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1. Introduction
Widespread use of Maximum Likelihood Estimators (MLE’s).
Motivation: wanted to evaluate the first-order biases of the MLE’s of the
parameters of the generalized Pareto distribution.
More generally, interested in bias in cases where likelihood equations (first-

order conditions) do not necessarily admit a closed-form solution.

Specifically, consider the O(n™*) bias formula introduced by Cox and Snell

(1968).

= Other options — bootstrap the bias; “preventive” methods (e.g., Firth, 1993)




2. Outline
Basic strategy.
Definitions & notation.

Two illustrative examples of methodology.

New results for, gamma distribution, half-logistic distribution, &

generalized Pareto distribution.

Conclusions & related work — completed or in progress.




3. Basic Strategy (Bartlett, 1952)
[(@) is log-likelihood for single parameter, 6. Assume that /(8) is regular w.r.t.
all derivatives up to and including the third order.

If 6 is MLE, then ['(d) = (8l/06), . =0, and E[I'(9)] =0.

|0=0

I'0)+(O-0)I"(0)+0.5(0—6)2I""(6) ~ 0.

E[0- 0] E[I''(6)]+cov.[(0—6),I'"(0)] + 0.5E[(6 — 6)*1E[I"" ()]

+cov.[0.5(60-8)%,1""(6)] ~ 0.
Approximate other terms to O(rn™) and solve for approximate bias.

Note: Don’t need closed-form expression for 0 itself.




4. Definitions and Notation

Let /(8) be the log-likelihood based on a sample of » observations, with p-
dimensional parameter vector, 8. Assume that /(&) is regular with respect to all

derivatives up to and including the third order.

The joint cumulants of the derivatives of /(9) are denoted:

2 _ Co.
k, = E(6%106,00) ij=12, ...

k;, = E(0°1106,00,06,) 0, 1=1,2, ...
k;, = E[(0°1106,00,)(01106)] ; i,j,[=1,2, ...

(Typically, this is where some effort is needed.)




The derivatives of the cumulants are denoted:
k" = ok, 106, 0L 1=1,2, ..., p.
Fisher’s information matrix is K ={-k,}, and all of the k" expressions are

assumed to be O(n).

Cox and Snell (1968) - if the sample data are independent (but not necessarily

identically distributed) the bias of the s™ element of the MLE of 8 (9) is:

. ~ p p P siv il
Bias(6.) =2 Y>> k" k”[0.5k

i=1 j=1/=1

+ki]~,z]+0(”_2); s=1,2,....,p.

ijl




Cordeiro and Klein (1994) - this bias expression also holds if the data are non-

independent, and It can be re-written (more conveniently) as.:

Bias(0,) = $.k" ¥ Y[k 05k, ]k" +O(n?);  s=1,2, ....p.

i=1  j=1l=1

Let o\’ =k’ —(k, 12),fori,j,1=1,2, ..., p; and define the matrices:

7

AY :{a;)}; iL,j,1=1,2,.....p

A = [A(l) |A(2) | |A(p)]_




Cordeiro and Klein (1994) show that the bias of the MLE of 6 (d)can be re-

written as:

Bias(0) = K *A vec(K™)+O0(n?).

A “bias-corrected” MLE for & can then be obtained as:

0=0-K'4 vec(K™),

where K =(K)|; and 4=(4)],.

It can be shown that the bias of & is O(n™).




5. lllustrative Results

Example 1 — exponential distribution

Suppose that X is exponentially distributed. The data are 1.i.d. with

f(x;) :6?‘1exp(—xl./6') , 0>0;x,>0;i=1,2,....,n,

E(X)=80 ; l(@)z—nln(ﬁ)—ﬁjxl./@

01100 =-nl0+3x,10° . 0Y100° =nl 6> 23 x,16°
i=1 i=1

0°1106° =-2n16° +63 x. 16"
i=1




The MLE of 6 is 0= fxl. In=Xx. So, this MLE is (exactly) unbiased.
i=1

In this example, p = 1; k,, = —(n/6°); K = (n/6?); and K = (6 / n).

Further, k.., = (4n/6°); kY =(2n/6%); and a,, = (2n/6°)-0.5(4n/6%) =0.

So, A =0, and the Cox-Snell/Cordeiro-Klein expression for the bias is zero.

Note that not only is this result exactly correct, but it was obtained without

needing to write down the MLE itself as a closed form expression.




Example 2 — normal distribution

Suppose that X is normally distributed. The data are 1.i.d. with

f(xl.):(27z02)‘1’2exp(—(xl.—y)2/202) ; 0<o <o) —00< <o,
i=1,2,.....n
So,

I(u,0%)=—(nl2) |n(27r)—n|n(c72)/2—i(xi — 1) 1207,

[We know that MLE’s are 2= and 6° =3 (x. —x)°/n , where & is unbiased
i=1

and Bias(6°)=—-0"/n.]




nlo?

