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On the Inconsistency of Instrumental Variables Estimators for 
the Coefficients of Certain Dummy Variables 

 

 

1. Introduction 

 

Dummy (“indicator”) variables are routinely used as covariates in regression analysis. These 

binary variables are assigned the value zero if the corresponding sample observation fails to 

exhibit a particular qualitative attribute, and a constant non-zero value if that attribute is achieved. 

Without loss of generality, this single value is assumed to be unity. For any other value, the 

corresponding regression coefficients simply scale to compensate. It is well known (Salkever, 

1976) that if a dummy variable regressor takes its non-zero value for only a single sample value, 

then the OLS estimates of the regression coefficients are identical to those that would be obtained 

if the dummy variable were omitted from the model, and the observation in question were deleted 

from the sample for all of the model’s variables. This result should be kept in mind if such 

dummy variables are used to deal with “outliers” in the data.  

 

Recently, Hendry and Santos (2005) have discussed another intriguing property of OLS 

estimation in the case of such special dummy variables. Namely, even under standard 

assumptions, the OLS estimator of the coefficient of such a dummy variable is inconsistent, even 

though OLS is still best linear unbiased. In contrast, the OLS estimator for the coefficient vector 

associated with the remaining “regular” regressors retains its usual weak consistency property. 

Hendry and Santos provide other related results that are of considerable practical importance. 

 

In this paper we extend the principal results of Hendry and Santos in two directions. First, we 

show that corresponding results hold when the non-dummy regressors in the model are stochastic, 

and correlated with the error term, and OLS is replaced by Instrumental Variables (IV) 

estimation. Second, we observe that the basic results, and their proofs, are essentially unchanged 

if the problematic dummy variables have a non-zero constant value for a fixed number of 

observations, rather for a single observation, provided that this number cannot increase as the 

sample size increases. 

 

Models with these characteristics are commonly encountered in applications involving both time-

series and cross-section data. In the former case, one obvious example would be where the 
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sample spans the years of the Second World War, and a dummy variable is assigned to be non-

zero only for the seven years of conflict. A second time-series example would be where the 

sample spans the “9/11” terrorist attacks in the U.S.. In this case, it assumed that the earliest 

recorded data are included in the sample already, and that any future such catastrophes would be 

of a sufficiently different nature that separate dummy variables would be required if the sample 

were extended into the future. In the case of cross-section data, the situation under consideration 

here can arise in the analysis of treatment effects. Here, dummy variables with a fixed number of 

non-zero observations will arise, for example with respect to the pre- and post-treatment periods. 

Whatever the type of data being used, dummy variables with only a single non-zero value are 

often used to deal with outlier values in the sample, as noted already. 

 

The widespread use of IV estimators, in both time-series and cross-sectional data analyses, means 

that it is important to understand their properties when they are applied in the context of these 

“special” dummy variable regressors. Moreover, in many applications, the inferences that are of 

primary interest centre on the coefficients of the dummy variables themselves. For example, one 

might be concerned with the impact of a structural break, either in a time-series or cross-sectional 

setting. If the estimates of these coefficients are inconsistent, this severely weakens any 

conclusions that may be drawn from the study. 

  

The rest of the paper is structured as follows. In the next section we formalize the model and the 

underlying assumptions that we will use. Apart from the characteristics of the dummy variables, 

everything is quite standard. In sections 3 and 4 we establish our main results. These include the 

consistency of the IV estimator for the coefficients of the non-dummy regressors; the 

inconsistency of this estimator in the case of the coefficients of the dummy variables themselves; 

and the consistency of the usual estimator for the asymptotic covariance matrix of the IV 

estimator of all of the coefficients in the model. In Section 5 we demonstrate that although the IV 

estimator for the coefficients of the special dummy variables is inconsistent, the associated t-

statistics are still asymptotically standard normally distributed, as usual. So, asymptotically valid 

inferences may still be drawn, although the t-test is an inconsistent test in this context and so its 

power is limited, even asymptotically. Section 6 provides our conclusions. 
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2. Model and assumptions 

 

Consider the following linear regression model: 

 

vDXy    ; ],0[~ 2 IN      (1) 

