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1. Introduction

The first three sections of this survey will consider
three types of aggregation that occur in the context of the analy-
siz of time series, (a) "small-scale" aggregation, (b) "large-
scale aggregation, and (c¢) temporal aggregation. An example of
small-scale aggregation 1s of X, is generated by an AR(1) equa-

tion, such as

X =a1X + €

t E-1 1t

and similarly Y, is AR(1)

Y = a.Y + £

t 27t-1 2t

utiere € are each white nolses and if X, ¥, are indepen-

1t ®at

dent, so that ¢ ¢ €2t @re independent, then what model does

1

obey? The answer is found usually to be ARMA(2,1). Small scale
aggregation involves sums of a few time serles variables, which
are not necessarily independent.

"Large-scale" aggregations will involve the sums of very
many variables, such as total U.S. consumption, which is the sum
of the consumptions by the many million individual families that
make up the consumers in the economy. One may expect special
properties for aggregates over very large numbers of components.

Temporal aggregation occurs when a variable is generated
over a month, by some model such as an AR(1) process, but is only

observed quarterly for example. The question arises, what model
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will the temporally aggregated data obey? The answer will depend
on whether the variable is a stock or a flow and is discussed in
section 4.

The other sections of the survey consider special topies
that are particularly relevant for the time series context, sec-
tion 5 is on forecasting, section 6 on causation and section 7 on

cointegration.

2. Small Scale Aggregation

Many of the results concerning aggregation of univariate
series rely on the following simple result (from Granger and

Morris [1976]):

Theorem 2.1: If Xy, X5 are MA(q) processes, generated by
X = % a,.c.
3t by kg, tek
where the innovation processes are individually white noise

(i.e., covie s):O,t#s,j:k) then the sum

AR

Sg = L + g

is also an MA{q) process, and it will have a representation

S, = g b, n
t =0 k't-k

where s is a white noise. There seems to be no simple relation-

ship between the bJ and the component coefficients a5 k=1, 2.
As the result holds for the sum of a pair of moving

averages it clearly holds for the sum of any number of MA(qQ)

variables. If ¢ are correlated other than contemporane-

16" S2t
ously, the sum may be MA{q¥*) for any finite gq*. For example, if




1t
and

X =

2t T %1,t-3 * %%q,-4

then each series is MA(1) but the sum is MA(L4). In the case of
only contemporaneous correlation between innovations, the theorem
should strictly state that S, is MA(q*), where gq* < q. For exam-

ple, if

X + be

1t = %1t 1,t-1

X =

2t T fat * C%2 -1

and cov(sjt,sks) =0 all t # 5 and when k # j then cov(St,St_1) =
cov(X1t,X1,t_1) + cov(X, X5y 4} = b var(eq) + ¢ var(ep) and
clearly this can be zero, making S; a white noise series. How-
ever, of cov(St,St_1) is zero it may be thought of as a colnciden-
tal or low-probability event.

Darroch, Jirina, and McDonald [1986] have shown that if

the moving averages each have a unit root, so that
Xlt = (1—B)a1(B)e1t
th = (1—B)a2{B)52t

where aj(B) J = 1, 2 are polynomials in B of order q - 1, then Sg
will also contain a unit root and be of the same form. Thus, if
the components are nonlnvertible moving averages, of this particu-

lar kind, than so will be their sum.



A univariate series X, will be said to be ARMA(p1,q1)

if it is generated by
a1(B)X1t = b1(B)E1t

where ¢,, is white noise, qT(B) is a polynomial of order p,, by(B)

it
is a polynomial of order g, and a1(B), b1(B) have no common
roots. The immediate generalization of the theorem for moving

averages ls:

Theorem 2.2

If

X1t ~ ARMA(p1,q1)

and (e1 ) is a bivariate white noise, then

£ %ot

St = X1t + X2t

is ARMA(m,n} where
m =< p1 + p2
n < max(p1+q2,p2+q1)

(proved in Granger and Morris [1976]). Thus, for example, if
X1t ~ AR(1), Xop ~ AR(1) then generally Sy is ARMA(2.1) but in
special cases these orders can be lower. If S, is given by

as(B)St = bs(B)nt



then aS(B) will consist of the product of a1(B) multiplied by all
the roots of a,(B) that are not also in a,(B). It follows that
aggregates may "usually" be ezpected to have ARMA models rather
than the simpler AR models. In particular if X is AR(p) but is
observed with a white noise measurement error, the observed series
will bhe ARMA(p,p), from this theory.

