David Giles
Bayesian Econometrics

7. Acceptance-Rejection Sampling

e Sometimes we can’t use the inversion of the c.d.f. to get random values (as

was done, essentially, in the Table Look-up Method).

For these cases, use some indirect method.
e \We generate a “candidate” random variable.

e Only accept it if it passes some “test”.

Used appropriately, this general approach allows us to simulate from almost

any distribution.

The so-called “Acceptance-Rejection” method of sampling will form basis

later for the Metropolis-Hastings methodology (a generalization of G.S.)

Only require the functional form of the kernel of the density, f, of interest.

e Terminology: f = “target density”; g = “candidate (enveloping) density”.

o Useful if easy to simulate random variables from g, but not from f.

e Impose 2 constraints on the candidate density, g:

(1) fand g have the same supports : i.e., g(x) > 0 when f(x) > 0).

(i) There is a finite constant, M, such that f(x) / g(x) < M, for all x.
(Clearly, 0 < [f(x) /g(x)].)

e \We can then simulate values, x, of X from f as follows:

(i) Generate values of, y, of Y from g and, independently, generate a

values u from U [0, 1].

’ fQ) .
< =V.
i) Ifu< o) thensetx =y

(ili) Otherwise discard that value of Y, and repeat.

o Note that:
(1) Pr.(Accept) =(1/M).
(i) Expected “Waiting Time” = M.
(il1) Computational efficiency will be achieved if M is chosen to be as

small as possible.

e \Why does this method work?
e Easy to show that

Pr.(Y < x| Accept) =Pr.(Y < x|u < f(y)/[Mqg(y)]) =Pr.(X < x)
e Simulating from g, the output of this algorithm is exactly distributed from f.

e The Acceptance - Rejection method can be used no matter what the

dimensionality of the random variables.
e Just need g to be a density over the same space as f.
e Only need to know (f/ g), and hence f (.), up to a constant

e Only need an upper bound on M.

A Geometric Motivation:

e Suppose we want to generate a random point within the unit circle.
e Generate a candidate point, (x,y) where x and y are independent

uniformly distributed between —1 and 1.

e If it happens that (x2 + y2) < 1 then the point is within the unit circle
and should be accepted.

e |f not, then this point should be rejected and another candidate should be

generated.
F 1
: /‘f

v

\
.

Example 1

e \Want to generate Standard Normal values, using the Logistic distribution as

the “envelope™.

f(.)~N[0O,1] ; g(.) ~ Logistic [0, s].

Choose scale parameter for Logisticsothat[f(.)/g(.)] < 1.
Modal height of N[0, 1] = (1 /27) ;

modal height of Logistic [0, s] = (1/ 4s).

Heights will be equal if s = 0.6267

Set M =1.1, for instance.

Consider the R code:

myrnorm = function(M){
while(1) {
u = runif(1); x = rlogis(1, scale = 0.627)
if(u < dnorm(x)/M/dlogis(x, scale = 0.627))

return(x)

nrep<-100000

hist(replicate(nrep, myrnorm(1.1)), prob=TRUE, main = "Simulated Std.
Normal Values",

xlab="x", ylab="f(x)", xlim=c(-3,3))
lines(seq(-3, 3, 0.01), dnorm(seq(-3, 3, 0.01)), col=2, Iwd=3)

0.0

Generating Std. Normal Values

1\

Example 2
Courtesy of Patrick Lam (Harvard)
Want to sample from a Triangular distribution, whose density is

f(x)=8x ; 0 <x <0.25

~(O)-(%) + 025 <x =1
—\3 3) 7 x=

e Use a Uniform distribution for g(y).
e Maximum height of f (x) is 2.0, so set M = 2.5, say.

e Use R code to simulate 50,000 draws from f (.).

f <- function(x) {

if (x>=0 && x <0.25)

8 * X

else if (x >=0.25 && x <=1)
8/3-8*x/3

else 0

}

g <- function(x) {
If (x>=0&& x <=1)
1

else 0

10

rep <- 50000

M<- 2.5

n.draws <- 0

draws <- c()

x.grid <- seq(0, 1, by = 0.01)

while (n.draws < rep) {
y <-runif(1, O, 1)
accept.prob <- f(y)/(M * g(y))
u <-runif(1, 0, 1)

if (accept.prob >=u) {

draws <- c(draws, y)

n.draws <- n.draws + 1

}
}

11

3.5
|

3.0

25

Simulated Values from Triangular Distribution

1.0

0.0 0.2
X

12

Why did it work?