 

where X  is )( 1kn , D  is )( 2kn  and 21 kkk  is the total number of regressors, including the 

intercept. At least some of the columns of X are random and correlated even asymptotically with 

the error term, v. That is 0)'( 1  Xnplim . The columns of D are zero-one indicator variables, 

each taking the value unity only for one (different) observation. As we will see in the next 

section, subject to X  having full rank, we can generalize this set-up to allow each dummy 

variable to take the value unity only for a fixed number of observations that does not increase 

with the sample size. All of our results hold under this more general framework. In addition our 

results are unaffected in the converse case where the number of zero values for the dummy 

variable(s) is fixed, but the number of unit values can increase. If  1  is a unit-valued vector, 

replacing a column, d, of D with (1 – d) simply reverses the sign of the corresponding element of 

 . 

 

Given the presence of stochastic regressors, instrumental variables (IV) estimation would be a 

natural choice in anticipation of obtaining weakly consistent estimates of the parameters. 

However, as we will show, this hope is thwarted as far as the estimation of the elements of   are 

concerned. Without loss of generality, we will consider the just-identified case, with equal 

numbers of regressors and instruments. Also without loss of generality we will include the 

intercept and all of the columns of D in the set of instruments, unless otherwise noted. Let the 

columns of Z )( 1kn  be the remaining 1k  instruments, satisfying the conditions 

0)'( 1  Znplim  and ZXQXZnplim  )'( 1 , where ZXQ  is finite and non-singular. 

 

For expository purposes, we let 12 k , so that D is a single column vector, d, with one non-zero 

element at observation, bi , say. Note that 1' dd , 
bi

xdX '  and 
bi

zdZ '  where 
bi

x and 
bi

z  are 

)1( 1k  vectors with elements comprising the values of the regressors in X and the instruments in 
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Z, respectively, at observation bi . So, '0)'( 1  Xdnplim . Also, define ')'( 1
1 ZXZXIM   

and  '')'( 1
2 ddIddddIM   , so that 01 XM   and 02 dM . In addition, note that 

 1]'01[]')')('[(1)'( 1111
1  

biZX zQdZXZnXdnplimdMdplim .  (2) 

 

We can now proceed to our main results. 

 

3. (In)Consistency of the IV estimators 

 

First, note the following obvious extension of the Frisch-Waugh-Lovell theorem (Frisch and 

Waugh, 1933; Lovell 1963, 2008) to our situation involving IV estimation. In the notation of our 

model, the IV estimators of   and   are yMZXMZ 2
1

2 ')'(
~    and  yMddMd 1

1
1 ')'(~  . 

This is easily established by solving the two “normal equations”: 

 

  

ydddXd

yZdZXZ

'''

'''








       (3) 

for   and  . See Giles (1984) for a related application of this result. 

 

We now show that the IV estimator of   is inconsistent, but that of   is weakly consistent under 

standard assumptions. 

 

Theorem 1 

For model (1) and the assumptions in section 2, 

 

  0)~( 
bi

plim    . 

Proof 

  
.)(')'(

')'(~

1
1

1

1
1

1












dXMddMd

yMddMd
 

Using the result, 01 XM , we have: 

.')'(')'(')'(

')'(~

11
1

1
1

1
1

1





ZXZXddMdddMd

MddMd







   (4) 
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Note, from (2), and Slutsky’s Theorem, that   

0)0()]'()')('()'[( 11111
1  

ZXi QxZnXZnXddMdplim
b

   .  (5) 

Also, recalling that 1' 1 dMd ,  

  
bb iiplimddMdplim   )()]'()'[( 1

1  , 

where 
bi

 is a single element of ν .     

 

So,  

  0)~( 
bi

plim    . 

         ■ 

 

Note that if the dummy variable takes the value unity for a fixed number of observations (the first 

m, say), and this number does not increase with n, then ~  is still inconsistent. Specifically, 

following the above proof, in this case mdMdplim )'( 1 ; 0]')'(')'[( 11
1  ZXZXddMdplim ; 

and )(
11

11
1 /)()()]'()'[( m

m

j
j

m

j
j mplimmddMdplim  



 , say. It then follows that 

0)~( )(  mplim  . 

 

It is important to note that it is the number of observations, and not the proportion of observations 

in the sample, that must be fixed in order for this result and the following results to hold.  

