The Professor T. D. Dwivedi Memorial

Lecture
April 24, 2013
"Bias Adjustment for Nonlinear Maximum
Likelihood Estimators"

David Giles

(University of Victoria)

(Dwivedi Number = 2)

Based on a Research Program with
Helen Feng (UWO)
Ryan Godwin (U Manitoba)
\&
Jacob Schwartz (UBC)

1. Introduction

- Widespread use of Maximum Likelihood Estimators (MLE’s).
- Motivation: wanted to evaluate the first-order biases of the MLE's of the parameters of the generalized Pareto distribution.
- More generally, interested in bias in cases where likelihood equations (firstorder conditions) do not necessarily admit a closed-form solution.
- Specifically, consider the $O\left(n^{-1}\right)$ bias formula introduced by Cox and Snell (1968).
- Other options - bootstrap the bias; "preventive" methods (e.g., Firth, 1993)

2. Outline

- Basic strategy.
- Definitions \& notation.
- Two illustrative examples of methodology.
- New results for, gamma distribution, half-logistic distribution, \& generalized Pareto distribution.
- Conclusions \& related work - completed or in progress.

3. Basic Strategy (Bartlett, 1952)

$l(\theta)$ is \log-likelihood for single parameter, θ. Assume that $l(\theta)$ is regular w.r.t. all derivatives up to and including the third order.

If $\hat{\theta}$ is MLE, then $l^{\prime}(\hat{\theta}) \equiv(\partial l / \partial \theta)_{\mid \theta=\hat{\theta}}=0$, and $E\left[l^{\prime}(\theta)\right]=0$.

$$
\begin{aligned}
& l^{\prime}(\theta)+(\hat{\theta}-\theta) l^{\prime}(\theta)+0.5(\hat{\theta}-\theta)^{2} l^{\prime \prime \prime}(\theta) \approx 0 \\
& E[\hat{\theta}-\theta] E\left[l^{\prime}(\theta)\right]+\operatorname{cov} \cdot\left[(\hat{\theta}-\theta), l^{\prime \prime}(\theta)\right]+0.5 E\left[(\hat{\theta}-\theta)^{2}\right] E\left[l^{\prime \prime}(\theta)\right] \\
& +\operatorname{cov} \cdot\left[0.5(\hat{\theta}-\theta)^{2}, l^{\prime \prime \prime}(\theta)\right] \approx 0
\end{aligned}
$$

Approximate other terms to $O\left(n^{-1}\right)$ and solve for approximate bias.
Note: Don't need closed-form expression for $\hat{\theta}$ itself.

4. Definitions and Notation

Let $l(\theta)$ be the log-likelihood based on a sample of n observations, with p dimensional parameter vector, θ. Assume that $l(\theta)$ is regular with respect to all derivatives up to and including the third order.

The joint cumulants of the derivatives of $l(\theta)$ are denoted:

$$
\begin{array}{ll}
k_{i j}=E\left(\partial^{2} l / \partial \theta_{i} \partial \theta_{j}\right) & ; \quad i, j=1,2, \ldots, p \\
k_{i j l}=E\left(\partial^{3} l / \partial \theta_{i} \partial \theta_{j} \partial \theta_{l}\right) \quad ; \quad i, j, l=1,2, \ldots, p \\
k_{i j, l}=E\left[\left(\partial^{2} l / \partial \theta_{i} \partial \theta_{j}\right)\left(\partial l / \partial \theta_{l}\right)\right] ; & i, j, l=1,2, \ldots, p .
\end{array}
$$

(Typically, this is where some effort is needed.)

The derivatives of the cumulants are denoted:

$$
k_{i j}^{(l)}=\partial k_{i j} / \partial \theta_{l} \quad ; \quad i, j, l=1,2, \ldots, p
$$

Fisher's information matrix is $K=\left\{-k_{i j}\right\}$, and all of the ' k ' expressions are assumed to be $O(n)$.