0 n/ZJJ’ 0 veelk )=

Information matrix is K {

S 0 —(nl2c*)(nl25*) o}
= (nl26Y) 0 0 o0




The Cox-Snell/Cordeiro-Klein expression for the bias of 8 to O(n™?) is

1 0
Bias( flzj =K ' Avec(K™) = ( j,
c

—o?In

Coincides with the exact biases of the MLE’s, because they are O(n™*) here.
Again, note that this result was obtained without needing to be able to write

down the expressions for the MLE’s themselves in closed form.

The “bias-adjusted” estimator of 6° is &% =62 —(-6%/n) =(n+1)é%/n , and

Bias(6%) = —o?/n®. Correcting for the O(r™") bias yields an estimator that is
biased O(n™®). Of course, in this particular example, we also know how to

eliminate the bias in 6° completely — use the estimator n6° /(n—1).




5. Some New Results

5.1 Two-parameter gamma distribution

The p.d.f. for the gamma distribution, with shape and scale parameters « and 6
IS:

a—le—x/H

f(x):);(a)ga; a,0>0; x>0,

(All of following also done in terms of rate parameter, 1 =1/6.)

(Reliability, hydrology, signal processing, meteorology, forensics, etc.)

The log-likelihood function, based on a sample of » independent observations, is

z=<a—1)§:l log(,) —(gzlyi)/e—n[log@(a»+alog(e)].




We then have:

ol x

P, — Z log(y,) — n[¥ () + log(8)]
(04 i=1

A _ 2 elie

where ¥ («) is the usual digamma function, ¥(«) =d logI'(«)/ da.

No closed-form solution to likelihood equations.

Bias (&) = [a(¥y (@) —a ¥y (@) — 2] /[2nfa ¥ 4 (o) — ]

Bias (0) = 0]« Y, (a) +Y¥ g (@)]/[2n{a ¥y (a) ~-1}°].

(Trigamma & tetragamma functions: ¥, (o) =d"¥(a)/da';i=1, 2.)




Bias(« ) and % biases of & and 0, are invariant to the value of &.

In addition, & is upward-biased, and & is downward-biased, to O(n™Y).

Bias-adjusted estimators:

N ~ (& A A "
; B= Bias(éj =K 'Avec(K™)

[a(VYy (@) —a ¥, (@) -2]
2n[a ¥, (@) -11°

a=a-

é[& Y () + Y ()]

g5 10T @r T
2nla Yy (a)—1]




Monte Carlo experiment to compare these bias-corrected estimators with
bootstrap bias correction:

- A N, A
]:

where é( »Is the MLE of ¢ obtained from the ;™ of the N3 bootstrap samples,

and similarly for «.

100,000 Monte Carlo replications and Nz = 1,000 (100 million per case).

Used R — maxlik package with Nelder-Mead algorithm.




Illustrative Monte Carlo Results: % Bias [%MSE]; a =0 =1.0

N

o

~

a

~

a

Fa

0

~

0

~

0

33.1554
[72.2336]
20.4645
[27.0769]
11.1739
[10.9318]
5.2080
[4.1068]
2.4938
[1.7757]
0.9648
[0.6530]

0.1167
[29.7664]
0.0127
[14.8398]
0.0029
[7.5679]
-0.0252
[3.4064]
-0.0428
[1.6166]
-0.0318
[0.6290]

-21.0180
[39.3795]
-4.6131
[15.0003]
-1.0784
[7.5833]
-0.1159
[3.4412]
-0.0779
[1.6247]
-0.0050
[0.6334]

-9.3635
[24.7572]
-6.0828
[16.6527]
-3.7252
[10.0178]
-1.8724
[5.0491]
-0.8443
[2.5651]
-0.3199
[1.0182]

-1.1486
[28.0324]
-0.3954
[18.1463]
-0.2206
[10.5514]
-0.0839
[5.1835]
0.0599
[2.6011]
0.0439
[1.0240]

-0.4251
[28.2438]
-0.3030
[18.3550]
-0.1569
[10.5860]
-0.0828
[5.2638]
0.0103
[2.5883]
-0.0037
[1.0117]




5.2 Half-logistic distribution
If X ~ logistic, then Y =| X | has half-logistic distribution, with p.d.f.:

_@lo)exp{-(y—4)] 0}
" et (- o3y

(Used in reliability theory — monotonically increasing hazard.)

, y2u>0,0>0

If the location parameter is unknown, its MLE is the largest order statistic.
Let «=0:

[=nIn(2) —nin(c) + (nyl o) — 2§ In[1+exp(y, /o)]

0160 =~(nl o) =yl o) + (21 6*) Ly, exp(y, | ) /[L+exp(y, | o))

So the MLE for the scale parameter cannot be expressed in closed form.




Evaluation of joint cumulants is tedious in this case — e.g., need to establish that

E{[yvexp(y/o)]/[L+exp(y/o)]}=0o]In(2) + 0.5]
E{[y* exp(y/ o)l/[L+exp(y/o)]’}=(c° I3)[(z* /6) 1]
E{ :y?’ (exp(y/ o) —expy/o))]|/[L+exp(y/ o)’}=c°[0.5— (7% /112)].