A particularly important consequence of these results is
that if any component series contains a unit root (and thus is
I{1)) so that a1(B) = (1-B)a1(B), for example, then the sum Sg
will also be I(1).

Some generalizations of Theorem (2.2) have been provided

by Peiris [1985] for the multivariate case who proves:

Theorem 2.3: If §1t is a multivariate series with N components

generated by
B(B)Xyy = Cy(Bleyy-

where g1(B) is an N x N matrix in the lag operator B, each compo-
nent of this matrix being a polynomial of order py in B, and
gimilarly the matrix g](B) consists of polynomials of order qq,

then g1t . ARMA(p1,q1). If also

stacked vector (511:’521:

components are at most correlated contemporaneocusly), and if the

gzt ~ ARMA(pZ,qZ), and if the

}) is an 2N white noise vector (so that

matrix 51(B)§2(B) is symmetric, then

Sg = Xyp + Xy




iz ARMA(m,n), with m, n as given in Theorem (2.2). In particular
the sum of two MA(Q) vectors will also be MA(q). The symmetry
condition is rather a stringent one and it iIs unclear what occurs
when it does not hold.

A caveat about these results and some of those in later
sections is that, although they are correct in theoretical situa-
tions they are of somewhat limited value is practice when analyz-
ing an actual data series. One may assume that an ARMA(p,q) model
is appropriate but the values of p and g have to be identified
elther using the methods proposed by Box and Jenkins [1970] or
model size selection eriteria such as AIC. In practice, the true
p, q may be very large--as suggested by the aggregation results,
for instance--but low values of p and q may provide an adequate
approximate model. This suggests that researchers should not
completely believe their identified models, and so should not be
surprised if the results from aggregation theory do not work

perfectly with estimated models.

3. Large Scale Aggregation

Many of the most important variables in macroeconomics
are simple, unweighted sums or aggregates of very large numbers of
components, Thus, for example, consumption of nondurable goods in
the U.S. is the sum of this quantity over 80 million households
and total corporate profits are the sum of profits for 2 1/2
million individual firms. If the components are all AR{1), with

different parameters, and are Independent, their sum will be

ARMA(N,N-1) using the results in the previous section when there

are N independent components. When N is the millions, the number



of parameters will be unreasonhably large. Clearly, a model with
fewer parameters will provide an adeguate approximation, perhaps
because individual AR{1) models will have similar parameter values
and because roots may (almost) cancel for the AR and MA polynomi-
als in B of the aggregate series. A different approach is to
assume that the AR(1) parameters are drawn from some distribution,
and then some curious results can occur. Consider the case where

the jth component is AR(1), generated by

X + £

g = %5%5,e-1 * S5t

2

where e, 1s a zero-mean white noise, with variance (e, ) = ¢° and

Jt jt
the vector (sjt,j=1,...,N) congists of Iindependent components.

The spectrum of the sum

will be the sum of the individual spectra. If the aj are assuned
to be independently drawn from a distribution F(a), the spectrum
of Se will be approximately
N
(3.1  Bw) = 3= o° | ——5 dF(a)
2% 2
|1—az]

where z = eiw. {The assumption that all ¢ have the same vari-

Je
ance is easily relaxed and is of little conseqguence.) A reason-
able assumed distribution for the a's is the beta distribution of

