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UNIVERSITY OF VICTORIA             EXAMINATIONS, APRIL 2016 
 

ECONOMICS 546: THEMES IN ECONOMETRICS 
  
 
TO BE ANSWERED IN BOOKLETS                 DURATION:  3 HOURS 

        INSTRUCTOR:  D. Giles 
 
STUDENTS MUST COUNT THE NUMBER OF PAGES IN THIS EXAMINATION 
PAPER BEFORE BEGINNING TO WRITE, AND REPORT ANY DISCREPANCY 
IMMEDIATELY TO THE INVIGILATOR. 
 
THIS QUESTION PAPER HAS 10 PAGES.  
STATISTICAL TABLES  AND A FORMULA SHEET ARE SUPPLIED SEPARATELY. 
 
This is a “closed book/closed notes” examination.  
Calculators may be used. 
 

       (Total Marks = 90) 
 
                                                                                                                                                               
SECTION A 
Answer ANY FOUR QUESTIONS FROM THIS SECTION                   
(Extra questions that are attempted will not be graded) 
 
ALL QUESTIONS ARE WORTH 16 MARKS 
 
Question 1: 
 
(a) Discuss the relative advantages and disadvantages of Maximum Likelihood 
 estimation, and Bayesian estimation. 

          10 marks 
 

(b) What are the conditions under which Bayes estimators and MLE’s will coincide? 
          6 marks 
 

Question 2: 
 
Suppose that we have a random sample of n observations from a Pareto distribution, with a 
known location parameter, ym, and an unknown shape parameter, k. That is, the density function 
for an individual observation is: 
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(a) As a Bayesian, suppose that I decide to represent my prior uncertainty about k with a 
 prior density which is Gamma, with a shape parameter, α ( > 0), and a scale parameter, θ 
 ( > 0). That is: 
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 Γ(α) is a Gamma function. (It is just a constant once we assign a value to α). The mean of 
 this distribution is (α θ), its variance is (α θ2). Its mode is at [(α -1)θ], if α > 1.  
 

Show that the posterior density for k is also Gamma, but with a shape parameter which is 

 (n + α), and a scale parameter which is 
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                      7 marks 
  
(b) What is the Bayes estimator of k if I have a quadratic loss function? What is the Bayes 
 estimator of k if I have a zero-one loss function? 
                                  2 marks 
 

(c) Show that the Maximum Likelihood Estimator (MLE) of k is 
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                                 4 marks 
 
(d) Show that the Bayes estimator you obtained in part (b) above under quadratic loss 

collapses to the MLE for k if  and 0 . Why does this result make sense 
intuitively? (What is happening to the prior density in this situation?) 

                    3 marks 
 
Question 3: 
 
Consider the Negative Binomial distribution for a random variable, Z, where z denotes the 
number of failuress before the α’th. success in a sequence of Bernoulli trials. So, the mass 
function for Z is: 
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where α is known, and 10  . It can be shown that  /)1(][ iyE . 
 
In answering this question you may wish to use the following result. If a random variable, X, 
follows a Beta distribution with parameters a, b > 0, then the kernel of its density function is 
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and  )/()( baaXE  . Also, )2/()1()(  baaXMode ; if a, b > 1 
  
(a) Show that Jeffreys’ prior p.d.f. for θ		is	
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(b) Using Jeffreys’ prior, obtain the Bayes estimator of θ,	 (i) if the loss function is 
 quadratic; and (ii) if the loss function is “zero-one”. 
                     4 marks 
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(c) Show that the Natural Conjugate prior for θ is a Beta density. 
           3 marks 
 

(d) Using the Natural Conjugate prior, obtain the Bayes estimator of θ,	(i) if the loss function 
 is quadratic; and (ii) if the loss function is “zero- one”. 
                    4 marks 
 
 
Question 4: 
 
Suppose that we have a random sample of size ‘n’ from an Exponential distribution. The 
associated density function is: 
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(a) Show that the MLE for θ		is	 
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          3 marks 
(b) Consider the following alternative estimator of θ	:  
 

  )1/(ˆ  nyn . 
 

Show that the MLE, ~ , is inadmissible if we have a quadratic loss function. 
 
[Hint: Recall that if the loss is quadratic, then Risk = MSE.] 

          7 marks 
 

             
(c) Using a particular prior for θ,	 and a quadratic loss function, the following Bayes 
 estimator was obtained: 
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 where α and β are the (known) parameters of the prior distribution.  
 

Show that the risk of * (under quadratic loss) is : 
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           4 marks 
 
 

(d) The following diagram shows the risks of ,ˆ,
~  and * when n = 1, α = 2, and β = 1: 
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Briefly discuss what these risk functions indicate. Which risk is associated with which estimator? 

            2 marks 
 
Question 5: (Answer ANY TWO of the following) 
  
(a) Discuss the following statement: “Model selection is more straightforward if a Bayesian 
 approach is used instead of a frequentist approach”. 
                                8 marks 
 
(b) Briefly describe the “Table Lookup” method for generating random values, and explain 
 why it may be useful in Bayesian econometrics.  

          8 marks 
 

(c) Briefly outline the differences between the Gibbs sampler and the Metropolis-Hastings 
 algorithms. 
                      8 marks 
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Question 6: 
 
Consider the standard multiple linear regression model, satisfying all of the usual assumptions: 

The James-Stein (JS) estimator of the coefficient vector is 

 
 
where ‘b’ is the ML estimator, ‘e’ is the ML residual vector, and ‘c’ is a positive scalar.  
 

