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9.  Model Selection - Theory 

• One nice feature of the Bayesian analysis is that we can apply it to drawing 

inferences about entire models, not just parameters. 

• Can't do this with frequentist approach, especially if models are non-nested! 

• We can put a prior on the Model Space, apply Bayes' Theorem, and then get 

posterior information about the competing models. 

• Once we assign a Loss Function, we can then choose a model among the 

competing ones, so as to minimize posterior expected loss. 

• Alternatively, we can use the posterior probabilities associated with each of 

the competing models as weights - create a weighted average of the results 

from each model. Bayesian Model Averaging. 
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• e.g.,  M1: 𝑦 = 𝑋𝛽 + 𝜀    ;    M2: 𝑦 = 𝑍𝛾 + 𝑢     

• Classical methods for choosing between these models can lead to 

conflicting outcomes - e.g., the Cox Test (& extensions such as J-Test). 

• They are virtually useless when it comes to more than 2 models at once. 

• Our Bayesian Framework: 

We already have  

(i)  a sample space, Y, with a joint data density, 𝑝(𝒚 | 𝜽) 

(ii) a parameter space, 𝛺 = {𝜽}, and a prior density, 𝑝(𝜽) 

 

We'll generalize the density in (i) to  𝑝(𝒚 | 𝜽𝒊, 𝑀𝑖) 

We'll generalize (ii) to 𝛺𝑖 = {𝜽𝒊} , for the i'th model (i = 1, 2, ......m), with 

an associated prior density, 𝑝(𝜽𝒊 |𝑀𝑖). 
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We'll add a Model Space, 𝑀 = {𝑀𝑖}𝑖=1
𝑚 , with an associated prior mass 

function, 𝑝(𝑀𝑖) ; i = 1, 2, ...., m. (m can be countably infinite.) 

• We could write this mass function on the model space more completely as 

𝑝(𝑀𝑖| 𝜽𝒊) , where 

  0 ≤ 𝑝(𝑀𝑖|𝜽𝒊) ≤ 1    ;     i = 1, 2, ...., m. 

        ∑ 𝑝(𝑀𝑖|𝜽𝒊) = 1𝑚
𝑖=1     

• A potential difficulty with this last property is that we have to specify the 

model space exhaustively; and the "True Model" (DGP) has to be one of the 

competing models. 

• We'll see later how this issue can be dealt with quite easily. 

• Now let's put all of this together. 
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• We can define two densities that are generalizations of what we have 

already: 

Conditional Data Density: 

𝑝(𝒚 | 𝑀𝑖) = ∫ 𝑝(𝒚, 𝜽𝒊 |𝑀𝑖)𝑑𝜽𝒊 = ∫ 𝑝(𝒚 |𝜽𝒊, 𝑀𝑖)𝑝(𝜃𝑖  |𝑀𝑖)𝑑𝜽𝒊
Ω𝑖Ω𝑖

 

(multi-dimensional integrals, again) 

Marginal Data Density: 

𝑝(𝒚) = ∑ 𝑝(𝒚 |𝑀𝑖)𝑝(𝑀𝑖)

𝑚

𝑖=1

 

(Only the last of these results requires that we have exhaustively specified the 

model space.) 
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• Now we're ready to apply Bayes' Theorem to get the Model Space. 

• The Posterior Probability for Model i is: 

                       𝑝(𝑀𝑖  | 𝒚) = 𝑝(𝑀𝑖)𝑝(𝒚 |𝑀𝑖)/𝑝(𝒚) 

        ∝ 𝑝(𝑀𝑖)𝑝(𝒚 |𝑀𝑖) 

where the normalizing constant is [𝑝(𝒚)]−1 = [∑ 𝑝(𝑦 |𝑀𝑖)𝑝(𝑀𝑖)𝑚
𝑖=1 ]−1. 

• Note that the calculation for the posterior probability for Model i will be 

incorrect if the model space is not properly specified. 

