
1

David Giles

Bayesian Econometrics

7. Acceptance-Rejection Sampling

• Sometimes we can’t use the inversion of the c.d.f. to get random values (as

was done, essentially, in the Table Look-up Method).

• For these cases, use some indirect method.

• We generate a “candidate” random variable.

• Only accept it if it passes some “test”.

• Used appropriately, this general approach allows us to simulate from almost

any distribution.

2

• The so-called “Acceptance-Rejection” method of sampling will form basis

later for the Metropolis-Hastings methodology (a generalization of G.S.)

• Only require the functional form of the kernel of the density, f, of interest.

• Terminology: f = “target density”; g = “candidate (enveloping) density”.

• Useful if easy to simulate random variables from g, but not from f.

• Impose 2 constraints on the candidate density, g:

(i) f and g have the same supports : i.e., g(x) > 0 when f(x) > 0).

(ii) There is a finite constant, M, such that f(x) / g(x) ≤ M, for all x.

(Clearly, 0 ≤ [f(x) / g(x)].)

• We can then simulate values, x, of X from f as follows:

3

(i) Generate values of, y, of Y from g and, independently, generate a

values u from U [0 , 1].

(ii) If 𝑢 ≤
𝑓(𝑦)

𝑀𝑔(𝑦)
 ; then set x = y.

(iii) Otherwise discard that value of Y, and repeat.

• Note that:

(i) Pr.(Accept) = (1 / M).

(ii) Expected “Waiting Time” = M.

(iii) Computational efficiency will be achieved if M is chosen to be as

small as possible.

4

• Why does this method work?

• Easy to show that

Pr.(Y ≤ x | Accept) = Pr.(Y ≤ x | u ≤ f (y) / [M g(y)]) = Pr.(X ≤ x)

• Simulating from g, the output of this algorithm is exactly distributed from f.

• The Acceptance - Rejection method can be used no matter what the

dimensionality of the random variables.

• Just need g to be a density over the same space as f.

• Only need to know (f / g), and hence f (.), up to a constant

• Only need an upper bound on M.

5

A Geometric Motivation:

• Suppose we want to generate a random point within the unit circle.

• Generate a candidate point, (𝑥 , 𝑦) where x and y are independent

uniformly distributed between −1 and 1.

• If it happens that (𝑥2 + 𝑦2) ≤ 1 then the point is within the unit circle

and should be accepted.

• If not, then this point should be rejected and another candidate should be

generated.

6

Example 1

• Want to generate Standard Normal values, using the Logistic distribution as

the “envelope”.

• f (.) ~ N [0 , 1] ; g(.) ~ Logistic [0 , s].

• Choose scale parameter for Logistic so that [f (.) / g(.)] < 1.

• Modal height of N [0 , 1] = (1 / √2𝜋) ;

modal height of Logistic [0 , s] = (1 / 4s).

• Heights will be equal if s = 0.6267

• Set M = 1.1, for instance.

• Consider the R code:

7

myrnorm = function(M){

 while(1) {

 u = runif(1); x = rlogis(1, scale = 0.627)

 if(u < dnorm(x)/M/dlogis(x, scale = 0.627))

 return(x)

 }

}

nrep<-100000

hist(replicate(nrep, myrnorm(1.1)), prob=TRUE, main = "Simulated Std.

Normal Values",

xlab="x", ylab="f(x)", xlim=c(-3,3))

lines(seq(-3, 3, 0.01), dnorm(seq(-3, 3, 0.01)), col=2, lwd=3)

8

9

Example 2

Courtesy of Patrick Lam (Harvard)

 Want to sample from a Triangular distribution, whose density is

𝑓(𝑥) = 8𝑥 ; 0 ≤ 𝑥 ≤ 0.25

 = (
8

3
) − (

8𝑥

3
) ; 0.25 < 𝑥 ≤ 1

• Use a Uniform distribution for g(y).

• Maximum height of f (x) is 2.0, so set M = 2.5, say.

• Use R code to simulate 50,000 draws from f (.).

