David Giles Bayesian Econometrics

9. Model Selection - Theory

- One nice feature of the Bayesian analysis is that we can apply it to drawing inferences about entire models, not just parameters.
- Can't do this with frequentist approach, especially if models are non-nested!
- We can put a prior on the Model Space, apply Bayes' Theorem, and then get posterior information about the competing models.
- Once we assign a Loss Function, we can then choose a model among the competing ones, so as to minimize posterior expected loss.
- Alternatively, we can use the posterior probabilities associated with each of the competing models as weights - create a weighted average of the results from each model. Bayesian Model Averaging.
- e.g., $\quad \mathrm{M}_{1}: y=X \beta+\varepsilon \quad ; \quad \mathrm{M}_{2}: y=Z \gamma+u$
- Classical methods for choosing between these models can lead to conflicting outcomes -e.g., the Cox Test (\& extensions such as J-Test).
- They are virtually useless when it comes to more than 2 models at once.
- Our Bayesian Framework:

We already have
(i) a sample space, Y, with a joint data density, $p(\boldsymbol{y} \mid \boldsymbol{\theta})$
(ii) a parameter space, $\Omega=\{\boldsymbol{\theta}\}$, and a prior density, $p(\boldsymbol{\theta})$

We'll generalize the density in (i) to $p\left(\boldsymbol{y} \mid \boldsymbol{\theta}_{\boldsymbol{i}}, M_{i}\right)$
 an associated prior density, $p\left(\boldsymbol{\theta}_{\boldsymbol{i}} \mid M_{i}\right)$.

We'll add a Model Space, $M=\left\{M_{i}\right\}_{i=1}^{m}$, with an associated prior mass function, $p\left(M_{i}\right) ; i=1,2, \ldots ., m$. (m can be countably infinite.)

- We could write this mass function on the model space more completely as $p\left(M_{i} \mid \boldsymbol{\theta}_{\boldsymbol{i}}\right)$, where

$$
\begin{aligned}
& 0 \leq p\left(M_{i} \mid \boldsymbol{\theta}_{\boldsymbol{i}}\right) \leq 1 \quad ; \quad i=1,2, \ldots, m . \\
& \sum_{i=1}^{m} p\left(M_{i} \mid \boldsymbol{\theta}_{i}\right)=1
\end{aligned}
$$

- A potential difficulty with this last property is that we have to specify the model space exhaustively; and the "True Model" (DGP) has to be one of the competing models.
- We'll see later how this issue can be dealt with quite easily.
- Now let's put all of this together.
- We can define two densities that are generalizations of what we have already:

Conditional Data Density:

$$
\begin{array}{r}
p\left(\boldsymbol{y} \mid M_{i}\right)=\int_{\Omega_{i}} p\left(\boldsymbol{y}, \boldsymbol{\theta}_{\boldsymbol{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{\boldsymbol{i}}=\int_{\Omega_{i}} p\left(\boldsymbol{y} \mid \boldsymbol{\theta}_{\boldsymbol{i}}, M_{i}\right) p\left(\theta_{i} \mid M_{i}\right) d \boldsymbol{\theta}_{\boldsymbol{i}} \\
\text { (multi-dimensional integrals, again) }
\end{array}
$$

Marginal Data Density:

$$
p(\boldsymbol{y})=\sum_{i=1}^{m} p\left(\boldsymbol{y} \mid M_{i}\right) p\left(M_{i}\right)
$$

(Only the last of these results requires that we have exhaustively specified the model space.)

- Now we're ready to apply Bayes' Theorem to get the Model Space.
- The Posterior Probability for Model i is:

$$
\begin{aligned}
p\left(M_{i} \mid \boldsymbol{y}\right) & =p\left(M_{i}\right) p\left(\boldsymbol{y} \mid M_{i}\right) / p(\boldsymbol{y}) \\
& \propto p\left(M_{i}\right) p\left(\boldsymbol{y} \mid M_{i}\right)
\end{aligned}
$$

where the normalizing constant is $[p(\boldsymbol{y})]^{-1}=\left[\sum_{i=1}^{m} p\left(y \mid M_{i}\right) p\left(M_{i}\right)\right]^{-1}$.