the form

2 2p-1,, 2.q-1
dF(a) 3(p,q) a (1-a%) da

0 elsewhere




0se<1,p,q>0

each aj lies in the region zero to one and so, each th is sta-
tionary, with probability one. It is shown in Granger [1980b]
that in this case S will be I{d), where d = 1-g/2. Thus,
(1—B)dSt has a stationary MA(=) representation. Note that d will
not be a positive integer as q > 0, and so S generally will be
fractionally integrated. If 0 < q =< 1, St will have an asympto-
tically infinite variance but if g > 1, 3. will have a finite
variance. The point of this example is that series with unusual
long-memory properties can arise from the aggregation of indepen-
dent components. Some of the simplifying assumptions is this ex-
ample can be relaxed without changes in the basic result. How-
ever, if 0 < a, < a < 1 for all j, so that there is an upper bound

J
to the aJ values, which is strictly less than one, then the frac-
tional integration result is lost.
A more general result is found if the independence

assumption is removed. The model considered is

X + B W

gt = %55, e-1 T By g5

where again the a, are from the distribution F(a}, the g, are from

J J

some distribution with nonzero mean B, and the common Ffactor Wy

is I(dm). It is then found that

S, ~ I(d)

where d is the largest of the two terms, 1 - q + d, (from the W
component) and 1 - q/2 (from the ¢ component). In particular, if

Wt is stationary, so that dw = 0, then d = 1-g/2 as hefore.




It is perhaps interesting that S will not he I(1), as
so frequently "observed" with macrovariables from aggregation of
this form and with the beta distribution as here assumed. It is
unclear if I(d) aggregates can occur with other distributions,
having the property Prob(az1) = 0. However, the result that S is

I{1-q/2) has to be interpreted with some care, as
S - (z .—Bul_]w o+ Z _1__...._.. £
£~ -a,B L 1-¢.B t
i1 j (-eyB)
and the first term can be approximated by
—rp 1
(3.2) NB[[ 5o dF () W,

It follows that, provided § = 0, the first term will
have variance of order N° whereas the second term has variance of
order N, as seen from (3.1). Thus, for large N, the first term
Wwill dominate in size but the second term will provide the larger
value of d, provided dw < q/2. In this analysis, W, is a "common
factor," that occurs in the generating process for (almost) all
components and because of this it provides the dominant component
of the aggregate.

The implications of the existence of common factors in
aggregation was studied in Granger [1987]. Simple regressions are
investigated and the time-series properties are not given particu-
lar attention. The potential importance of common factors can be

illustrated from the very simple case

th = th + czt
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where X5t is independent of %, J ¢ k, and Xt is also indepen-
dent of z,. Thus the observed valued of a variable for the jth
unit, Yt consists of a common factor cz, and an independent
component xjt‘ All series will be taken to be stationary and for
this example, suppose also that var(yj) = 1, var{(z) = 1, so that

2

var(xj) = 1 - ¢“. Dencte

N

ijt

S =
551

Xt

and similar Syt is the sum of the y's, the

Syt = Sxt + cht

so that

) 2 22
var(syt) = N{1-¢") + N“c",

Two extreme cases can be considered. (i) 2z, is observable but the
xjt are not. Thus, at the micro level th is explained by Jjust Zy
and at the macro level Syt is also explained by 2y, and (ii) the
K}t are observed, but z, is not, so the micro regression explains
Yt by Ryt and at the macro level Syt is explained by Just S...
At the macro level it will always be assumed that only macro (ag-
gregate) variables are available, not their components. The

following table shows RZ values for the case where c® = 0.001 and

N is one million
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Case 1 .. _Case 2
z observed X observed
% not ohserved Zz not chserved
micro RS 0.001 0.999
macro R2 0.999 0.001

It is seen that a very high R can be observed at the micro level
but very small at the macro level (in case 2), or vice versa. In
this example, the common factor is of very minor relevance at the
mierolevel and so could be found insignificant in an analysis of
micro data, yet it dominates the macro relationship, having vari-
ance of order N° compared to a variance of order N from the S,
component., In a sense, the macrorelationship is simpler than the
microrelationships, if essentially irrelevant terms are ignored.
This still true when both x's and the common factor z, are ob-
served.