 

Also, note that the result in Theorem 1 does not require that the dummy variable(s) be included in 

the set of instruments. Using similar arguments it is easily seen that ~  is still inconsistent for   

if the matrix of instruments is ],[ wZ , where the random vector w  satisfies 0)'( 1  wnplim . 

Parenthetically, one might think of “adjusting” the IV estimator by subtracting the th
bi  IV residual 

from ~ , in the case of a dummy with a single non-zero value, in anticipation of obtaining a 

consistent estimator of  . This is futile, as the residual in question has a zero value. The same 

applies when there are m non-zero observation. In that case the sum (and sample average) of the 

corresponding IV residuals is also zero. 

 

Now consider the IV estimator of  , the coefficient vector for the random regressor matrix, X.  
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Theorem 2 

For model (1) and the assumptions in section 2, ~  is weakly consistent for  . 

 

Proof 

  
.)(')'(

')'(
~

2
1

2

2
1

2












dXMZXMZ

yMZXMZ
 

Using the results, 02 dM  and 1' dd , we have: 

.'')'(')'(

')'(
~

1
2

1
2

2
1

2





ddZXMZZXMZ

MZXMZ







    (6) 

Applying Slutsky’s Theorem repeatedly, 

  
.

)'()'()'( 11
2

1

ZX

ii

Q

xznplimXZnplimXMZnplim
bb



 

   (7) 

 

So, 

,0

)0(

)]')('[()]')('()'[(
1

111
2










biZX

ZX

Q

ddZnplimQddZXMZplim





 

,0

)0(

)'()]'()'[(
1

111
2









ZX

ZX

Q

ZnplimQZXMZplim 

 

and therefore 0)
~

(  plim   . 

■ 

 

So, the IV estimator for the coefficient of the non-dummy variable is still weakly consistent, 

despite the degenerate nature of the dummy variable itself. Again, this result also holds if the 

dummy variable takes the value unity for a fixed number of observations, and this number does 

not increase with n. It also holds in the case of several such dummy variables. This is easily 

established by making obvious amendments to the proof of Theorem 2, and is left as an exercise 

for the interested reader. 
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To illustrate some of the above results the sampling distributions of ~  and ~  have been 

simulated, using program code written for the EViews package (IHS Global, 2016). The 

experiment is based on the following data-generating process: 

 

    iiii zadaax  210                     (8) 
 

    iiii dxy                       (9) 
 

   



















2
212

12
2
1~







N
i

i  ; i = 1, 2, ...., n. 
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Sample sizes up to n = 200,000 were considered. The exogenous variable, z, was generated as 

standard normal for the largest sample size, and held fixed for the 1,000 Monte Carlo repetitions. 

The dummy variable, d,  was constructed  as 1id , i = 1, 2, …, 15; 0id , i = 16, 17, …., n. 

The following parameter values were assigned: 12
2

2
1210  aaa ;  

95.012  . Equation (9) was estimated by IV with d, z and the intercept as instruments. The high 

correlation between the regressor, x, and the instrument, z, ensures that we avoid any “weak 

instruments” problem. The effective signal-to-noise ratios implies that the median R2 values for 

the 1,000 IV regressions were 0.818, 0.795, and 0.796 for n = 50, 500 and 5,000 respectively. 

Figures 1 and 2 illustrate the sampling distributions of ~  and ~  for a selection of sample sizes.  
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The weak consistency of ~  is apparent in Figure 1. In contrast, Figure 2 demonstrates the 

inconsistency of ~ , and the fact that this arises because the variance of that estimator does not 

vanish as n . 

 

4. Asymptotic variances of the IV estimators 

 

Hendry and Santos (2005, pp. 573-574) show that although the OLS estimator of   is 

inconsistent in their fixed-regressor, single-valued dummy variable analogue to our problem, the 

usual estimator of the variance of that OLS estimator is both unbiased and consistent. In our own 

case, we will now show that the usual estimator of the asymptotic variance for ~  is weakly 

consistent, notwithstanding the inconsistency of ~  itself. 