Cox and Snell (1968) - if the sample data are independent (but not necessarily identically distributed) the bias of the $s^{\text {th }}$ element of the MLE of $\theta(\hat{\theta})$ is:

$$
\operatorname{Bias}\left(\hat{\theta}_{s}\right)=\sum_{i=1}^{p} \sum_{j=1 l=1}^{p} \sum^{p} k^{s i} k^{j l}\left[0.5 k_{i j l}+k_{i j l}\right]+O\left(n^{-2}\right) ; \quad s=1,2, \ldots, p .
$$

Cordeiro and Klein (1994) - this bias expression also holds if the data are nonindependent, and it can be re-written (more conveniently) as:

$$
\operatorname{Bias}\left(\hat{\theta}_{s}\right)=\sum_{i=1}^{p} k^{s i} \sum_{j=1}^{p} \sum_{l=1}^{p}\left[k_{i j}^{(l)}-0.5 k_{i j l}\right] k^{j l}+O\left(n^{-2}\right) ; \quad s=1,2, \ldots ., p .
$$

Let $a_{i j}^{(l)}=k_{i j}^{(l)}-\left(k_{i j l} / 2\right)$, for $i, j, l=1,2, \ldots, p$; and define the matrices:

$$
A^{(l)}=\left\{a_{i j}^{(l)}\right\} ; \quad i, j, l=1,2, \ldots, p
$$

$$
A=\left[A^{(1)}\left|A^{(2)}\right| \ldots \ldots . . \mid A^{(p)}\right] .
$$

Cordeiro and Klein (1994) show that the bias of the MLE of $\theta(\hat{\theta})$ can be rewritten as:

$$
\operatorname{Bias}(\hat{\theta})=K^{-1} A \operatorname{vec}\left(K^{-1}\right)+O\left(n^{-2}\right)
$$

A "bias-corrected" MLE for θ can then be obtained as:

$$
\tilde{\theta}=\hat{\theta}-\hat{K}^{-1} \hat{A} \operatorname{vec}\left(\hat{K}^{-1}\right)
$$

where $\hat{K}=\left.(K)\right|_{\hat{\theta}}$ and $\hat{A}=\left.(A)\right|_{\hat{\theta}}$.

It can be shown that the bias of $\tilde{\theta}$ is $O\left(n^{-2}\right)$.

5. Illustrative Results

Example 1 - exponential distribution

Suppose that X is exponentially distributed. The data are i.i.d. with

$$
\begin{aligned}
& f\left(x_{i}\right)=\theta^{-1} \exp \left(-x_{i} / \theta\right) ; \quad \theta>0 ; x_{i}>0 ; i=1,2, \ldots, n, \\
& E(X)=\theta \quad ; \quad l(\theta)=-n \ln (\theta)-\sum_{i=1}^{n} x_{i} / \theta \\
& \partial l / \partial \theta=-n / \theta+\sum_{i=1}^{n} x_{i} / \theta^{2} \quad ; \quad \partial^{2} l / \partial \theta^{2}=n / \theta^{2}-2 \sum_{i=1}^{n} x_{i} / \theta^{3} \\
& \partial^{3} l / \partial \theta^{3}=-2 n / \theta^{3}+6 \sum_{i=1}^{n} x_{i} / \theta^{4}
\end{aligned}
$$

The MLE of θ is $\hat{\theta}=\sum_{i=1}^{n} x_{i} / n=\bar{x}$. So, this MLE is (exactly) unbiased.
In this example, $p=1 ; k_{11}=-\left(n / \theta^{2}\right) ; K=\left(n / \theta^{2}\right)$; and $K^{-1}=\left(\theta^{2} / n\right)$.

Further, $k_{111}=\left(4 n / \theta^{3}\right) ; k_{11}^{(1)}=\left(2 n / \theta^{3}\right)$; and $a_{11}=\left(2 n / \theta^{3}\right)-0.5\left(4 n / \theta^{3}\right)=0$.