A variety of different models are considered in Granger
{1987] but the main result can be illustrated by the following

microrelationship

+ 8.2

Jt J t + Yjwt + e

jt

where =z., W, are common factors and Xygr €4y 2F€ independent

jt

components, Thus, at the macro level

Syt = Sxt + th + ywy.

The first component has a variance of order N and the other two
have variances of order N° provided B, y are not zero. Some

0, R® at the

t

simple cases are (i) no common factors, Zy, Wy
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macro level can take any value but S, ¢ and the residual Sg

SY t
are all perfectly normally distributed, due to the effect of
central limit theorem, unless ejt have extraordinary distribu-
tions. (ii) both z, Wy are present and observed RZ will be very
near to one. (iii) both common factors present, 2, observed, Wi
not observed, macro RS takes any value, depending on the relative
importance of the two common factors, residuals not necessarily
Gaussian. (iv} one or both common factors present, neither ob-
served, R2 will be very nearly zero.

As case (iii) seems to be the most likely to be observed
(if all series are stationary rather than I{1)), one can conclude
that common factors are present but are not all observed. 1t is
interesting to ask what these common facters are, particularly the
uncbserved ones,

The results of this section provide an implied criticism
of the "typical decision maker" theory used to suggest macroeco-
nomic relationships from a microtheory. 4 behavioral equation for
a typleal consumer, say, is derived from basic miecrotheory, all
consumers are consgidered to be identical and so the macrorelation-
ship is Jjust N times the miero one. It is seen that a badly
misspecified macrorelationship can occur.

It is also suggested in Granger [1987] that nonlinear

microrelations may become effectively linear relationships between

observed aggregates. Consider the simple case where

2_02)
t Tx

= o, + a,X,, + B(X
( J

1% 3t
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S0 that all microrelationships have the same coefficient, E[xjt] =
0 and so there are no common fackors and oi = var(xit) is the same

for all Xyt In the aggregate

2 2

S = jt-ax)

vt Gy + aSKt + B8 Sum(x
but the last term is not observed, in general, and is poorly
estimated by the observed quantities St (Sxt)2 --as8 a variance
is little related to means or means sguared. Thus, the final term

becomes part of the residual in the equatlon, which is effectively

linear.

4, Temporal Aggregation and Systematic Sampling

The discussion in this section follows Weiss [1984]
which contains references to important work in this area. Suppose
that the basic time interval for which a series is generated is
unity, but that observations occur every k units (k>1), then the
series may be said to have been "systematically sampled."  For
example, some price may be determined monthly but only recorded--
or observed--quarterly, so that k = 3. Systematic sampling may be
viewed as a type of temporal aggregatlon appropriate for "stock"
variables., For a "flow" variable, a summation will oceccur over the
k units before systematic sampling. An example 1is automobile
production, which can be observed monthly or quarterly, the quar-
terly figure being the sum of the component monthly production
figures.

Consider initially the ARMA(p,d,q) series Y, generated

by
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a(B)(1-B)dYt = b(B)e,

and suppose that
P
a(B) = 1 (1-5JB)
J=1
where IGJI < 1, all j.
If now the series is gystematically sampled every k

units, (for some integer k>1)} then the new observed series, obeys

an ARMA(p,d,r) model where
r = [(p+d)+{g-p-d}/k]

and [z] represents the integer part of x. Further, the AR poly-
P

nomial for the sampled series is ak(B) = I (1-6§Bk), where B is
3=1

the unit lag operator. For example if Y, is generated by the

AR(1) model

(4.1} Y. = af + &

on the unit interval, where cov(et,st_J) =z 0, j # 0 the sampled
process on k Intervals, YE will appear to be generated by
k k.k k
YT = a YT-1 + €
where T = kt and
k k _
cov(et,sT_j) =0, j= 0.

