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David Giles 

Bayesian Econometrics 

 

7. Acceptance-Rejection Sampling 

•  Sometimes we can’t use the inversion of the c.d.f. to get random values (as 

was done, essentially, in the Table Look-up Method). 

• For these cases, use some indirect method. 

• We generate a “candidate” random variable. 

• Only accept it if it passes some “test”. 

• Used appropriately, this general approach allows us to simulate from almost 

any distribution. 
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• The so-called “Acceptance-Rejection” method of sampling will form basis 

later for the Metropolis-Hastings methodology (a generalization of G.S.) 

• Only require the functional form of the kernel of the density, f, of interest. 

• Terminology:  f  =  “target density”;  g = “candidate (enveloping) density”. 

• Useful if easy to simulate random variables from g, but not from f. 

• Impose 2 constraints on the candidate density, g: 

(i) f and g have the same supports : i.e., g(x) > 0 when f(x) > 0). 

(ii) There is a finite constant, M, such that f(x) / g(x)  ≤  M, for all x. 

(Clearly, 0  ≤  [f(x) / g(x)]. )   

• We can then simulate values, x, of X  from f as follows: 
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(i) Generate values of, y, of Y  from g and, independently, generate a 

values u from U [0 , 1]. 

(ii) If  𝑢 ≤
𝑓(𝑦)

𝑀𝑔(𝑦)
 ;   then set x = y. 

(iii) Otherwise discard that value of Y, and repeat. 

 

• Note that: 

(i) Pr.( Accept ) = (1 / M). 

(ii) Expected “Waiting Time” = M. 

(iii) Computational efficiency will be achieved if M is chosen to be as 

small as possible. 
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• Why does this method work? 

• Easy to show that  

Pr.(Y  ≤  x | Accept ) = Pr.(Y  ≤  x | u  ≤  f (y ) / [M g(y)]) = Pr.(X  ≤  x) 

• Simulating from g, the output of this algorithm is exactly distributed from f. 

• The Acceptance - Rejection method can be used no matter what the 

dimensionality of the random variables. 

• Just need g to be a density over the same space as f. 

• Only need to know (f / g), and hence f (.), up to a constant 

• Only need an upper bound on M. 
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A Geometric Motivation: 

• Suppose we want to generate a random point within the unit circle.  

• Generate a candidate point,  (𝑥 , 𝑦) where x  and y are independent 

uniformly distributed between −1 and 1.  

• If it happens that (𝑥2 +  𝑦2) ≤ 1   then the point is within the unit circle 

and should be accepted.  

• If not, then this point should be rejected and another candidate should be 

generated. 
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Example 1 

• Want to generate Standard Normal values, using the Logistic distribution as 

the “envelope”. 

• f ( . )  ~  N [0 , 1]   ;  g( . )  ~  Logistic [0 , s]. 

•  Choose scale parameter for Logistic so that [f ( . ) / g( . )]  <  1. 

• Modal height of N [0 , 1] = (1 / √2𝜋 ) ;   

modal height of Logistic [0 , s] = (1 / 4s). 

• Heights will be equal if s = 0.6267 

• Set M  = 1.1, for instance. 

• Consider the R code: 
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myrnorm = function(M){ 

  while(1) { 

    u = runif(1); x = rlogis(1, scale = 0.627) 

    if(u < dnorm(x)/M/dlogis(x, scale = 0.627)) 

        return(x) 

  } 

} 

 

nrep<-100000 

hist(replicate(nrep, myrnorm(1.1)), prob=TRUE, main = "Simulated Std.  

Normal Values",  

xlab="x", ylab="f( x )", xlim=c(-3,3)) 

lines(seq(-3, 3, 0.01), dnorm(seq(-3, 3, 0.01)), col=2, lwd=3 ) 
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Example 2    

Courtesy of Patrick Lam (Harvard) 

 Want to sample from a Triangular distribution, whose density is 

𝑓(𝑥) = 8𝑥    ;    0 ≤ 𝑥 ≤ 0.25 

                                                       = (
8

3
) − (

8𝑥

3
)    ;    0.25 < 𝑥 ≤ 1 

• Use a Uniform distribution for g(y).  

• Maximum height of f (x) is 2.0, so set M = 2.5, say. 