So, $A=0$, and the Cox-Snell/Cordeiro-Klein expression for the bias is zero.

Note that not only is this result exactly correct, but it was obtained without needing to write down the MLE itself as a closed form expression.

Example 2 - normal distribution

Suppose that X is normally distributed. The data are i.i.d. with

$$
\begin{aligned}
f\left(x_{i}\right)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}\right) ; & 0<\sigma<\infty ;-\infty<\mu<\infty ; \\
& i=1,2, \ldots, n
\end{aligned}
$$

So,

$$
l\left(\mu, \sigma^{2}\right)=-(n / 2) \ln (2 \pi)-n \ln \left(\sigma^{2}\right) / 2-\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2} .
$$

[We know that MLE's are $\hat{\mu}=\bar{x}$ and $\hat{\sigma}^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / n$, where $\hat{\mu}$ is unbiased and $\left.\operatorname{Bias}\left(\hat{\sigma}^{2}\right)=-\sigma^{2} / n.\right]$

Information matrix is $K=\left[\begin{array}{cc}n / \sigma^{2} & 0 \\ 0 & n / 2 \sigma^{4}\end{array}\right]$, so $\operatorname{vec}\left(K^{-1}\right)=\left(\begin{array}{c}\sigma^{2} / n \\ 0 \\ 0 \\ 2 \sigma^{4} / n\end{array}\right)$.
Also,

$$
A^{(1)}=\left[\begin{array}{cc}
0 & -n / 2 \sigma^{4} \\
-n / 2 \sigma^{4} & 0
\end{array}\right], \quad A^{(2)}=\left[\begin{array}{cc}
n / 2 \sigma^{4} & 0 \\
0 & 0
\end{array}\right],
$$

and

$$
A=\left[\begin{array}{cccc}
0 & -\left(n / 2 \sigma^{4}\right)\left(n / 2 \sigma^{4}\right) & 0 \\
-\left(n / 2 \sigma^{4}\right) & 0 & 0 & 0
\end{array}\right] .
$$

The Cox-Snell/Cordeiro-Klein expression for the bias of $\hat{\theta}$ to $O\left(n^{-1}\right)$ is

$$
\operatorname{Bias}\binom{\hat{\mu}}{\hat{\sigma}^{2}}=K^{-1} \operatorname{Avec}\left(K^{-1}\right)=\binom{0}{-\sigma^{2} / n},
$$

Coincides with the exact biases of the MLE's, because they are $O\left(n^{-1}\right)$ here. Again, note that this result was obtained without needing to be able to write down the expressions for the MLE's themselves in closed form.
The "bias-adjusted" estimator of σ^{2} is $\tilde{\sigma}^{2}=\hat{\sigma}^{2}-\left(-\hat{\sigma}^{2} / n\right)=(n+1) \hat{\sigma}^{2} / n$, and $\operatorname{Bias}\left(\tilde{\sigma}^{2}\right)=-\sigma^{2} / n^{2}$. Correcting for the $O\left(n^{-1}\right)$ bias yields an estimator that is biased $O\left(n^{-2}\right)$. Of course, in this particular example, we also know how to eliminate the bias in $\hat{\sigma}^{2}$ completely - use the estimator $n \hat{\sigma}^{2} /(n-1)$.

5. Some New Results

5.1 Two-parameter gamma distribution

The p.d.f. for the gamma distribution, with shape and scale parameters α and θ is:

$$
f(x)=\frac{x^{\alpha-1} e^{-x / \theta}}{\Gamma(\alpha) \theta^{\alpha}} ; \quad \alpha, \theta>0 ; \quad x>0
$$

(All of following also done in terms of rate parameter, $\lambda=1 / \theta$.)
(Reliability, hydrology, signal processing, meteorology, forensics, etc.)

