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1. Introduction 

 Widespread use of Maximum Likelihood Estimators (MLE’s). 

  Motivation: wanted to evaluate the first-order biases of the MLE’s of the 

parameters of the generalized Pareto distribution. 

 More generally, interested in bias in cases where likelihood equations (first-

order conditions) do not necessarily admit a closed-form solution.  

 Specifically, consider the O(n-1) bias formula introduced by Cox and Snell 

(1968). 

 Other options – bootstrap the bias; “preventive” methods (e.g., Firth, 1993) 
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2. Outline 

 Basic strategy. 

 Definitions & notation. 

 Two illustrative examples of methodology. 

 New results for, gamma distribution, half-logistic distribution, & 

generalized Pareto distribution. 

 Conclusions & related work – completed or in progress. 
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3. Basic Strategy (Bartlett, 1952) 

)(l  is log-likelihood for single parameter, θ. Assume that )(l  is regular w.r.t. 

all derivatives up to and including the third order.  

If ̂  is MLE, then  0)/()ˆ(' ˆ|   ll ,  and 0)]('[ lE . 

0)(''')ˆ(5.0)('')ˆ()(' 2   lll . 

 ]ˆ[  E )]('''[])ˆ[(5.0)](''),ˆ.[(cov)](''[ 2  lEEllE   

0)](''',)ˆ(5.0.[cov 2   l . 

Approximate other terms to O(n-1) and solve for approximate bias. 

Note:  Don’t need closed-form expression for ̂  itself. 
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4. Definitions and Notation 

Let )(l  be the log-likelihood based on a sample of n observations, with p-

dimensional parameter vector, θ. Assume that )(l  is regular with respect to all 

derivatives up to and including the third order. 

The joint cumulants of the derivatives of )(l  are denoted: 

 )/( 2
jiij lEk      ; i, j = 1, 2, …., p     

)/( 3
ljiijl lEk     ; i, j, l = 1, 2, …., p    

)]/)(/[( 2
, ljilij llEk    ; i, j, l = 1, 2, …., p .    

(Typically, this is where some effort is needed.) 
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The derivatives of the cumulants are denoted: 

 lij
l

ij kk  /)(    ; i, j, l = 1, 2, …., p.    

Fisher’s information matrix is }{ ijkK  , and all of the ‘k’ expressions are 

assumed to be O(n). 

 

Cox and Snell (1968) - if the sample data are independent (but not necessarily 

identically distributed) the bias of the sth element of the MLE of θ ( )̂  is:  

  
  


p

i

p

j

p

l
lijijl

jlsi
s nOkkkkBias

1 1 1

2
, )(]5.0[)ˆ( ;      s = 1, 2, …., p.    
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Cordeiro and Klein (1994) - this bias expression also holds if the data are non-

independent, and it can be re-written (more conveniently) as: 
 

    
  


p

i

p

j

p

l

jl
ijl

l
ij

si
s nOkkkkBias

1 1 1

2)( )(]5.0[)ˆ( ;     s = 1, 2, …., p.    

 

Let )2/()()(
ijl

l
ij

l
ij kka  , for i, j, l = 1, 2, …., p; and define the matrices: 

  

}{ )()( l
ij

l aA  ;       i, j, l = 1, 2, …., p       

  

]|.......||[ )()2()1( pAAAA  .        
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Cordeiro and Klein (1994) show that the bias of the MLE of θ ( )̂ can be re-

written as: 

 

)()()ˆ( 211   nOKvecAKBias  .  

      

A “bias-corrected” MLE for θ can then be obtained as: 

 

)ˆ(ˆˆˆ~ 11  KvecAK ,         

 

where  ̂|)(ˆ KK   and  ̂|)(ˆ AA  .  

 

It can be shown that the bias of ~  is O(n-2). 
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5. Illustrative Results 

 

Example 1 – exponential distribution 

Suppose that X is exponentially distributed. The data are i.i.d. with 

 

 )/exp()( 1  ii xxf    ; θ > 0 ; 0ix ; i = 1, 2, …., n, 

 

)(XE              ;       /)ln()(
1



n

i
ixnl     

 2

1
///  



n

i
ixnl   ;    3

1

222 /2//  


n

i
ixnl    

 4

1

333 /6/2/  


n

i
ixnl       
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The MLE of θ  is   


n

i
i xnx

1
/̂ .  So, this MLE is (exactly) unbiased. 