• Use R code to simulate 50,000 draws from f (.). 
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f <- function(x) { 

if (x >= 0 && x < 0.25) 

8 * x 

else if (x >= 0.25 && x <= 1) 

 8/3 - 8 * x/3 

else 0 

 } 

 

g <- function(x) { 

    if (x >= 0 && x <= 1) 

    1 

    else 0 

 } 
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rep <- 50000 

M<- 2.5 

n.draws <- 0 

draws <- c() 

x.grid <- seq(0, 1, by = 0.01) 

while (n.draws < rep) { 

  y <- runif(1, 0, 1) 

  accept.prob <- f(y)/(M * g(y)) 

  u <- runif(1, 0, 1) 

    if (accept.prob >= u) { 

  draws <- c(draws, y) 

  n.draws <- n.draws + 1 

 } 

 } 
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Why did it work? 

• The difference between f (x) and Mg(x) at places with higher density (i.e., 

around x = 0.25) is smaller than at places with lower density (i.e., around x 

= 0.8).  

• So the acceptance probability at x = 0.25 is higher and more draws of x = 

0.25 are accepted. 

• There are an infinite number of candidate densities g(x) and constants M 

that we can use. 

• The only difference between them is computation time. 

• If g(x) is significantly different in shape than f (x) or if Mg(x) is significantly 

greater than  f (x), then more of our candidate draws will be rejected. 

• If f (x) = Mg(x), then all our draws will be accepted. 
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7.1 Hierarchical Bayes 

• One difficulty with Bayesian inference, in practice, is the specification of 

the prior for the parameters. 

• One way to proceed is to set up a "Hierarchical" set of priors. 

• We specify a prior for the primary parameters of the model, say 𝑝(𝜽 | 𝝎). 

• Rather than just assign values for the elements of "prior parameter vector", 

a, we'll assign a further prior, 𝑝(𝝎). 

• In fact, this additional prior may involve other  unknown parameters - e.g., 

𝑝(𝝎) =  𝑝(𝝎 | 𝝋) 

• Then we could assign a prior for the elements of  𝝋; etc. 
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• When would we stop? 

• When we have information for the parameters of the "last" prior; or when 

we can reasonably put uniform or diffuse priors on parameters of  the 

penultimate prior. 

• We'll consider a simple example of this - and also use this to illustrate the 

use of the "Acceptance-Rejection" sampling procedure, within the context 

of the Gibbs Sampler. 

• Return to the Consumption function example, but now with a different set 

of prior information. 

• We'll avoid any integration this time by using the G.S. 
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Example 

                  𝑦𝑖 =  𝛽𝑥𝑖 +  𝜀𝑖    ;    𝜀𝑖  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎2]    ;     i = 1, 2, 3, ......, n 

 

(Deviations about sample means, so no intercept.) 

• Prior information: 

 

(i)  𝑝(𝜎) ∝ 1/𝜎       ;      0 < 𝜎 < ∞  

(ii)  𝑝(𝛽 |𝑎, 𝑏)  ∝  𝛽𝑎−1(1 − 𝛽)𝑏−1      ;      0 <  𝛽 < 1 

  Beta(a , b)   ;     a, b  >  0 

(iii)  𝑝(𝑎)  ∝ 1/𝑎       ;       0 < 𝑎 < ∞ 

(iv)  𝑝(𝑏)  ∝ 1/𝑏       ;       0 < 𝑏 < ∞ 

(How could this be extended even further?) 
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• Joint prior p.d.f.: 

        𝑝(𝛽, 𝜎, 𝑎, 𝑏) = 𝑝(𝛽 |𝑎, 𝑏)𝑝(𝑎, 𝑏)𝑝(𝜎) = 𝑝(𝛽 |𝑎, 𝑏)𝑝(𝑎)𝑝(𝑏)𝑝(𝜎) 

• So, 

       𝑝(𝛽, 𝜎, 𝑎, 𝑏)  ∝ (𝑎𝑏𝜎)−1𝛽𝑎−1(1 − 𝛽)𝑏−1 

• The Likelihood function is 

𝐿(𝛽, 𝜎, 𝑎, 𝑏 | 𝒚)  ∝  𝜎−𝑛𝑒𝑥𝑝 [−
1

2𝜎2
∑(𝑦𝑖 − 𝛽𝑥𝑖)2

𝑛

𝑖=1

] 