The log-likelihood function, based on a sample of n independent observations, is

$$
l=(\alpha-1) \sum_{i=1}^{n} \log \left(y_{i}\right)-\left(\sum_{i=1}^{n} y_{i}\right) / \theta-n[\log (\Gamma(\alpha))+\alpha \log (\theta)] .
$$

We then have:

$$
\begin{aligned}
& \frac{\partial l}{\partial \alpha}=\sum_{i=1}^{n} \log \left(y_{i}\right)-n[\Psi(\alpha)+\log (\theta)] \\
& \frac{\partial l}{\partial \theta}=\left[\sum_{i=1}^{n} y_{i}-n \alpha \theta\right] / \theta^{2}
\end{aligned}
$$

where $\Psi(\alpha)$ is the usual digamma function, $\Psi(\alpha)=d \log \Gamma(\alpha) / d \alpha$.
No closed-form solution to likelihood equations.

$$
\operatorname{Bias}(\hat{\alpha})=\left[\alpha\left(\Psi_{(1)}(\alpha)-\alpha \Psi_{(2)}(\alpha)\right)-2\right] /\left[2 n\left\{\alpha \Psi_{(1)}(\alpha)-1\right\}^{2}\right]
$$

and

$$
\operatorname{Bias}(\hat{\theta})=\theta\left[\alpha \Psi_{(2)}(\alpha)+\Psi_{(1)}(\alpha)\right] /\left[2 n\left\{\alpha \Psi_{(1)}(\alpha)-1\right\}^{2}\right]
$$

(Trigamma \& tetragamma functions: $\Psi_{(i)}(\alpha)=d^{i} \Psi(\alpha) / d \alpha^{i} ; i=1,2$.)
$\operatorname{Bias}(\hat{\alpha})$ and $\%$ biases of $\hat{\alpha}$ and $\hat{\theta}$, are invariant to the value of θ. In addition, $\hat{\alpha}$ is upward-biased, and $\hat{\theta}$ is downward-biased, to $O\left(n^{-1}\right)$.

Bias-adjusted estimators:

$$
\begin{aligned}
(\tilde{\alpha}, \tilde{\theta})^{\prime} & =(\hat{\alpha}, \hat{\theta})^{\prime}-\hat{B}^{\prime} \quad ; \hat{B}=\operatorname{Bi} a s\binom{\hat{\alpha}}{\hat{\theta}}=\hat{K}^{-1} \hat{A} v e c\left(\hat{K}^{-1}\right) \\
\tilde{\alpha} & =\hat{\alpha}-\frac{\left[\hat{\alpha}\left(\Psi_{(1)}(\hat{\alpha})-\hat{\alpha} \Psi_{(2)}(\hat{\alpha})\right)-2\right]}{2 n\left[\hat{\alpha} \Psi_{(1)}(\hat{\alpha})-1\right]^{2}}
\end{aligned}
$$

and

$$
\tilde{\theta}=\hat{\theta}-\frac{\hat{\theta}\left[\hat{\alpha} \Psi_{(2)}(\hat{\alpha})+\Psi_{(1)}(\hat{\alpha})\right]}{2 n\left[\hat{\alpha} \Psi_{(1)}(\hat{\alpha})-1\right]^{2}} .
$$

Monte Carlo experiment to compare these bias-corrected estimators with bootstrap bias correction:

$$
\breve{\theta}=2 \hat{\theta}-\left(1 / N_{B}\right)\left[\sum_{j=1}^{N_{B}} \hat{\theta}_{(j)}\right],
$$

where $\hat{\theta}_{(j)}$ is the MLE of θ obtained from the $j^{\text {th }}$ of the N_{B} bootstrap samples, and similarly for α.

100,000 Monte Carlo replications and $N_{B}=1,000$ (100 million per case).

Used R - maxlik package with Nelder-Mead algorithm.