• However, even in the latter case, we can still make pair-wise comparions 

between the competing models. 
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• Specifically, we compute the Bayesian Posterior Odds in favour of one 

model over another. 

• The Prior Odds in favour of Model i over Model j are  𝑝(𝑀𝑖)/𝑝(𝑀𝑗) . 

• The corresponding Bayesian Posterior Odds (BPO) are: 

BPOij = [𝑝(𝑀𝑖  | 𝒚)/𝑝(𝑀𝑗  | 𝒚)] =
𝑝(𝑀𝑖)𝑝(𝒚 | 𝑀𝑖)/𝑝(𝒚)

𝑝(𝑀𝑗)𝑝(𝒚 | 𝑀𝑗)/𝑝(𝒚)
 

Or,    BPOij = [
𝑝(𝑀𝑖)

𝑝(𝑀𝑗)
]  × [

𝑝(𝒚 |𝑀𝑖)

𝑝(𝒚 |𝑀𝑗)
] 

 

            (Prior odds)           ("Bayes factor") 
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• We can use the BPO to compare 2 models, even if the model space is 

incomplete. 

• If, in fact, the model space is complete, then we can get the individual 

posterior probabilities: 

e.g.: [𝑝(𝑀1 | 𝒚)/𝑝(𝑀2 | 𝒚)] = 0.2      and    [𝑝(𝑀1 | 𝒚)/𝑝(𝑀3 | 𝒚)] = 4       

Then,   𝑝(𝑀2 | 𝒚) = 5𝑝(𝑀1 | 𝒚) 

   𝑝(𝑀3 | 𝒚) = 0.25𝑝(𝑀1 | 𝒚) 

   𝑝(𝑀1 | 𝒚) = 1 − 𝑝(𝑀2 | 𝒚) − 𝑝(𝑀3 | 𝒚) 

and so,    

𝑝(𝑀1 | 𝒚) = 0.16   ;  𝑝(𝑀2 | 𝒚) = 0.80   ;   𝑝(𝑀3 | 𝒚) = 0.04    
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A Decision Rule: 

• Now use the Bayes’ principle of “Minimum Expected Loss” (MEL) to help 

us to select between alternative models. 

• Let 𝐿𝑖𝑗   (≥ 0) when Mi is the “True Model”, but we choose Mj.  

• 𝐿𝑖𝑖 = 0    ;     i, j = 1, 2, …., m.          𝐿𝑖𝑗 ≠ 𝐿𝑗𝑖 , in general. 

So: 
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• When we choose M1, the Posterior Expected Loss is: 

𝐸[𝐿(𝑀1)| 𝒚] = 𝐿11 𝑝(𝑀1 | 𝒚) + 𝐿21 𝑝(𝑀2 | 𝒚) = 0 + 𝐿21 𝑝(𝑀2 | 𝒚) 

• When we choose M2, the Posterior Expected Loss is: 

  𝐸[𝐿(𝑀2)| 𝒚] = 𝐿12 𝑝(𝑀1 | 𝒚) 

• Using the MLE Rule we will choose M1 over M2, iff 

𝐸[𝐿(𝑀1)| 𝒚] < 𝐸[𝐿(𝑀2)| 𝒚] 

i.e., iff      [𝑝(𝑀1 | 𝒚)/ 𝑝(𝑀2 | 𝒚)] > (𝐿21/𝐿12) 

       (BPO12) 

• If the Loss Function is symmetric choose M1 over M2, iff  BPO12  >  1. 

• Can make pair-wise choice without individual posterior probabilities. 
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Some other results 

• Can apply these ideas to any models. In econometrics, examples include: 

basic regression models; regression with non-standard assumptions; systems 

of equations; etc. 

• If the models are “nested”, and if we have proper priors for the parameters 

in each model, then BPO              LR  as  𝑛 → ∞ .   

• AIC, SIC, etc, can be interpreted as functions of the BPO. 

