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9. Model Selection - Theory

e One nice feature of the Bayesian analysis is that we can apply it to drawing
Inferences about entire models, not just parameters.

e Can't do this with frequentist approach, especially if models are non-nested!

e \We can put a prior on the Model Space, apply Bayes' Theorem, and then get
posterior information about the competing models.

e Once we assign a Loss Function, we can then choose a model among the
competing ones, so as to minimize posterior expected loss.

e Alternatively, we can use the posterior probabilities associated with each of
the competing models as weights - create a weighted average of the results

from each model. Bayesian Model Averaging.



e.g., Miiy=Xf+e ; Maiy=Zy+u

Classical methods for choosing between these models can lead to
conflicting outcomes - e.g., the Cox Test (& extensions such as J-Test).
They are virtually useless when it comes to more than 2 models at once.

Our Bayesian Framework:

We already have

(i) a sample space, Y, with a joint data density, p(y | 8)
(ii) a parameter space, 2 = {0}, and a prior density, p(0)

We'll generalize the density in (i) to p(y | 8;, M;)

We'll generalize (ii) to 2; = {6;} , for the i'th model (i =1, 2, ......m), with

an associated prior density, p(0; |M;).



We'll add a Model Space, M = {M;}7~,, with an associated prior mass
function, p(M;) ;1=1, 2, ...., m. (m can be countably infinite.)

e \We could write this mass function on the model space more completely as
p(M;| 6;) , where
0 <pM;|0;)) <1 ; i1=12,..,m.
iz1p(M;|6;) =1
o A potential difficulty with this last property is that we have to specify the

model space exhaustively; and the "True Model" (DGP) has to be one of the

competing models.
o We'll see later how this issue can be dealt with quite easily.

e Now let's put all of this together.



e \We can define two densities that are generalizations of what we have

already:

Conditional Data Density:

n(y | M) = j n(y,0; |M;)d8; = j p(y 18, MOp(6; [M,)d6,
Q; Q;

(multi-dimensional integrals, again)

Marginal Data Density:

pO) = ) p(y IMIp(M,)
i=1

(Only the last of these results requires that we have exhaustively specified the

model space.)



Now we're ready to apply Bayes' Theorem to get the Model Space.
The Posterior Probability for Model i is:
p(M; | y) = p(MDp(y IM;)/p(¥)
< p(Mp)p(y [M;)
where the normalizing constant is [p(y)]™! = X2, p(y IM)p(M)] 1.
Note that the calculation for the posterior probability for Model i will be
incorrect if the model space is not properly specified.

However, even in the latter case, we can still make pair-wise comparions

between the competing models.



e Specifically, we compute the Bayesian Posterior Odds in favour of one
model over another.

e The Prior Odds in favour of Model i over Model j are p(M;)/p(M;) .

e The corresponding Bayesian Posterior Odds (BPO) are:

_ _ pM)p(y | M)/p()
BRO = (M 13)/p(M; | )] = 6 3o 1,070

p(M;) p(y |IM;)
- : X
Or, BPO; [p(M,-)] L(y M)

[\

(Prior odds) ("Bayes factor")



e \We can use the BPO to compare 2 models, even if the model space is
Incomplete.
e If, in fact, the model space is complete, then we can get the individual

posterior probabilities:
eg.. [p(My|y)/p(Mz[y)] =02 and [p(M;|y)/p(M3|y)] =4
Then, p(Mz |y) = 5pMy | y)
p(M3 | y) = 0.25p(M; | y)
p(My|y) =1—pM;|y) —pM3|y)
and so,

p(M;|y) =016 ; p(M,|y)=10.80 ; p(M3]|y)=0.04



A Decision Rule:

e Now use the Bayes’ principle of “Minimum Expected Loss” (MEL) to help
us to select between alternative models.

e LetL;; (= 0)when Miis the “True Model”, but we choose M;.

o L; = 0 ; i,j=1,2, ceeey M. Ll] :/:L]l ,In general.
So:
True
|\/|1 O L21
Selected
M L2 0




When we choose M1, the Posterior Expected Loss is:

E[LIM)|y] = L1y p(My | y) + Ly p(M | y) = 0+ Ly p(M3 | y)
When we choose My, the Posterior Expected Loss is:

E[L(Mz)|y] = L1, p(My | y)
Using the MLE Rule we will choose M1 over My, iff

E[L(My)|y] < E[L(M3)]| y]

Le., Iff r[P(M1 | ¥)/ oM | y)] > (L21/L12?

\ (BPOIZ) Yy

If the Loss Function is symmetric choose M1 over My, iff BPO1, > 1.

Can make pair-wise choice without individual posterior probabilities.



Some other results

e Can apply these ideas to any models. In econometrics, examples include:
basic regression models; regression with non-standard assumptions; systems
of equations; etc.

¢ If the models are “nested”, and if we have proper priors for the parameters
in each model, then BPO —— LR as n — oo .

e AIC, SIC, etc, can be interpreted as functions of the BPO.

e |f we have regression models that are non-nested, with equal numbers of
parameters, the BPO / MEL rule becomes equivalent to a “maximize R?”

rule as the prior information becomes increasingly “diffuse”.
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A simple example

e Suppose that y ~ N[6,1] and we have just one observation.

e \We want to choose between H;: 8 =1 and H,: 0 = —1.

__p(6=0;1) ply16=61)
* BPO;; = p(0=6,) " p(y|6=6,)

e In our case, the “Bayes factor” is

p(y |6 =1) _ exp {—%(J’ — 1)2}
p10=-1) {_%(y + 1)2}

= ex —1(2—2 +1—y2—-2y—1)t=e?
p Zy y y y
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If we have equal prior probabilities, and a symmetric loss function, we'll
choose Hi if e2Y > 1. That s, if y > 0.
Similarly, we'll choose H; if e2Y < 1. That is, if y < 0.

If y = 0, we'll be indifferent between the 2 hypotheses, a posteriori.

Does this make sense? (Of course!) And we have just one observation.

Suppose we draw y = 0.5, and we have prior odds of "1"; and L, = L,;.
Then BPO,, = el = 2.718,and p(H, | y) + p(H, | y) = 1.

So,p(8 =1|y) =0.73;and p(0 = -1 | y) = 0.27.

If y=1,thenp(@ =1|y) = 0.88;and p(6 = —1|y) = 0.12; etc.

Experiment with different prior odds, and asymmetric losses.
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How does this compare with what a frequentist would do?

Let Hy = H, and Hy = H, , Choose a = 5%.

Z =(y—1)/1.Reject Hy if Z < —1.645. Thatis, if y < —0.645.

y = —0.645 corresponds to BPO,, = e~ 129 = (0.275.

This implies that p(6 = 1| y) = 0.784;and p(8 = —1 | y) = 0.216, if we
have equal prior probabilities.

If BPO,, = 0.275, and we have equal prior probabilities for the 2
hypotheses, what loss structure would "match up" with the frequentist's 5%
significance level?

Reject H;: 8 = 1 if BP0y, < (L,1/L1,). We'd need (L,;/L;{5) = 0.275.
L, = 3.636L,;.

Loss[Choose H; | H,True] = 3.636 X Loss[Choose H, | H;True].
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