 

Theorem 3 

Consider model (1) and the assumptions in section 2. In addition, assume that )'( 1 Xnplim   is a 

finite vector; and XXQXXnplim  )'( 1  and  ZZQZZnplim  )'( 1  are finite matrices. Then the 

asymptotic variance of )~(
bi

n   is )''( 112
bb iZXZZZXi xQQQx  ; and this asymptotic variance 

can be estimated consistently by 
bb ii xZXZZXZxn 112 )'(')'('~  , where 

  ndXydXyn /)~~
()'~~

()/~'~(~2    

is the usual consistent estimator of 2 . 

 

Proof 

From (4), 

bb ii nMdndMdn    )'()'()~( 1
1

1 . 

So, from (2), the asymptotic variance of )~(
bi

n    is the same as that of )'( 1 bi
Mdn   . 

Now, 

,')('

)]'()'('.[.

)]')'(''([)]'(.[.

121

2/111

1
1

bb

b

bb

iZXZZZXi

i

ii

xQQQx

ZnXZnxvarasy

ZXZXddnasy.var.Mdnvarasy



















 

which completes the first part of the proof. 
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Next, consider  )/~'~(~2 n   as an estimator of 2 . Noting that 1' dd , 

 

   
.')

~
(2')~(2

)
~

(')'~(2)~()'~()
~

()'
~

('~

11

11112





Xndn

Xdnnnn








 

           (10) 

By Khintchine’s Theorem, 

  .)'( 21  nplim        (11) 

 

Also, using Slutsky’s Theorem repeatedly: 

  ;0)/(]')'~([ 21  nplimdnplim
bi

     (12) 

  ;0)'(0]')'
~

([ 11    XnplimXnplim     (13) 

  ;0)
~

()/()]
~

(')'~([ 1   plimnxplimXdnplim
bb ii  (14) 

and 

  .0)]
~

()'
~

[()]
~

(')'
~

([ 1   XXQplimXXnplim  (15) 

 

 In addition, using (2): 

   

 

.0]'[]/[']'[

][']'[2]/[

]')'('')'('

'')'('2''[

]'''[)]~()'~([

11211

1112

111

111

11
11































ZnplimQnxplimQZnplim

xnplimQZnplimnplim

ZXZXddXZXZn

ddXZXZnddnplim

MddMnplimnplim

ZXiZX

iiZXi

b

bbb

 

           (16) 

Then, using (11) to (16) in (10), .)~( 22  plim        

  

Finally, let 
bbb iii xZXZZXZxnnV 112 )'(')'('~)]~([

~   . Immediately, from the 

consistency of 2~ , 
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.)]~([

'

)')('()'(')]}~([
~

{

112

111112

b

bb

bbb

i

iZXZZZXi

iii

nasy.var.

xQQQx

xZXnZZnXZnxnVplim

















 

■ 

 

So, in the model that we are considering, although the IV estimator for the (scalar) coefficient of 

the dummy variable is inconsistent, the corresponding estimator of its asymptotic variance is a 

consistent estimator of the true asymptotic variance of ~ . In particular, note that this estimator is 

the one that would usually be constructed in the context of IV estimation. Not surprisingly, the 

usual estimator for the asymptotic covariance matrix (a.c.m.) of )
~

(  n  is also weakly 

consistent, as we now show. 

 

Theorem 4 

Consider model (1) and the assumptions in section 2. In addition, let )( bi
Z  represent the Z matrix 

with the ib
th row deleted, and assume that **)()(

1 )'( ZZii QZZnplim
bb

  is a finite matrix. Then the 

a.c.m. of )
~

(  n  is )'( 1
**

12 
ZXZZZX QQQ ; and this asymptotic variance can be estimated 

consistently by 1
)()(

12 )'(')'('~  ZXZZXZxn
bbb iii , where 

  ndXydXyn /)~~
()'~~

()/~'~(~2    

is the usual consistent estimator of 2 . 

 

Proof 

From (6), 

  )'()'()
~

( 2
2/11

2
1  MZnXMZnn   , 

and from (7),  

  ZXQXMZnplim  1
2

1 )'(   . 

So, 

  1
2

2/11 ')'.(..)]
~

(.[..  ZXZX QMZnmcaQnmca  . 

 

Now, note that )'()'( )(
2/1

2
2/1

bb ii vZnMZn   , and so 
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  1
**

12 ')]
~

(.[..  ZXZZZX QQQnmca    , 

as required. 