In this example, p = 1; )/( 2
11 nk  ; )/( 2nK  ; and )/( 21 nK  . 

 

Further, )/4( 3
111 nk  ; )/2( 3)1(

11 nk  ; and 0)/4(5.0)/2( 33
11   nna . 

 

So, A = 0, and the Cox-Snell/Cordeiro-Klein expression for the bias is zero.  

 

Note that not only is this result exactly correct, but it was obtained without 

needing to write down the MLE itself as a closed form expression. 
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Example 2 – normal distribution 

Suppose that X is normally distributed. The data are i.i.d. with 

 

 )2/)(exp()2()( 222/12   
ii xxf  ;  0  ;   ;  

    i = 1, 2, …., n 

So,    

2

1

222 2/)(2/)ln()2ln()2/(),(   


n

i
ixnnl . 

 

[We know that MLE’s are x̂  and  


n

i
i nxx

1

22 /)(̂  , where ̂  is unbiased 

and nBias /)ˆ( 22   .] 
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Information matrix is  
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The Cox-Snell/Cordeiro-Klein expression for the bias of ̂  to O(n-1) is 

  


















 

n
KvecAKBias

/
0

)(
ˆ
ˆ

2
11

2 


, 

 

Coincides with the exact biases of the MLE’s, because they are O(n-1) here. 

Again, note that this result was obtained without needing to be able to write 

down the expressions for the MLE’s themselves in closed form. 

The “bias-adjusted” estimator of σ2 is  nnn /ˆ)1()/ˆ(ˆ~ 2222    , and 
222 /)~( nBias   . Correcting for the O(n-1) bias yields an estimator that is 

biased O(n-2). Of course, in this particular example, we also know how to 

eliminate the bias in 2̂  completely – use the estimator )1/(ˆ 2 nn . 
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5. Some New Results 

5.1 Two-parameter gamma distribution  

The p.d.f. for the gamma distribution, with shape and scale parameters α and θ  

is: 

   



 )(
)(

/1




 xexxf  ; α, θ > 0 ; x > 0 .  

(All of following also done in terms of rate parameter,  /1 .) 

(Reliability, hydrology, signal processing, meteorology, forensics, etc.) 

 

The log-likelihood function, based on a sample of n independent observations, is 

    
 

n

i

n

i
ii nyyl

1 1
)]log())([log(/)()log()1(  .   
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We then have: 

 





n

i
i nyl

1
)]log()([)log( 


       

   





n

i
i nyl

1

2/][ 


 ,        

where )(  is the usual digamma function,  dd /)(log)(  . 

No closed-form solution to likelihood equations. 

 

]}1)({2/[]2))()(([)ˆ( 2
)1()2()1(   nBias     

and 

  ]}1)({2/[)]()([)ˆ( 2
)1()1()2(   nBias . 

 (Trigamma & tetragamma functions: ii
i dd  /)()()(  ; i = 1, 2.) 
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Bias(̂ ) and % biases of ̂  and ̂ , are invariant to the value of  .  

In addition, ̂  is upward-biased, and ̂  is downward-biased, to O(n-1). 

 

Bias-adjusted estimators: 

'ˆ)'ˆ,ˆ()'~,~( B   ; )ˆ(ˆˆ
ˆ
ˆˆˆ 11 
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Monte Carlo experiment to compare these bias-corrected estimators with 

bootstrap bias correction: 

 




BN

j
jBN

1
)( ]ˆ)[/1(ˆ2 


 , 

where )(̂ j is the MLE of   obtained from the jth of the NB bootstrap samples, 

and similarly for  . 

 

100,000 Monte Carlo replications and NB = 1,000   (100 million per case). 