- Note that the calculation for the posterior probability for Model i will be incorrect if the model space is not properly specified.
- However, even in the latter case, we can still make pair-wise comparions between the competing models.
- Specifically, we compute the Bayesian Posterior Odds in favour of one model over another.
- The Prior Odds in favour of Model i over Model j are $p\left(M_{i}\right) / p\left(M_{j}\right)$.
- The corresponding Bayesian Posterior Odds (BPO) are:
$\mathrm{BPO}_{i j}=\left[p\left(M_{i} \mid \boldsymbol{y}\right) / p\left(M_{j} \mid \boldsymbol{y}\right)\right]=\frac{p\left(M_{i}\right) p\left(\boldsymbol{y} \mid M_{i}\right) / p(\boldsymbol{y})}{p\left(M_{j}\right) p\left(\boldsymbol{y} \mid M_{j}\right) / p(\boldsymbol{y})}$
Or, $\quad \mathrm{BPO}_{i j}=\left[\frac{p\left(M_{i}\right)}{p\left(M_{j}\right)}\right] \times\left[\frac{p\left(\boldsymbol{y} \mid M_{i}\right)}{p\left(\boldsymbol{y} \mid M_{j}\right)}\right]$

(Prior odds)
\uparrow
("Bayes factor")
- We can use the BPO to compare 2 models, even if the model space is incomplete.
- If, in fact, the model space is complete, then we can get the individual posterior probabilities:
e.g.: $\quad\left[p\left(M_{1} \mid \boldsymbol{y}\right) / p\left(M_{2} \mid \boldsymbol{y}\right)\right]=0.2 \quad$ and $\quad\left[p\left(M_{1} \mid \boldsymbol{y}\right) / p\left(M_{3} \mid \boldsymbol{y}\right)\right]=4$

Then,

$$
\begin{aligned}
& p\left(M_{2} \mid \boldsymbol{y}\right)=5 p\left(M_{1} \mid \boldsymbol{y}\right) \\
& p\left(M_{3} \mid \boldsymbol{y}\right)=0.25 p\left(M_{1} \mid \boldsymbol{y}\right) \\
& p\left(M_{1} \mid \boldsymbol{y}\right)=1-p\left(M_{2} \mid \boldsymbol{y}\right)-p\left(M_{3} \mid \boldsymbol{y}\right)
\end{aligned}
$$

and so,

$$
p\left(M_{1} \mid \boldsymbol{y}\right)=0.16 ; p\left(M_{2} \mid \boldsymbol{y}\right)=0.80 \quad ; p\left(M_{3} \mid \boldsymbol{y}\right)=0.04
$$

A Decision Rule:

- Now use the Bayes' principle of "Minimum Expected Loss" (MEL) to help us to select between alternative models.
- Let $L_{i j}(\geq 0)$ when M_{i} is the "True Model", but we choose M_{j}.
- $L_{i i}=0 \quad ; \quad i, j=1,2, \ldots, m . \quad L_{i j} \neq L_{j i}$, in general.

So:

True

- When we choose M_{1}, the Posterior Expected Loss is:

$$
E\left[L\left(M_{1}\right) \mid \boldsymbol{y}\right]=L_{11} p\left(M_{1} \mid \boldsymbol{y}\right)+L_{21} p\left(M_{2} \mid \boldsymbol{y}\right)=0+L_{21} p\left(M_{2} \mid \boldsymbol{y}\right)
$$

- When we choose M_{2}, the Posterior Expected Loss is:

$$
E\left[L\left(M_{2}\right) \mid \boldsymbol{y}\right]=L_{12} p\left(M_{1} \mid \boldsymbol{y}\right)
$$

- Using the MLE Rule we will choose M_{1} over M_{2}, iff
$E\left[L\left(M_{1}\right) \mid \boldsymbol{y}\right]<E\left[L\left(M_{2}\right) \mid \boldsymbol{y}\right]$

i.e., iff | $\left[p\left(M_{1} \mid \boldsymbol{y}\right) / p\left(M_{2} \mid \boldsymbol{y}\right)\right]>\left(L_{21} / L_{12}\right)$ |
| :---: |
| $\left(\mathrm{BPO}_{12}\right)$ |

- If the Loss Function is symmetric choose M_{1} over M_{2}, iff $\mathbf{B P O}_{12}>\mathbf{1}$.
- Can make pair-wise choice without individual posterior probabilities.