e The difference between f (x) and Mg(x) at places with higher density (i.e.,
around x = 0.25) iIs smaller than at places with lower density (i.e., around x
=0.8).

e S0 the acceptance probability at x = 0.25 is higher and more draws of x =
0.25 are accepted.

e There are an infinite number of candidate densities g(x) and constants M
that we can use.

e The only difference between them is computation time.

o If g(X) is significantly different in shape than f (x) or if Mg(x) is significantly
greater than f (x), then more of our candidate draws will be rejected.

o |ff(Xx) = Mg(x), then all our draws will be accepted.

13

7.1 Hierarchical Bayes

e One difficulty with Bayesian inference, in practice, is the specification of

the prior for the parameters.

One way to proceed is to set up a "Hierarchical" set of priors.

We specify a prior for the primary parameters of the model, say p(0 | w).

Rather than just assign values for the elements of "prior parameter vector",

a, we'll assign a further prior, p(w).

In fact, this additional prior may involve other unknown parameters - e.g.,

p(w) = p(w| @)

e Then we could assign a prior for the elements of ¢; etc.

14

e \When would we stop?

e \When we have information for the parameters of the "last" prior; or when
we can reasonably put uniform or diffuse priors on parameters of the
penultimate prior.

o We'll consider a simple example of this - and also use this to illustrate the
use of the "Acceptance-Rejection” sampling procedure, within the context
of the Gibbs Sampler.

e Return to the Consumption function example, but now with a different set
of prior information.

e \We'll avoid any integration this time by using the G.S.

15

Example

Vi = ,Bxl-+ E SiNi.i.d.N[O,O'z]

(Deviations about sample means, so no intercept.)

e Prior information:
(i) p(o)x1/c ; 0<o<m
(i) p(B la,b) « B*H(1—B)°!
Beta(a,b) ; ab >0
(i) pla) x1/a ; 0<a<ow
(iv) pM) x1/b ; 0<b<ow

(How could this be extended even further?)

0< f<1

16

e Joint prior p.d.f.:

p(B,o0,a,b) = p(B |la,b)p(a,b)p(c) = p(B |la, b)p(a)p(b)p(o)

e SO,

p(B,0,a,b) « (abo)™1p*1(1 - p)P~1

e The Likelihood function is

1 n
L(B.o,a,b|y) « o exp [—ZTZZm - ﬁxi)ZI
i=1

o Now we'll apply Bayes Theorem:

17

p(B,0,a,b|y) « (ab) te~(*+D ga-1(1 — g)b-1
1
x exp [~ 55 ka0 — Bx)?]
e \We can marginalize this joint posterior with respect to o analytically, as in

previous examples:

(00}

p(B,a,b|y) = j p(8,0,a,b | y)do

0
« (ab)™t 7M1 = BYPTHEL (v — Bx)?] A
e Now let's think about the information that we need if we're going to apply
the Gibbs Sampler to get the marginal posterior densities for the various

parameters.

18

e \We have to determine the various conditional posterior densities:

(1) p(Blaby) «pt(1-p)"

X [Xe1 (v = Bx)?] ™/

(i) p(a|b,B,y) « (1/a)p

(i) pblaply) «(3)a-pED
o All of these distributions are totally non-standard.
e Hence the proposal that we use Acceptance-Rejections sampling.
e Recall, we don't need to know the normalizing constants for these densities

- knowledge of the kernels is sufficient.

e R code:

19

e Functions used for "Acceptance-Rejection" sampling:

myfdenbeta = function(M,a,b,n,cons,inc) {
while(1) {
u = runif(1); x=rbeta(l1,5,2)
if(u < (x™(a-1)*(1-x)(b-1)*(sum(cons-x*inc)*2))(-n/2)/M/dbeta(x, 5, 2))

return(x)