• If we have regression models that are non-nested, with equal numbers of 

parameters, the BPO / MEL rule becomes equivalent to a “maximize R2” 

rule as the prior information becomes increasingly “diffuse”.          
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A simple example 

• Suppose that  𝑦 ~ 𝑁[𝜃 , 1] and we have just one observation. 

• We want to choose between 𝐻1: 𝜃 = 1  and 𝐻2: 𝜃 = −1. 

• 𝐵𝑃𝑂12 =
𝑝(𝜃=𝜃1)

𝑝(𝜃=𝜃2)
×

𝑝(𝑦 |𝜃=𝜃1)

𝑝(𝑦 |𝜃=𝜃2)
  . 

• In our case, the “Bayes factor” is 

𝑝(𝑦 |𝜃 = 1)

𝑝(𝑦 |𝜃 = −1)
=

𝑒𝑥𝑝 {−
1
2

(𝑦 − 1)2}

𝑒𝑥𝑝 {−
1
2

(𝑦 + 1)2}

= 𝑒𝑥𝑝 {−
1

2
(𝑦2 − 2𝑦 + 1 − 𝑦2 − 2𝑦 − 1)} = 𝑒2𝑦 
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• If we have equal prior probabilities, and a symmetric loss function, we'll 

choose H1 if 𝑒2𝑦 > 1. That is, if 𝑦 > 0. 

• Similarly, we'll choose H2 if 𝑒2𝑦 < 1. That is, if 𝑦 < 0. 

• If 𝑦 = 0, we'll be indifferent between the 2 hypotheses, a posteriori. 

• Does this make sense? (Of course!) And we have just one observation. 

• Suppose we draw 𝑦 = 0.5, and we have prior odds of "1"; and 𝐿12 = 𝐿21.  

• Then 𝐵𝑃𝑂12 = 𝑒1 = 2.718, and 𝑝(𝐻1 | 𝑦) + 𝑝(𝐻2 | 𝑦) = 1.  

• So, 𝑝(𝜃 = 1| 𝑦) = 0.73; and 𝑝(𝜃 = −1 | 𝑦) = 0.27. 

• If 𝑦 = 1, then 𝑝(𝜃 = 1| 𝑦) = 0.88; and 𝑝(𝜃 = −1 | 𝑦) = 0.12; etc. 

• Experiment with different prior odds, and asymmetric losses. 
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• How does this compare with what a frequentist would do? 

• Let 𝐻0 = 𝐻1 and 𝐻𝐴 = 𝐻2 , Choose 𝛼 = 5%. 

•  𝑍 = (𝑦 − 1)/1. Reject 𝐻0 if  𝑍 < −1.645. That is, if 𝑦 < −0.645. 

•  𝑦 = −0.645 corresponds to 𝐵𝑃𝑂12 = 𝑒−1.29 = 0.275. 

• This implies that 𝑝(𝜃 = 1| 𝑦) = 0.784; and 𝑝(𝜃 = −1 | 𝑦) = 0.216, if we 

have equal prior probabilities. 

• If 𝐵𝑃𝑂12 = 0.275, and we have equal prior probabilities for the 2 

hypotheses, what loss structure would "match up" with the frequentist's 5% 

significance level? 

• Reject 𝐻1: 𝜃 = 1 if  𝐵𝑃𝑂12 <  (𝐿21/𝐿12). We'd need (𝐿21/𝐿12) = 0.275. 

• 𝐿12 = 3.636𝐿21. 

•  𝐿𝑜𝑠𝑠[𝐶ℎ𝑜𝑜𝑠𝑒 𝐻1 | 𝐻2𝑇𝑟𝑢𝑒] = 3.636 × 𝐿𝑜𝑠𝑠[𝐶ℎ𝑜𝑜𝑠𝑒 𝐻2 | 𝐻1𝑇𝑟𝑢𝑒]. 