Illustrative Monte Carlo Results: \% Bias [\%MSE]; $\alpha=\boldsymbol{\theta}=1.0$

n	$\hat{\alpha}$	$\tilde{\alpha}$	$\breve{\alpha}$	$\hat{\theta}$	$\tilde{\theta}$	$\widetilde{\theta}$
10	33.1554	0.1167	-21.0180	-9.3635	-1.1486	-0.4251
	$[72.2336]$	$[29.7664]$	$[39.3795]$	$[24.7572]$	$[28.0324]$	$[28.2438]$
15	20.4645	0.0127	-4.6131	-6.0828	-0.3954	-0.3030
	$[27.0769]$	$[14.8398]$	$[15.0003]$	$[16.6527]$	$[18.1463]$	$[18.3550]$
$\mathbf{2 5}$	$\mathbf{1 1 . 1 7 3 9}$	$\mathbf{0 . 0 0 2 9}$	-1.0784	-3.7252	$-\mathbf{0 . 2 2 0 6}$	$-\mathbf{0 . 1 5 6 9}$
	$[10.9318]$	$[7.5679]$	$[7.5833]$	$[10.0178]$	$[10.5514]$	$[10.5860]$
50	5.2080	-0.0252	-0.1159	-1.8724	-0.0839	-0.0828
	$[4.1068]$	$[3.4064]$	$[3.4412]$	$[5.0491]$	$[5.1835]$	$[5.2638]$
100	2.4938	-0.0428	-0.0779	-0.8443	0.0599	0.0103
	$[1.7757]$	$[1.6166]$	$[1.6247]$	$[2.5651]$	$[2.6011]$	$[2.5883]$
250	0.9648	-0.0318	-0.0050	-0.3199	0.0439	-0.0037
	$[0.6530]$	$[0.6290]$	$[0.6334]$	$[1.0182]$	$[1.0240]$	$[1.0117]$

5.2 Half-logistic distribution

If $X \sim$ logistic, then $Y=|X|$ has half-logistic distribution, with p.d.f.:

$$
f(y)=\frac{(2 / \sigma) \exp \{-(y-\mu) / \sigma\}}{[1+\exp \{-(y-\mu) / \sigma\}]^{2}} \quad ; \quad y \geq \mu>0, \sigma>0
$$

(Used in reliability theory - monotonically increasing hazard.)

If the location parameter is unknown, its MLE is the largest order statistic.
Let $\mu=0$:

$$
l=n \ln (2)-n \ln (\sigma)+(n \bar{y} / \sigma)-2 \sum_{i=1}^{n} \ln \left[1+\exp \left(y_{i} / \sigma\right)\right]
$$

$\partial l / \partial \sigma=-(n / \sigma)-\left(n \bar{y} / \sigma^{2}\right)+\left(2 / \sigma^{2}\right) \sum_{i=1}^{n}\left[y_{i} \exp \left(y_{i} / \sigma\right)\right] /\left[1+\exp \left(y_{i} / \sigma\right)\right]$
So the MLE for the scale parameter cannot be expressed in closed form.

Evaluation of joint cumulants is tedious in this case $-e . g$., need to establish that

$$
\begin{aligned}
& E\{[y \exp (y / \sigma)] /[1+\exp (y / \sigma)]\}=\sigma[\ln (2)+0.5] \\
& E\left\{\left[y^{2} \exp (y / \sigma)\right] /[1+\exp (y / \sigma)]^{2}\right\}=\left(\sigma^{2} / 3\right)\left[\left(\pi^{2} / 6\right)-1\right] \\
& E\left\{\left[y^{3}(\exp (y / \sigma)-\exp (2 y / \sigma))\right] /[1+\exp (y / \sigma)]^{3}\right\}=\sigma^{3}\left[0.5-\left(\pi^{2} / 12\right)\right] .
\end{aligned}
$$

Then:

$$
\operatorname{Bias}(\hat{\sigma})=K^{-1} A \operatorname{vec}\left(K^{-1}\right)=-0.052567665(\sigma / n)
$$

The bias is unambiguously negative, and small in relative terms.
Relative bias is invariant to σ.