 

Used R –  maxlik package with Nelder-Mead algorithm. 
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Illustrative Monte Carlo Results: % Bias [%MSE]; α = θ = 1.0 

 

 n ̂    ~        ̂    ~    


   
10 33.1554  0.1167  -21.0180  -9.3635  -1.1486  -0.4251 

 [72.2336]  [29.7664]  [39.3795]  [24.7572]  [28.0324]  [28.2438]  

15 20.4645  0.0127  -4.6131  -6.0828  -0.3954  -0.3030  

 [27.0769]  [14.8398]  [15.0003]  [16.6527]  [18.1463]  [18.3550]  

25 11.1739  0.0029  -1.0784  -3.7252  -0.2206  -0.1569 

 [10.9318]  [7.5679]  [7.5833]  [10.0178]  [10.5514]  [10.5860]  

50 5.2080  -0.0252  -0.1159  -1.8724  -0.0839  -0.0828  

[4.1068]  [3.4064]  [3.4412]  [5.0491]  [5.1835]  [5.2638]  

100 2.4938  -0.0428  -0.0779  -0.8443  0.0599  0.0103 

 [1.7757]  [1.6166]  [1.6247]  [2.5651]  [2.6011]  [2.5883] 

250 0.9648  -0.0318  -0.0050  -0.3199  0.0439  -0.0037 

 [0.6530]  [0.6290]  [0.6334]  [1.0182]  [1.0240]  [1.0117] 
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5.2 Half-logistic distribution 

If X ~ logistic, then || XY   has half-logistic distribution, with p.d.f.: 

2}]/)(exp{1[
}/)(exp{)/2()(








y

yyf  ; 0 y ,  σ > 0 

(Used in reliability theory – monotonically increasing hazard.) 

 

If the location parameter is unknown, its MLE is the largest order statistic.  

Let 0 : 

 


n

i
iyynnnl

1
)]/exp(1ln[2)/()ln()2ln(   

 


n

i
iii yyyynnl

1

22 )]/exp(1/[)]/exp([)/2()/()/(/   

So the MLE for the scale parameter cannot be expressed in closed form. 
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Evaluation of joint cumulants is tedious in this case – e.g., need to establish that 

 

]5.0)2[ln()]}/exp(1/[)]/exp({[   yyyE      

]1)6/)[(3/(})]/exp(1/[)]/exp({[ 2222   yyyE     

)]12/(5.0[})]/exp(1/[))]/2exp()/(exp({[ 2333   yyyyE . 

 

Then: 

)/(052567665.0)()ˆ( 11 nKvecAKBias     . 
      

The bias is unambiguously negative, and small in relative terms.  

Relative bias is invariant to σ.  
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Unbiased (to )( 2nO ) estimator of σ is:  

 

nnBias /)052567665.0(ˆ))ˆ(ˆ(~   . 

 

Monte Carlo experiment to compare analytic and bootstrap bias corrections. 

 

250,000 Monte Carlo replications and NB = 1,000  (250 million per case). 

Used R – inversion method; maxlik package with Nelder-Mead algorithm. 

 

Prefer analytic bias correction if 25n . 

Prefer bootstrap bias correction if 25025  n . 
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Illustrative Monte Carlo Results (invariant to σ) 
 

n % )ˆ(Bias       % )~(Bias      % )(Bias        % )ˆ(MSE         % )~(MSE       % )(MSE  
 

 
10 -0.4827  0.0404  0.0988  6.9512  7.0221  7.0402 

15 -0.3279  0.0214  -0.0390  4.6267  4.6581  4.6793 

20 -0.2400  0.0223  0.0415  3.4784  3.4961  3.5016  

25 -0.1719  0.0380  0.0331  2.7966  2.8081  2.7997 

30 -0.1370  0.0380  0.0166  2.3271  2.3351  2.3342 

50 -0.0811  0.0214  0.0135  1.3996  1.4025  1.4022 

100 -0.0337  0.0188  -0.0073  0.6988  0.6995  0.7008 

200 -0.0137  0.0126  -0.0093  0.3502  0.3504  0.3498 

250 -0.0133  0.0077  0.0040  0.2808  0.2809  0.2806 
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5.3 Generalized Pareto distribution 
 

Widely used in POT method for extreme value analysis.  Often a relatively small 

number of extreme values. 
 

 
0;)/exp(1
0,0;/11)( /1


 


 

y
yyyF

        

  

 
0;)/exp()/1(
0,0;/1)/1()( 1/1


 


 

y
yyyf

      

 

 y0    if 0 ;  and  /0  y    if 0 .  
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Maximum likelihood estimation of the parameters of the GPD can be very 

challenging in practice: 

 rth. integer-order moment exists if  r/1  

 

 MLE for ),('   : existence requires 1 ; regularity requires 3/1 .  