(a) Explain why the JS estimator is a ‘nonlinear’ estimator. 
           1 mark 
 

(b) Explain why we might call the JS estimator a “shrinkage estimator”. In what 
“direction” is the estimator “shrinking” the OLS estimator? 

     2 marks 
 
(c) In what sense is the JS estimator rather like the natural conjugate Bayes estimator for 

β? 
            3 marks 
 

(d) The risk (under quadratic loss) of the JS estimator is approximately  

 
Compare the risks of the JS and OLS estimators when kIXX '  . In particular, for 
this situation, show that the OLS estimator is inadmissible by proving that it is risk-
dominated by the JS estimator for any choice of ‘c’ such that 

 

          9 marks  
 

(e) What is the minimum number of regressors that must be included in the model for 
this inadmissibility result to hold? 

            1 mark 
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PART B 
Answer the ONE QUESTION in this section 
 
THIS QUESTION IS WORTH 26 MARKS 
 
Question 7: 
 
The R code that was used to generate the following results is available in the separate handout 
that has been supplied. 
 
The model that is being estimated is a linear regression model with an intercept and three other 
regressors. The errors of the regression model are independently distributed according to a 
Student-t distribution with v degrees of freedom. (Note that this is different from the situation 
where the error vector follows a multivariate Student-t distribution.) 
 
The regression coefficients are called "b1" to "b4", and the scale parameter (standard deviation) 
for the error distribution is called "sigma". 
 
An informative prior distribution is used for the five parameters of the model. The joint posterior 
density for the parameters is non-standard so a particular MCMC algorithm is used to obtain 
information about the marginal posterior densities. 
 
(a) The following results were obtained when v = 4; the mean of the prior density 
 for "sigma" = 1; and the prior means for "b1", "b2", b3", and "b4" are all zero: 

 

 
 

(i) How many MC replications wre used for the "burn-in"? Do you think that enough 
 replications have been used? 
                      3 marks 
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(ii) Interpret the graphs immediately above. How many MC replications have been used 
 after the "burn-in"? 
          3 marks 
(iii) Discuss the results depicted in the graphs immediately below. 
 
 

 
                      4 marks 
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(iv) What is the Bayes point estimate of "b1" if we have a quadratic loss function?  
 What is the Bayes point estimate of "sigma" if we have an absolute error loss 
 function? 
                      2 marks 
(v) We also have the following results: 
 
> #Posterior std. deviations for b1, b2, b3, b4, & sigma: 
 
> sd(bfit$beta[-(1:burnin),1]); sd(bfit$beta[-(1:burnin),2]);sd(bfit$beta[-(1:burnin),3]); 
sd(bfit$beta[-(1:burnin),4]);sd(bfit$sigma[-(1:burnin)]) 
 
[1] 0.1788289 
[1] 0.03298178 
[1] 0.1514883 
[1] 0.1554058 
[1] 0.05848021 
 
> # Posterior Quantiles for b1, b2, b3, b4, & sigma: 
 
> quantile(bfit$beta[-(1:burnin),1], probs = c(2.5, 5, 95, 97.5)/100);quantile(bfit$beta[-
(1:burnin),2], probs = c(2.5, 5, 95, 97.5)/100);quantile(bfit$beta[-(1:burnin),3], probs = 
c(2.5, 5, 95, 97.5)/100);quantile(bfit$beta[-(1:burnin),4], probs = c(2.5, 5, 95, 
97.5)/100);quantile(bfit$sigma[-(1:burnin)], probs = c(2.5, 5, 95, 97.5)/100) 
 
       2.5%                 5%                   95%                97.5%  
0.004459192   0.063116969    0.654733596    0.709129319  
 
     2.5%              5%               95%         97.5%  
0.2101656    0.2211769    0.3292389    0.3392983  
 
      2.5%              5%                  95%          97.5%  
-0.9509986    -0.9032979    -0.4022960    -0.3513928  
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     2.5%              5%                95%            97.5%  
0.1794102     0.2300648     0.7407045     0.7911273  
 
     2.5%              5%              95%             97.5%  
0.4133555    0.4273332    0.6184314     0.6420597 
 
Construct a 95% Bayes credible interval for "b1", and a 90% Bayes credible interval for "sigma". 
Interpret these intervals, and explain how they differ (conceptually) from confidence intervals. 
 
                      5 marks 
 
(b) The following results were obtained when v = 40 (instead of v = 4); the mean of the 
 prior density for "sigma" = 1; and the prior means for "b1", "b2", b3", and "b4" 
 are all zero: 
 

 
  
The Least Squares estimation of the model yields the following results: 
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(i) In what sense are these least squares results also Maximum Likelihood estimates? 
 
                      2 marks 
 
(ii) Use the least squares results and the Bayes results on p.9 to comment on the extent to 
 which the prior information is influencing the results. (You may assume that we have a 
 quadratic loss function.) 
 
                     4 marks 
 
(c) The following results were obtained when v = 4 (as in part (a)); the mean of the 
 prior density  for "sigma" = 1; and the prior means for "b1", "b2", b3", and "b4" 
 are all zero. However, instead of setting "g <-  62", as on p.1 of the R code handout, 
 I set "g <- 620": 
 

 
 
 Compare these results with their counterpart on p.8 above. What does this tell you about 
 the sensitivity of the results to the specification of (one aspect) of the prior.  

 
                      3 marks 

 
 
 
 
 
 
 
 
 
 
 
 

END OF EXAMINATION 