Unbiased (to $O\left(n^{-2}\right)$) estimator of σ is:

$$
\tilde{\sigma}=(\hat{\sigma}-\operatorname{Bias}(\hat{\sigma}))=\hat{\sigma}(n+0.052567665) / n
$$

Monte Carlo experiment to compare analytic and bootstrap bias corrections.

250,000 Monte Carlo replications and $N_{B}=1,000$ (250 million per case).
Used R - inversion method; maxlik package with Nelder-Mead algorithm.

Prefer analytic bias correction if $n<25$.
Prefer bootstrap bias correction if $25 \leq n \leq 250$.

Illustrative Monte Carlo Results (invariant to $\boldsymbol{\sigma}$)

n	\% $\operatorname{Bias}(\hat{\sigma})$	\% $\operatorname{Bias}(\tilde{\sigma})$	\% $\operatorname{Bias}(\breve{\sigma})$	\%MSE $(\hat{\sigma})$	\%MSE $(\tilde{\sigma})$	\%MSE $(\breve{\sigma})$
10	-0.4827	0.0404	0.0988	6.9512	7.0221	7.0402
15	-0.3279	0.0214	-0.0390	4.6267	4.6581	4.6793
20	-0.2400	0.0223	0.0415	3.4784	3.4961	3.5016
$\mathbf{2 5}$	-0.1719	$\mathbf{0 . 0 3 8 0}$	$\mathbf{0 . 0 3 3 1}$	2.7966	2.8081	2.7997
30	-0.1370	0.0380	0.0166	2.3271	2.3351	2.3342
50	-0.0811	0.0214	0.0135	1.3996	1.4025	1.4022
100	-0.0337	0.0188	-0.0073	0.6988	0.6995	0.7008
200	-0.0137	0.0126	-0.0093	0.3502	0.3504	0.3498
250	-0.0133	0.0077	0.0040	0.2808	0.2809	0.2806

5.3 Generalized Pareto distribution

Widely used in POT method for extreme value analysis. Often a relatively small number of extreme values.

$$
\begin{aligned}
& F(y)=1-(1+\xi y / \sigma)^{-1 / \xi} ; \quad y>0, \quad \xi \neq 0 \\
& =1-\exp (-y / \sigma) ; \quad \xi=0 \\
& f(y)=(1 / \sigma)(1+\xi y / \sigma)^{-1 / \xi-1} ; \quad y>0, \xi \neq 0 \\
& =(1 / \sigma) \exp (-y / \sigma) ; \quad \xi=0 \\
& 0<y<\infty \text { if } \xi \geq 0 \text {; and } 0<y<-\sigma / \xi \text { if } \xi<0 \text {. }
\end{aligned}
$$

Maximum likelihood estimation of the parameters of the GPD can be very challenging in practice:

- $r^{\text {th }}$. integer-order moment exists if $\xi<1 / r$
- MLE for $\theta^{\prime}=(\xi, \sigma)$: existence requires $\xi \geq-1$; regularity requires $\xi \geq-1 / 3$.

Assuming independent observations, the log-likelihood function is:

$$
\begin{aligned}
& l(\xi, \sigma)=-n \ln (\sigma)-(1+1 / \xi) \sum_{i=1}^{n} \ln \left(1+\xi y_{i} / \sigma\right) \\
& \partial l / \partial \xi=\xi^{-2} \sum_{i=1}^{n} \ln \left(1+\xi y_{i} / \sigma\right)-\left(1+\xi^{-1}\right) \sum_{i=1}^{n}\left[y_{i} /\left(\sigma+\xi y_{i}\right)\right] \\
& \partial l / \partial \sigma=\sigma^{-1}\left\{-n+(1+\xi) \sum_{i=1}^{n}\left[y_{i} /\left(\sigma+\xi y_{i}\right)\right]\right\}
\end{aligned}
$$

The likelihood equations do not admit a closed-form solution.