 

Assuming independent observations, the log-likelihood function is: 

 


n

i
iynl

1
)/1ln()/11()ln(),(  .      

   



n

i
ii

n

i
i yyyl

11

12 )]/([)1()/1ln(/       

 ]})/([)1({/
1

1  



n

i
ii yynl   .     

The likelihood equations do not admit a closed-form solution. 
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Monte Carlo experiment to compare analytic and bootstrap bias corrections. 

 

Also have compared with Zhang’s “likelihood moment” estimator, & quasi-

Bayesian estimator of Zhang & Stephens. 

 

50,000 Monte Carlo replications and NB = 1,000   (50 million per case). 

 

Used R – evd package and Scott Grimshaw’s code. 
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Illustrative Monte Carlo Results: ξ = 0.5 ; σ = 1.0 
n )ˆ(% Bias  )~(% Bias  )(% 


Bias  )ˆ(% Bias  )~(% Bias   )(% Bias  

        )]ˆ([% MSE    )]~([% MSE  )]([% 


MSE   )]ˆ([% MSE  )]~([% MSE  )]([% MSE  

50 -12.1930  -1.9603  -6.2334  5.9062  -1.7691  2.1070 

 [25.9748]  [24.2179]  [31.4349]  [7.1023]  [10.1278]  [7.5628] 

75 -5.7610  0.3024  -2.7424  3.7248  -0.5590  1.3044 

 [13.3837]  [11.4417]  [20.6066]  [4.6853]  [3.5037]  [5.1182] 

100 -4.2936  0.1299  -0.3207  2.7687  -0.2444  0.1146 

 [9.8939]  [8.7299]  [9.6071]  [3.4162]  [2.7323]  [3.2064] 

125 -4.5675  -0.9802  0.1478  2.4156  0.0035  0.3841  

 [9.5717]  [8.6061]  [10.2316]  [2.7411]  [2.2631]  [2.9058] 

150 -3.5011  -0.5653  -0.2740  1.9333  -0.0105  0.1147 

 [7.4976]  [6.8917]  [6.2552]  [2.2364]  [1.9205]  [2.0722] 

200 -2.0973  0.0538  0.8231  1.3237  -0.0673  -0.0772 

 [4.7031]  [4.4580]  [4.8872]  [1.6009]  [1.4465]  [1.6480] 
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WEATHER-RELATED DISASTERS IN THE U.S. 

(1980 - 2003) 
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Series: DAMAGE
Sample 1 58
Observations 58

Mean       6.034483
Median   2.450000
Maximum  61.60000
Minimum  1.100000
Std. Dev.   11.02268
Skewness   3.700484
Kurtosis   16.58785

Jarque-Bera  578.5599
Probability  0.000000

Weather-Related Damages Exceeding $1 Billion
(U.S.: 1980 - 2003)
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Maximum Likelihood Estimation of GPD 
 

     

 

̂  (a.s.e.)  0.736 (0.223)  ~ (b.s.e.)  0.803 (0.220)   

 

̂  (a.s.e.)  1.709 (0.410)  ~(b.s.e.)  1.569 (0.352) 

  

  

05.0ˆRaV   $19.7 Billion   05.0
~RaV   $20.7 Billion  

05.0ŜE   $78.3 Billion   05.0
~SE   $109.0 Billion 
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6. Conclusions & Related Work  

 Analytic bias-correction using Cox-Snell bias approximation can be applied 
even when we can’t express MLE in closed form. 
 

 Can get dramatic reductions in %Bias, without increasing %MSE. 
 
 Bootstrapping bias and then correcting often less successful for small n.  

 
 Other results: 

 Poisson regression model (with Helen Feng). 

 ZIP model (with Jacob Schwartz) 

 Nakagami distribution (with Jacob Schwartz & Ryan Godwin) 

 Topp-Leone distribution  

 Generalized Rayleigh distribution (with Xiao Ling) 

 GPD in terms of VaR & shape parameter (with Helen Feng) 


