David Giles Bayesian Econometrics

9. Model Selection - Theory

- One nice feature of the Bayesian analysis is that we can apply it to drawing inferences about entire *models*, not just parameters.
- Can't do this with frequentist approach, especially if models are *non-nested*!
- We can put a prior on the *Model Space*, apply Bayes' Theorem, and then get posterior information about the competing models.
- Once we assign a Loss Function, we can then choose a model among the competing ones, so as to minimize posterior expected loss.
- Alternatively, we can use the *posterior probabilities* associated with each of the competing models as weights create a weighted average of the results from each model. Bayesian Model Averaging.

- *e.g.*, $M_1: y = X\beta + \varepsilon$; $M_2: y = Z\gamma + u$
- Classical methods for choosing between these models can lead to conflicting outcomes *e.g.*, the Cox Test (& extensions such as J-Test).
- They are virtually useless when it comes to more than 2 models at once.
- Our Bayesian Framework:

We already have

- (i) a sample space, Y, with a joint data density, $p(y | \theta)$
- (ii) a parameter space, $\Omega = \{\theta\}$, and a prior density, $p(\theta)$

<u>We'll generalize the density in (i)</u> to $p(\mathbf{y} \mid \boldsymbol{\theta}_i, M_i)$

<u>We'll generalize (ii)</u> to $\Omega_i = \{\boldsymbol{\theta}_i\}$, for the *i'th model* (*i* = 1, 2,*m*), with

an associated prior density, $p(\theta_i | M_i)$.

We'll <u>add a Model Space</u>, $M = \{M_i\}_{i=1}^m$, with an associated prior mass function, $p(M_i)$; i = 1, 2, ..., m. (*m* can be countably infinite.)

• We could write this mass function on the model space more completely as

 $p(M_i | \boldsymbol{\theta}_i)$, where $0 \le p(M_i | \boldsymbol{\theta}_i) \le 1$; i = 1, 2, ..., m. $\sum_{i=1}^m p(M_i | \boldsymbol{\theta}_i) = 1$

- A *potential* difficulty with this last property is that we have to specify the model space exhaustively; and the "True Model" (DGP) has to be one of the competing models.
- We'll see later how this issue can be dealt with quite easily.
- Now let's put all of this together.

• We can define two densities that are generalizations of what we have already:

Conditional Data Density:

$$p(\mathbf{y} \mid M_i) = \int_{\Omega_i} p(\mathbf{y}, \boldsymbol{\theta}_i \mid M_i) d\boldsymbol{\theta}_i = \int_{\Omega_i} p(\mathbf{y} \mid \boldsymbol{\theta}_i, M_i) p(\boldsymbol{\theta}_i \mid M_i) d\boldsymbol{\theta}_i$$

(multi-dimensional integrals, again)

Marginal Data Density:

$$p(\mathbf{y}) = \sum_{i=1}^{m} p(\mathbf{y} | M_i) p(M_i)$$

(Only the last of these results requires that we have exhaustively specified the model space.)

- Now we're ready to apply **Bayes' Theorem** to get the Model Space.
- The Posterior Probability for Model *i* is:

 $p(M_i \mid \mathbf{y}) = p(M_i)p(\mathbf{y} \mid M_i)/p(\mathbf{y})$ $\propto p(M_i)p(\mathbf{y} \mid M_i)$

where the normalizing constant is $[p(\mathbf{y})]^{-1} = [\sum_{i=1}^{m} p(\mathbf{y} | M_i) p(M_i)]^{-1}$.

- Note that the calculation for the posterior *probability* for Model *i* will be incorrect if the model space is not properly specified.
- However, even in the latter case, we can still make pair-wise comparions between the competing models.

- Specifically, we compute the Bayesian Posterior *Odds* in favour of one model over another.
- The Prior Odds in favour of Model *i* over Model *j* are $p(M_i)/p(M_j)$.
- The corresponding Bayesian Posterior Odds (BPO) are:

$$BPO_{ij} = \left[p(M_i \mid \mathbf{y}) / p(M_j \mid \mathbf{y}) \right] = \frac{p(M_i)p(\mathbf{y} \mid M_i) / p(\mathbf{y})}{p(M_j)p(\mathbf{y} \mid M_j) / p(\mathbf{y})}$$

Or,
$$BPO_{ij} = \left[\frac{p(M_i)}{p(M_j)} \right] \times \left[\frac{p(\mathbf{y} \mid M_i)}{p(\mathbf{y} \mid M_j)} \right]$$

(Prior odds) ("Bayes factor")

- We can use the BPO to compare 2 models, even if the model space is incomplete.
- If, in fact, the model space *is complete*, then we can get the individual *posterior probabilities*:

e.g.:
$$[p(M_1 | \mathbf{y})/p(M_2 | \mathbf{y})] = 0.2$$
 and $[p(M_1 | \mathbf{y})/p(M_3 | \mathbf{y})] = 4$

Then,
$$p(M_2 | y) = 5p(M_1 | y)$$

$$p(M_3 \mid \boldsymbol{y}) = 0.25 p(M_1 \mid \boldsymbol{y})$$

$$p(M_1 \mid \boldsymbol{y}) = 1 - p(M_2 \mid \boldsymbol{y}) - p(M_3 \mid \boldsymbol{y})$$

and so,

 $p(M_1 | \mathbf{y}) = 0.16$; $p(M_2 | \mathbf{y}) = 0.80$; $p(M_3 | \mathbf{y}) = 0.04$

A Decision Rule:

- Now use the Bayes' principle of "Minimum Expected Loss" (MEL) to help us to select between alternative models.
- Let $L_{ij} (\geq 0)$ when M_i is the "True Model", but we choose M_j .