Monte Carlo experiment to compare analytic and bootstrap bias corrections.

Also have compared with Zhang's "likelihood moment" estimator, \& quasiBayesian estimator of Zhang \& Stephens.

50,000 Monte Carlo replications and $N_{B}=1,000$ (50 million per case).

Used $R-e v d$ package and Scott Grimshaw's code.

Illustrative Monte Carlo Results: $\xi=0.5 ; \sigma=1.0$

n	$\% \operatorname{Bias}(\hat{\xi})$	$\% \operatorname{Bias}(\tilde{\xi})$	$\% \operatorname{Bias}(\xi)$	$\% \operatorname{Bias}(\hat{\sigma})$	\% $\operatorname{Bias}(\tilde{\sigma})$	\% $\operatorname{Bias}(\breve{\sigma})$
	$[\% \operatorname{MSE}(\hat{\xi})]$	$[\% \operatorname{MSE}(\widetilde{\xi})][\% \operatorname{MSE}(\xi)][\% \operatorname{MSE}(\hat{\sigma})][\% \operatorname{MSE}(\widetilde{\sigma})][\% \operatorname{MSE}(\breve{\sigma})]$				
50	-12.1930	-1.9603	-6.2334	5.9062	-1.7691	2.1070
	[25.9748]	[24.2179]	[31.4349]	[7.1023]	[10.1278]	[7.5628]
75	-5.7610	0.3024	-2.7424	3.7248	-0.5590	1.3044
	[13.3837]	[11.4417]	[20.6066]	[4.6853]	[3.5037]	[5.1182]
100	-4.2936	0.1299	-0.3207	2.7687	-0.2444	0.1146
	[9.8939]	[8.7299]	[9.6071]	[3.4162]	[2.7323]	[3.2064]
125	-4.5675	-0.9802	0.1478	2.4156	0.0035	0.3841
	[9.5717]	[8.6061]	[10.2316]	[2.7411]	[2.2631]	[2.9058]
150	-3.5011	-0.5653	-0.2740	1.9333	-0.0105	0.1147
	[7.4976]	[6.8917]	[6.2552]	[2.2364]	[1.9205]	[2.0722]
200	-2.0973	0.0538	0.8231	1.3237	-0.0673	-0.0772
	[4.7031]	[4.4580]	[4.8872]	[1.6009]	[1.4465]	[1.6480]

WEATHER-RELATED DISASTERS IN THE U.S.

(1980-2003)
Weather-Related Damages Exceeding \$1 Billion (U.S.: 1980-2003)

Maximum Likelihood Estimation of GPD

$\hat{\xi}$ (a.s.e.)	0.736	(0.223)	$\tilde{\xi}$ (b.s.e.)	0.803	(0.220)
$\hat{\sigma}$ (a.s.e.)	1.709	(0.410)	$\tilde{\sigma}$ (b.s.e.)	1.569	(0.352)
$V a ̂ R_{0.05}$	$\$ 19.7$ Billion	$V \widetilde{a} R_{0.05}$	$\$ 20.7$ Billion		
$E \hat{S}_{0.05}$	$\$ 78.3$ Billion	$E \widetilde{S}_{0.05}$	$\$ 109.0$ Billion		

6. Conclusions \& Related Work

- Analytic bias-correction using Cox-Snell bias approximation can be applied even when we can't express MLE in closed form.
- Can get dramatic reductions in \%Bias, without increasing \%MSE.
- Bootstrapping bias and then correcting often less successful for small n.
- Other results:

Poisson regression model (with Helen Feng).
ZIP model (with Jacob Schwartz)
Nakagami distribution (with Jacob Schwartz \& Ryan Godwin)
Topp-Leone distribution
Generalized Rayleigh distribution (with Xiao Ling)
GPD in terms of VaR \& shape parameter (with Helen Feng)

