.28897

Bayes estimate of uis 1.075, if we have a Quadratic loss function, or if we have
an Absolute-error loss function.

A 50% BCIl ( & HPD interval) for u is [0.8629 ; 1.2850]
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> summary {taub) ; var ({taub)

Min. 1=t Qu. Median Mean 3rd Qu. Max.
0.02333 0.71840 1.02200 1.10200 1.39600 5.38100
[1] 0.2717406&

> zkewnesszs(tauk) #F the =zkewness of Gamma iz (2/=3grt(shape) )= (2/=2grt(n/2)=0.8544
[1] 0.59472144

> kurtosiz(taub) # excess kurtosis for Gamma iz (§/shape) = &/ (n/2)=1.2

(1] 4.34717

Bayes estimate of tis 1.102, if we have a Quadratic loss function, and 1.022 if
we have an Absolute-error loss function.

A 50% BCl for tis [0.7194 ; 1.3960]
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e Get other quantiles of the marginal posteriors so we can create BCI’s:

i =1.075
guantile (mub, prob=sz = c¢c(l, 2.5, 5, 10, 80, 85, 87.5, 939)/7100)
1% ( 2.5% ) 5% 10% 90% 553 57.5%) 99%
.2310106 |0.397524% [0.5232828 0.6583863 1.4928146 1.6281092|1.7532289|1.9194482
g J J

guantile (taub, probs =c¢(l, 2.5, 5, 10, 90, 85, 97.5, 99)/100)
4 N\ N\

1% 2.50% o% 10% 90% a5 97.5% 99%
.EEQGlEE\p.SSGT?QT/G.&G&ESQE 0.5089736 1.7996453 2.072934 E.SEQSEGG/E.EEE?SlE
1/var(v)

7 =1.10

e Next, we'll look at some examples involving the Gibbs sampler in situations
where we don't know the forms of the marginal posterior p.d.f.'s.

e That is, there will be a genuine need for the G.S.
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