20

myfdena = function(M,beta) {
while(1) {
u = runif(1); x=rgamma(l, scale=1, shape=1)
if(u < ((1/x)*beta™(x-1))/M/dgamma(x,scale=1, shape=1))
return(x)
}
}

myfdenb = function(M,beta) {
while(1) {
u = runif(1); x=rgamma(l, scale=1, shape=3)
If(u < ((1/x)*(1-beta)(x-1))/M/dgamma(x, scale=1, shape=3))

return(x)

21

Rest of the R code for the Gibbs Sampler:

library(modeest)

set.seed(123)

nrep<- 52000

burnin<- 2000

margbeta<- vector(length=nrep)
marga<-vector(length=nrep)

margb<-vector(length=nrep)

22

Read the data:

cons.df<-

read.table("http://web.uvic.ca/~dgiles/blog/consump.dat",header=TRUE)
TAKE DEVIATIONS ABOUT MEANS

consump<- (cons.df$CONS-mean(cons.df$CONS))

income<- (cons.df$Y-mean(cons.df$Y))

mle<- Im(consump~income -1)

ASSUMING NORMAL ERRORS, WE NOW HAVE THE MLE OF Beta
summary(mie)

beta<- as.numeric(mle[1])

23

START OF GIBBS SAMPLER

for (il in L:nrep) {

margalii]<- a<- myfdena(5, beta)

margblii]<-b<- myfdenb(5, beta)

margbetalii]<- beta<- myfdenbeta(5, a, b,length(consump),consump, income)

}

END OF GIBBS SAMPLER

24

Maximum Likelihood Results

Ee=ziduals:
Min 1 Median 30 Max
-43,304 2,994 1.686 8.586 47.1lc4

Coefficjepts:
Estimate 5td. Error |t wvalue Pri>|t])
income | 0.89848 0.00381 154.7 <Ze-lp **=

Signif. codes: 0 Y#*=f (0,001 **=*f 0,01 **f 0.05 " 0.1 * " 1

Eesidual standard error: 12.&69 on 35 degrees of freedom
Multiple BE-=sgquared: 0.9885, Adijusted B-=sguared: 0.9985
F-=tatistic: 2.3%2e+04 on 1 and 35 DF, p-value: < 2.2Z2e-16

12

10

Trace fora

I
10000

I I
20000 30000

Replications

I
40000

20000

26

Trace for b

10000 20000 30000 40000 20000

0

Replications

27

Beta

14

12

10

Trace for Beta

|
10000

20000 30000

Replications

40000

20000

28

Mean of a

1.2

1.0

0.8

0.6

Rolling Means for a

o
:
o
o
o
&
&
o
I
0

I I
200 1000

Replications

I
1200

I
2000

29

Mean of b

125 1.30

110 115 120

05

1.

1.00

0.95

Rolling Means for b

200

I I
1000 1500

Burn-in Replications

I
2000

30

Wean of Beta

0.60 0.65 0.70

0.55

Rolling Means for Beta

200 1000 13200

Burn-in Replications

2000

31

plaly)

1.0

0.8

0.6

0.4

0.2

0.0

Marginal Posterior for a

10

12

32

pib |yl

1.0

0.8

06

04

0.2

0.0

Marginal Posterior for b

O e

33

p(Beta|y)

2.5

2.0

1.5

1.0

0.5

0.0

Marginal Posterior for Beta

0.0

0.2

0.4 0.6 0.8

Beta

1.0

34

Summary of Marginal Posterior Distributions

> summary (margal (burnin+l) :nrep])

Min. 1=t Qu. Median Mean 3rd Qu. Max.
0.000029 0.204400 0.476200 0.8261000 1.112000 11.800000
> summary (margb[(burnin+l) :nrep])

Min. 1=t Qu. Median Mean 3Ird Qu. Max.
0.01466 O0.77670 1.045%00 1.21900 1.42800 14.21000
> summary (margbetal[(burnin+l) :nrep])

Min. 1st Qu.| Median Mean|3rd Qu. Max.

0.07212 0.611000.73560 0.71420/0.83850 0.593%870

> WArliances
[1] 1.04177646 0.59605127 0.02561821

a b Beta

> modes
[1] 0.2138555 0.8435237 0.7886216%

Recall: MLE for beta was 0.89848

Beta

35