10

f <- function(x) {

if (x >= 0 && x < 0.25)

8 * x

else if (x >= 0.25 && x <= 1)

 8/3 - 8 * x/3

else 0

 }

g <- function(x) {

 if (x >= 0 && x <= 1)

 1

 else 0

 }

11

rep <- 50000

M<- 2.5

n.draws <- 0

draws <- c()

x.grid <- seq(0, 1, by = 0.01)

while (n.draws < rep) {

 y <- runif(1, 0, 1)

 accept.prob <- f(y)/(M * g(y))

 u <- runif(1, 0, 1)

 if (accept.prob >= u) {

 draws <- c(draws, y)

 n.draws <- n.draws + 1

 }

 }

12

13

Why did it work?

• The difference between f (x) and Mg(x) at places with higher density (i.e.,

around x = 0.25) is smaller than at places with lower density (i.e., around x

= 0.8).

• So the acceptance probability at x = 0.25 is higher and more draws of x =

0.25 are accepted.

• There are an infinite number of candidate densities g(x) and constants M

that we can use.

• The only difference between them is computation time.

• If g(x) is significantly different in shape than f (x) or if Mg(x) is significantly

greater than f (x), then more of our candidate draws will be rejected.

• If f (x) = Mg(x), then all our draws will be accepted.

14

7.1 Hierarchical Bayes

• One difficulty with Bayesian inference, in practice, is the specification of

the prior for the parameters.

• One way to proceed is to set up a "Hierarchical" set of priors.

• We specify a prior for the primary parameters of the model, say 𝑝(𝜽 | 𝝎).

• Rather than just assign values for the elements of "prior parameter vector",

a, we'll assign a further prior, 𝑝(𝝎).

• In fact, this additional prior may involve other unknown parameters - e.g.,

𝑝(𝝎) = 𝑝(𝝎 | 𝝋)

• Then we could assign a prior for the elements of 𝝋; etc.

15

• When would we stop?

• When we have information for the parameters of the "last" prior; or when

we can reasonably put uniform or diffuse priors on parameters of the

penultimate prior.

• We'll consider a simple example of this - and also use this to illustrate the

use of the "Acceptance-Rejection" sampling procedure, within the context

of the Gibbs Sampler.

• Return to the Consumption function example, but now with a different set

of prior information.

• We'll avoid any integration this time by using the G.S.

16

Example

 𝑦𝑖 = 𝛽𝑥𝑖 + 𝜀𝑖 ; 𝜀𝑖 ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎2] ; i = 1, 2, 3,, n

(Deviations about sample means, so no intercept.)

• Prior information:

(i) 𝑝(𝜎) ∝ 1/𝜎 ; 0 < 𝜎 < ∞

(ii) 𝑝(𝛽 |𝑎, 𝑏) ∝ 𝛽𝑎−1(1 − 𝛽)𝑏−1 ; 0 < 𝛽 < 1

 Beta(a , b) ; a, b > 0

(iii) 𝑝(𝑎) ∝ 1/𝑎 ; 0 < 𝑎 < ∞

(iv) 𝑝(𝑏) ∝ 1/𝑏 ; 0 < 𝑏 < ∞

(How could this be extended even further?)

17

• Joint prior p.d.f.:

 𝑝(𝛽, 𝜎, 𝑎, 𝑏) = 𝑝(𝛽 |𝑎, 𝑏)𝑝(𝑎, 𝑏)𝑝(𝜎) = 𝑝(𝛽 |𝑎, 𝑏)𝑝(𝑎)𝑝(𝑏)𝑝(𝜎)

• So,

 𝑝(𝛽, 𝜎, 𝑎, 𝑏) ∝ (𝑎𝑏𝜎)−1𝛽𝑎−1(1 − 𝛽)𝑏−1

• The Likelihood function is

𝐿(𝛽, 𝜎, 𝑎, 𝑏 | 𝒚) ∝ 𝜎−𝑛𝑒𝑥𝑝 [−
1

2𝜎2
∑(𝑦𝑖 − 𝛽𝑥𝑖)2

𝑛

𝑖=1

]

• Now we'll apply Bayes Theorem:

18

𝑝(𝛽, 𝜎, 𝑎, 𝑏 | 𝒚) ∝ (𝑎𝑏)−1𝜎−(𝑛+1) 𝛽𝑎−1(1 − 𝛽)𝑏−1

 × 𝑒𝑥𝑝 [−
1

2𝜎2
∑ (𝑦𝑖 − 𝛽𝑥𝑖)2𝑛

𝑖=1]

• We can marginalize this joint posterior with respect to 𝜎 analytically, as in

previous examples:

𝑝(𝛽, 𝑎, 𝑏 | 𝒚) = ∫ 𝑝(𝛽, 𝜎, 𝑎, 𝑏 | 𝒚)𝑑𝜎

∞

0

 ∝ (𝑎𝑏)−1 𝛽𝑎−1(1 − 𝛽)𝑏−1[∑ (𝑦𝑖 − 𝛽𝑥𝑖)2𝑛
𝑖=1]−𝑛/2

• Now let's think about the information that we need if we're going to apply

the Gibbs Sampler to get the marginal posterior densities for the various

parameters.

19

• We have to determine the various conditional posterior densities:

(i) 𝑝(𝛽 | 𝑎, 𝑏, 𝒚) ∝ 𝛽𝑎−1(1 − 𝛽)𝑏−1

 × [∑ (𝑦𝑖 − 𝛽𝑥𝑖)2𝑛
𝑖=1]−𝑛/2

(ii) 𝑝(𝑎 | 𝑏, 𝛽, 𝒚) ∝ (1/𝑎)𝛽(𝑎−1)

(iii) 𝑝(𝑏 | 𝑎, 𝛽 | 𝒚) ∝ (
1

𝑏
) (1 − 𝛽)(𝑏−1)

• All of these distributions are totally non-standard.

• Hence the proposal that we use Acceptance-Rejections sampling.

• Recall, we don't need to know the normalizing constants for these densities

- knowledge of the kernels is sufficient.

• R code:

20

• Functions used for "Acceptance-Rejection" sampling:

myfdenbeta = function(M,a,b,n,cons,inc) {

 while(1) {

 u = runif(1); x=rbeta(1,5,2)

if(u < (x^(a-1)*(1-x)^(b-1)*(sum(cons-x*inc)^2))^(-n/2)/M/dbeta(x, 5, 2))

 return(x)

 }

 }

21

myfdena = function(M,beta) {

 while(1) {

 u = runif(1); x=rgamma(1, scale=1, shape=1)

 if(u < ((1/x)*beta^(x-1))/M/dgamma(x,scale=1, shape=1))

 return(x)

 }

}

myfdenb = function(M,beta) {

 while(1) {

 u = runif(1); x=rgamma(1, scale=1, shape=3)

 if(u < ((1/x)*(1-beta)^(x-1))/M/dgamma(x, scale=1, shape=3))

 return(x)

 }

}

22

Rest of the R code for the Gibbs Sampler:

library(modeest)

set.seed(123)

nrep<- 52000

burnin<- 2000

margbeta<- vector(length=nrep)

marga<-vector(length=nrep)

margb<-vector(length=nrep)

23

Read the data:

cons.df<-

read.table("http://web.uvic.ca/~dgiles/blog/consump.dat",header=TRUE)

TAKE DEVIATIONS ABOUT MEANS

consump<- (cons.df$CONS-mean(cons.df$CONS))

income<- (cons.df$Y-mean(cons.df$Y))

mle<- lm(consump~income -1)

ASSUMING NORMAL ERRORS, WE NOW HAVE THE MLE OF Beta

summary(mle)

beta<- as.numeric(mle[1])

24

START OF GIBBS SAMPLER

for (ii in 1:nrep) {

marga[ii]<- a<- myfdena(5, beta)

margb[ii]<-b<- myfdenb(5, beta)

margbeta[ii]<- beta<- myfdenbeta(5, a, b,length(consump),consump, income)

}

END OF GIBBS SAMPLER

25

Maximum Likelihood Results

26

27

28

29

30

31

32

33

34

35

Summary of Marginal Posterior Distributions

 a b Beta

Recall: MLE for beta was 0.89848

a

b

Beta