•
$$L_{ii} = 0$$
 ; $i, j = 1, 2, ..., m$. $L_{ij} \neq L_{ji}$, in general.
So:

$\begin{array}{c|c} \mathbf{M}_1 & 0 & L_{21} \\ \mathbf{M}_2 & L_{12} & 0 \\ \hline & \mathbf{M}_1 & \mathbf{M}_2 \end{array} \end{array} \mathsf{Selected}$

True

• When we choose M_1 , the Posterior Expected Loss is:

 $E[L(M_1)|\mathbf{y}] = L_{11} p(M_1 | \mathbf{y}) + L_{21} p(M_2 | \mathbf{y}) = 0 + L_{21} p(M_2 | \mathbf{y})$

• When we choose M_2 , the Posterior Expected Loss is:

 $E[L(M_2)|\mathbf{y}] = L_{12} p(M_1 | \mathbf{y})$

• Using the MLE Rule we will choose M_1 over M_2 , iff

 $E[L(M_1)|\mathbf{y}] < E[L(M_2)|\mathbf{y}]$

i.e., iff
$$[p(M_1 | \mathbf{y}) / p(M_2 | \mathbf{y})] > (L_{21}/L_{12})$$

(BPO₁₂)

- If the Loss Function is *symmetric* choose M_1 over M_2 , iff **BPO**₁₂ > **1**.
- Can make pair-wise choice *without individual posterior probabilities*.

Some other results

- Can apply these ideas to *any* models. In econometrics, examples include: basic regression models; regression with non-standard assumptions; systems of equations; *etc*.
- If the models are "nested", and if we have proper priors for the parameters in each model, then BPO \longrightarrow LR as $n \rightarrow \infty$.
- AIC, SIC, *etc*, can be interpreted as functions of the BPO.
- If we have regression models that are non-nested, with equal numbers of parameters, the BPO / MEL rule becomes equivalent to a "maximize R²" rule as the prior information becomes increasingly "diffuse".

A simple example

- Suppose that $y \sim N[\theta, 1]$ and we have just <u>one observation</u>.
- We want to choose between $H_1: \theta = 1$ and $H_2: \theta = -1$.

•
$$BPO_{12} = \frac{p(\theta = \theta_1)}{p(\theta = \theta_2)} \times \frac{p(y \mid \theta = \theta_1)}{p(y \mid \theta = \theta_2)}$$

• In our case, the "Bayes factor" is

$$\frac{p(y \mid \theta = 1)}{p(y \mid \theta = -1)} = \frac{exp\left\{-\frac{1}{2}(y - 1)^2\right\}}{exp\left\{-\frac{1}{2}(y + 1)^2\right\}}$$
$$= exp\left\{-\frac{1}{2}(y^2 - 2y + 1 - y^2 - 2y - 1)\right\} = e^{2y}$$

- If we have equal prior probabilities, and a symmetric loss function, we'll choose H₁ if $e^{2y} > 1$. That is, if y > 0.
- Similarly, we'll choose H_2 if $e^{2y} < 1$. That is, if y < 0.
- If y = 0, we'll be <u>indifferent</u> between the 2 hypotheses, *a posteriori*.
- Does this make sense? (Of course!) And we have just one observation.
- Suppose we draw y = 0.5, and we have prior odds of "1"; and $L_{12} = L_{21}$.
- Then $BPO_{12} = e^1 = 2.718$, and $p(H_1 | y) + p(H_2 | y) = 1$.
- So, $p(\theta = 1 | y) = 0.73$; and $p(\theta = -1 | y) = 0.27$.
- If y = 1, then $p(\theta = 1 | y) = 0.88$; and $p(\theta = -1 | y) = 0.12$; *etc*.
- Experiment with different prior odds, and asymmetric losses.

- How does this compare with what a frequentist would do?
- Let $H_0 = H_1$ and $H_A = H_2$, Choose $\alpha = 5\%$.
- Z = (y 1)/1. Reject H_0 if Z < -1.645. That is, if y < -0.645.
- y = -0.645 corresponds to $BPO_{12} = e^{-1.29} = 0.275$.
- This implies that p(θ = 1| y) = 0.784; and p(θ = -1 | y) = 0.216, if we have equal prior probabilities.
- If BPO₁₂ = 0.275, and we have equal prior probabilities for the 2 hypotheses, what loss structure would "match up" with the frequentist's 5% significance level?
- Reject $H_1: \theta = 1$ if $BPO_{12} < (L_{21}/L_{12})$. We'd need $(L_{21}/L_{12}) = 0.275$.
- $L_{12} = 3.636L_{21}$.
- $Loss[Choose H_1 | H_2True] = 3.636 \times Loss[Choose H_2 | H_1True].$