Some other results

- Can apply these ideas to any models. In econometrics, examples include:
basic regression models; regression with non-standard assumptions; systems of equations; etc.
- If the models are "nested", and if we have proper priors for the parameters in each model, then BPO $\longrightarrow \mathrm{LR}$ as $n \rightarrow \infty$.
- AIC, SIC, etc, can be interpreted as functions of the BPO.
- If we have regression models that are non-nested, with equal numbers of parameters, the BPO / MEL rule becomes equivalent to a "maximize R^{2} " rule as the prior information becomes increasingly "diffuse".

A simple example

- Suppose that $y \sim N[\theta, 1]$ and we have just one observation.
- We want to choose between $H_{1}: \theta=1$ and $H_{2}: \theta=-1$.
- $B P O_{12}=\frac{p\left(\theta=\theta_{1}\right)}{p\left(\theta=\theta_{2}\right)} \times \frac{p\left(y \mid \theta=\theta_{1}\right)}{p\left(y \mid \theta=\theta_{2}\right)}$.
- In our case, the "Bayes factor" is

$$
\begin{aligned}
\frac{p(y \mid \theta=1)}{p(y \mid \theta=-1)} & =\frac{\exp \left\{-\frac{1}{2}(y-1)^{2}\right\}}{\exp \left\{-\frac{1}{2}(y+1)^{2}\right\}} \\
& =\exp \left\{-\frac{1}{2}\left(y^{2}-2 y+1-y^{2}-2 y-1\right)\right\}=e^{2 y}
\end{aligned}
$$

- If we have equal prior probabilities, and a symmetric loss function, we'll choose H_{1} if $e^{2 y}>1$. That is, if $y>0$.
- Similarly, we'll choose H_{2} if $e^{2 y}<1$. That is, if $y<0$.
- If $y=0$, we'll be indifferent between the 2 hypotheses, a posteriori.
- Does this make sense? (Of course!) And we have just one observation.
- Suppose we draw $y=0.5$, and we have prior odds of "1"; and $L_{12}=L_{21}$.
- Then $B P O_{12}=e^{1}=2.718$, and $p\left(H_{1} \mid y\right)+p\left(H_{2} \mid y\right)=1$.
- So, $p(\theta=1 \mid y)=0.73$; and $p(\theta=-1 \mid y)=0.27$.
- If $y=1$, then $p(\theta=1 \mid y)=0.88$; and $p(\theta=-1 \mid y)=0.12$; etc.
- Experiment with different prior odds, and asymmetric losses.
- How does this compare with what a frequentist would do?
- Let $H_{0}=H_{1}$ and $H_{A}=H_{2}$, Choose $\alpha=5 \%$.
- $Z=(y-1) / 1$. Reject H_{0} if $Z<-1.645$. That is, if $y<-0.645$.
- $y=-0.645$ corresponds to $B P O_{12}=e^{-1.29}=0.275$.
- This implies that $p(\theta=1 \mid y)=0.784$; and $p(\theta=-1 \mid y)=0.216$, if we have equal prior probabilities.
- If $B P O_{12}=0.275$, and we have equal prior probabilities for the 2 hypotheses, what loss structure would "match up" with the frequentist's 5\% significance level?
- Reject $H_{1}: \theta=1$ if $B P O_{12}<\left(L_{21} / L_{12}\right)$. We'd need $\left(L_{21} / L_{12}\right)=0.275$.
- $L_{12}=3.636 L_{21}$.
- Loss[Choose $H_{1} \mid H_{2}$ True] $=3.636 \times$ Loss[Choose $H_{2} \mid H_{1}$ True $]$.