Then:
Bias(6) = K " Avec(K ™) = —-0.052567665(c / n) .

The bias is unambiguously negative, and small in relative terms.

Relative bias Is invariant to o.




Unbiased (to O(n %)) estimator of ¢ is:

& = (6 — Bias (6)) = 6(n+0.052567665) / 1.

Monte Carlo experiment to compare analytic and bootstrap bias corrections.

250,000 Monte Carlo replications and Nz = 1,000 (250 million per case).

Used R — inversion method; maxlik package with Nelder-Mead algorithm.

Prefer analytic bias correction if n < 25.

Prefer bootstrap bias correction if 25 < »n < 250.




Illustrative Monte Carlo Results (invariant to o)

% Bias (&) % Bias(c) % Bias(5) % MSE(6) WMSE(c)  YMSE(5)




5.3 Generalized Pareto distribution

Widely used in POT method for extreme value analysis. Often a relatively small

number of extreme values.

F(y)=1-1+&/lo)™: y>0, £+0
=1l-exp(-y/o); E=0

fM=Wa)a+&lo)r 350,20
=(/o)exp(-y/o); E=0

O<y<ow iféE20;and0<y<—0c/& ifE<O.




Maximum likelihood estimation of the parameters of the GPD can be very
challenging in practice:

o /" integer-order moment exists if &<1/r
e MLE for 0'= (&,0): existence requires & >—1; regularity requires &> -1/3.

Assuming independent observations, the log-likelihood function is:

1(&,6) =—nlIn(c) - (1+1/§)§ In(L+ &, /o).

01105 =572 I+ &,/ 0) = (1+ £ )Xy (o +&)]

0160 = o {n+ L+ &)X[y, (o + &)}

The likelihood equations do not admit a closed-form solution.




Monte Carlo experiment to compare analytic and bootstrap bias corrections.

Also have compared with Zhang’s “likelihood moment” estimator, & quasi-

Bayesian estimator of Zhang & Stephens.

50,000 Monte Carlo replications and Nz = 1,000 (50 million per case).

Used R — evd package and Scott Grimshaw’s code.




IHlustrative Monte Carlo Results: E=05:6=1.0
% Bias(&)

n  %Bias(E) %Bias(E)  %Bias(6) YBias(&) %Bias(5)

[%MSE(S)] [%MSE(E)] [%MSE(E)] [%MSE(5)] [%MSE(5)] [%MSE(5)]

50

75

-12.1930
[25.9748]
-5.7610
[13.3837]
-4.2936
[9.8939]
-4.5675
[9.5717]
-3.5011
[7.4976]
-2.0973
[4.7031]

-1.9603
[24.2179]
0.3024
[11.4417]
0.1299
[8.7299]
-0.9802
[8.6061]
-0.5653
[6.8917]
0.0538
[4.4580]

-6.2334
[31.4349]
-2.7424
[20.6066]
-0.3207
[9.6071]
0.1478
[10.2316]
-0.2740
[6.2552]
0.8231
[4.8872]

5.9062
[7.1023]
3.7248
[4.6853]
2.7687
[3.4162]
2.4156
[2.7411]
1.9333
[2.2364]
1.3237
[1.6009]

-1.7691
[10.1278]
-0.5590
[3.5037]
-0.2444
[2.7323]
0.0035
[2.2631]
-0.0105
[1.9205]
-0.0673
[1.4465]

2.1070
[7.5628]
1.3044
[5.1182]
0.1146
[3.2064]
0.3841
[2.9058]
0.1147
[2.0722]
-0.0772
[1.6480]




WEATHER-RELATED DISASTERS IN THE U.S.

(1980 - 2003)

Weather-Related Damages Exceeding $1 Billion
(U.S.: 1980 - 2003)

Series: DAMAGE
Sample 1 58
Observations 58

Mean 6.034483
Median 2.450000
Maximum 61.60000
Minimum 1.100000
Std. Deuv. 11.02268
Skewness 3.700484
Kurtosis 16.58785

$Billions

Jarque-Bera 578.5599
Probability 0.000000




Maximum Likelihood Estimation of GPD

0.736  (0.223)

1.709  (0.410)

$19.7 Billion
$78.3 Billion

0.803  (0.220)

1569  (0.352)

$20.7 Billion
$109.0 Billion




6.

Conclusions & Related Work

Analytic bias-correction using Cox-Snell bias approximation can be applied
even when we can’t express MLE in closed form.

Can get dramatic reductions in %Bias, without increasing %MSE.

Bootstrapping bias and then correcting often less successful for small #.

Other results:

Poisson regression model (with Helen Feng).
ZIP model (with Jacob Schwartz)

Nakagami distribution (with Jacob Schwartz & Ryan Godwin)
Topp-Leone distribution

Generalized Rayleigh distribution (with Xiao Ling)
GPD in terms of VaR & shape parameter (with Helen Feng)