 

Recall from the proof of Theorem 3 that 22~  
p

, so immediately, by Khintchine’s Theorem, 

 

 
)]

~
(.[..'

])')('()'(~[])')('()'(~[

1
**

12

11
)()(

11121
)()(

12













nmcaQQQ

ZXnZZnXZnZXZZXZn

ZXZZZX

p

iiii bbbb
 

           ■  

 

 



 

 13

5. Large-sample inferences 

 

Under our assumptions, tests of hypotheses about the elements of    proceed in the usual way. 

So, for example, the usual t-test statistic for testing *
0 : jjH   , for the jth element of  , is 

asymptotically standard normally distributed if the null hypothesis is true. Interestingly, the same 

is true for the corresponding t-test statistic for testing *:0  H . This follows from the 

asymptotic normality of ~  and the asymptotic independence of *)~(   and its estimated 

asymptotic variance, 
bb ii xZXZZXZxn 112 )'(')'('~  . So, asymptotically valid inferences may 

still be drawn about the coefficients of dummy variables that take only a fixed number of non-

zero values. The usual tools apply. This is a direct (asymptotic) generalization of the Hendry and 

Santos (2005, p.576) result regarding the validity of the t-test in this case, in finite samples, under 

OLS estimation with fixed regressors and normal errors. Note that the latter condition is not 

needed here, and that the usual Wald test for more general exact linear restrictions on the 

coefficients of these dummy variables is also asymptotically valid. 

 

Figure 3 illustrates the limiting behaviour of the t-test for testing 0:0 H under the set-up for 

the Monte Carlo experiment described in section 3, when the null hypothesis is true. The means 

(standard deviations) of the sampling distributions in Figure 3, in terms of increasing sample size 

are -0.053 (0.979), -0.027 (0.980), and -0.008 (1.007). The corresponding p-values for the Jarque-

Bera test for normality are 0.020, 0.821 and 0.806. 

 

Hendry and Santos (2005, pp.576-577) note that the usual t-test for *:0  H  is an inconsistent 

test in their framework with fixed regressors and OLS estimation. That is, for a fixed alternative 

and significance level, the power of the test does not approach unity as n . This is in contrast 

to the usual situation with well-behaved regressors. In our case the same situation applies, 

essentially because the limiting variance of ~ is non-zero. Table 1 illustrates this point with 

power curves for the asymptotic t-test of 0:0 H , against various fixed two-sided alternatives 

with a significance level of 5%. For fixed  and finite , the power converges to a value less than 

unity as n . 
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Table 1: Powers of t-test of 0:0 H  vs. 0: AH  

(Size = 5%) 

 

γ 

 

   -0.5 -0.3 -0.1  0.1 0.3 0.5 

n      

50   0.37 0.19 0.06  0.05 0.12 0.31 

500   0.49 0.21 0.07  0.06 0.20 0.46 

5,000   0.49 0.21 0.07  0.07 0.21 0.48 

100,000   0.49 0.22 0.07  0.07 0.22 0.49 

200,000   0.49 0.22 0.07  0.07 0.22 0.49 

 

 

6. Conclusions 

 

The use of dummy variables which take only a single non-zero value, or whose non-zero values 

are fixed in number as the sample size increases, raises some interesting issues for the properties 

of a broad class of regression estimators. Specifically, we have shown that the members of the 

family of Instrumental Variables estimators will be inconsistent for the coefficients of such 

dummy variables. The IV estimators will, however, retain their weak consistency for the 

coefficients of the other (possibly random) regressors in the model, under standard assumptions. 

The usual estimator of the asymptotic covariance matrix for the IV estimator of the full 

coefficient vector is also consistent, even in the presence of such ‘special’ dummy variables. 

Finally, although the dummy variable coefficient estimator is inconsistent, the associated t-test 

statistics are asymptotically standard normally distributed, as usual. However, this test loses its 

usual property of consistency in the case of dummy variable coefficients. So, its power is 

bounded below 100% for fixed alternative hypotheses, even for infinitely large sample sizes. 

 

Given the breadth of the family of Instrumental Variables estimators, and their widespread use in 

the context of both time-series and cross-sectional data, these results provide a valuable extension 

to the existing results in the literature. They also have immediate practical implications for 

applied researchers. 
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