• Now we'll apply Bayes Theorem: 
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𝑝(𝛽, 𝜎, 𝑎, 𝑏 | 𝒚)  ∝ (𝑎𝑏)−1𝜎−(𝑛+1) 𝛽𝑎−1(1 − 𝛽)𝑏−1 

     × 𝑒𝑥𝑝 [−
1

2𝜎2
∑ (𝑦𝑖 − 𝛽𝑥𝑖)2𝑛

𝑖=1 ] 

• We can marginalize this joint posterior with respect to 𝜎 analytically, as in 

previous examples: 

𝑝(𝛽, 𝑎, 𝑏 | 𝒚) =  ∫ 𝑝(𝛽, 𝜎, 𝑎, 𝑏 | 𝒚)𝑑𝜎

∞

0

 

                      ∝  (𝑎𝑏)−1 𝛽𝑎−1(1 − 𝛽)𝑏−1[∑ (𝑦𝑖 − 𝛽𝑥𝑖)2𝑛
𝑖=1 ]−𝑛/2 

• Now let's think about the information that we need if we're going to apply 

the Gibbs Sampler to get the  marginal posterior densities for the various 

parameters.   
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• We have to determine the various conditional posterior densities:  

(i)  𝑝(𝛽 | 𝑎, 𝑏, 𝒚)  ∝ 𝛽𝑎−1(1 − 𝛽)𝑏−1 

     × [∑ (𝑦𝑖 − 𝛽𝑥𝑖)2𝑛
𝑖=1 ]−𝑛/2 

(ii)  𝑝(𝑎 | 𝑏, 𝛽, 𝒚)  ∝ (1/𝑎)𝛽(𝑎−1) 

(iii)  𝑝(𝑏 | 𝑎, 𝛽 | 𝒚)  ∝ (
1

𝑏
) (1 − 𝛽)(𝑏−1) 

• All of these distributions are totally non-standard. 

• Hence the proposal that we use Acceptance-Rejections sampling. 

• Recall, we don't need to know the normalizing constants for these densities 

- knowledge of the kernels is sufficient. 

• R code: 
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• Functions used for "Acceptance-Rejection" sampling: 

 

myfdenbeta = function(M,a,b,n,cons,inc) { 

  while(1) { 

    u = runif(1); x=rbeta(1,5,2)  

if(u < (x^(a-1)*(1-x)^(b-1)*(sum(cons-x*inc)^2))^(-n/2)/M/dbeta(x, 5, 2)) 

        return(x) 

  } 

 } 
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myfdena = function(M,beta) { 

       while(1) {  

       u = runif(1);  x=rgamma(1, scale=1, shape=1)  

       if(u < ((1/x)*beta^(x-1))/M/dgamma(x,scale=1, shape=1 )) 

        return(x) 

  } 

} 

myfdenb = function(M,beta) { 

  while(1) { 

    u = runif(1); x=rgamma(1, scale=1, shape=3)   

       if(u < ((1/x)*(1-beta)^(x-1))/M/dgamma(x, scale=1, shape=3 )) 

        return(x) 

  } 

} 
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Rest of the R code for the Gibbs Sampler: 

 

library(modeest) 

set.seed(123) 

nrep<- 52000 

burnin<- 2000 

margbeta<- vector(length=nrep) 

marga<-vector(length=nrep) 

margb<-vector(length=nrep) 
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# Read the data: 

cons.df<- 

read.table("http://web.uvic.ca/~dgiles/blog/consump.dat",header=TRUE) 

# TAKE DEVIATIONS ABOUT MEANS 

consump<- (cons.df$CONS-mean(cons.df$CONS))     

income<-  (cons.df$Y-mean(cons.df$Y))           

mle<- lm(consump~income -1)                            

# ASSUMING NORMAL ERRORS, WE NOW HAVE THE MLE OF Beta 

summary(mle) 

beta<- as.numeric(mle[1]) 
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# START OF GIBBS SAMPLER 

for (ii in 1:nrep)  { 

marga[ii]<- a<- myfdena(5, beta) 

margb[ii]<-b<- myfdenb(5, beta) 

margbeta[ii]<- beta<- myfdenbeta(5, a, b,length(consump),consump, income) 

} 

# END OF GIBBS SAMPLER 
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Maximum Likelihood Results 
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Summary of Marginal Posterior Distributions 

 

 

                      a             b       Beta 

 

 

Recall: MLE for beta was 0.89848 

a 

 

b 

 

Beta 