If |a| < 1, then as k increases of will become small and Y¥ will
become nearly a white nolse. It is generally true that if a
stationary series is systematically sampled, it's memory will

decline. However, if y. is a random walk, so that o« = 1 in (4.1),
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the sampied process Y¥ will also be a random walk. More gener-
ally, the ARMA{(p,d,q) process becomes approximately an MA(d,d-1)
model for k large.

Somewhat similar results ocecur with temporal aggrega-

tion. An ARMA(p,d,q) process becomes ARMA(p,d,r) where
r = [(p+de1)+(g-p-d-1)/k].

For example, an AR(1) process, becomes ARMA{1,1) and a random walk
becomes an IMA(1,1) process. An early result in this area is due

to Working [1960] who showed that for k > 4, the MA component was

Ep + 0.25 €p_4
to a close approximation.

For both cases it is seen that if the process is gener-
ated over small time intervals compared to the observation period,
80 that k is large, the AR component of the generating mechanism
becomes unimportant, the unit root components remain unchanged and
the moving average component simplifies but can remain relevant.

Welss {1984] also considers a temporal aggregation of

models with seasonal compeonents and ARMAX models. For detailed

results, see that paper. The ARMAX model considered is

a(B)(i-B)dYt c(B)m-B)fxt + b(Ble,

D(B)(1-B)fxt F(Ble,

with C(0) = 0, so that Xt causes Yt but not vice versa and there
is no instantaneous relationship between X, and Y,. After sys-

tematic sampling and temporal aggregation, equations for the
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maximum lag of the Iindependent variable are provided by Weiss
[1984] and are generally rather complicated. As k becomes large

the relationship between Yk and Xg takes the form

T
kyd K\f
(4.1} (1-B%) Yy = (1-B")' X + ap

where ag is MA(d-1) for systematic sampling (stock variables) and
is MA(d) for temporal aggregation {flow variables). Again, sim-
plification occurs when k is large and it may be particularly
noted that temporal aggregation has produced a contemporaneous

relationship.

5. Forecasting

A univariate stationary series Y, has optimum (least-
squares) one-step forecast ft—1 1 based on the information seb
?

I._4 given by

In this survey, Jjust linear, one-step forecasts are considered.

The forecast error is

IR IPELI M

and a natural measure of (one-step) forecastability is

2, _var(e
R™ =1 var%Y)'

If Y. is integrated, then it is assumed that appropriate differ-
encing is applied to produce a stationary series before forecast-
ing is attempted. A convenient notation is to use f(j) for the
optimum one-step forecast of th, based on the information set

1{3) available at time t - 1. If
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N
Syt i j§1th
then the optimum forecast of 3, is
e(s) _ g (3
j=1
assuming that the union of all the individual information sets
1) =y 14 is available. In this, rather extreme case, in a
sense ngthing is lost by the aggregation, although RZ for S may
take almost any value depending on the extent which the eld) are
intercorrelated. However, the more typical case is that the full
information set is not available after aggregation and so some
forecasting ability will be lost. For example, it is clear from
the result of the previous section that temporal aggregation
generally reduces forecastability.
For ordinary small-scale aggregation, Kohn [1982] has
obtained necessary and sufficient conditions for no loss of fore-
casting ability. Suppose that the component series th are writ-

ten as a vector it which is generated by the k-order vector auto-

regression
P
LR
where 2 iz a wvector white noise and let Syt be the sum of these

components, so that

where E is a wvector of ones. 3 ¢ can be forecast either from

y
(1}, (2),
It-T' gt_j, J z 1 or from It-1' Sy,t—j’ jz

first information set all information is available, in the second

1. Thus, in the
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only lagged sums are available. Kohn proves that the two fore-
casts are identical only if there exist a sequence of constants

aj stuch that

(5.1) i'a, = a, i’

J J=
and in this case, Syt obeys the AR(p) model
P
S, = s e
yt J§1aj y,t-J ¥ -t

{5.1) is a very stringent set of conditions which are unlikely to
hold exactly, so that usually Syt will be forecast less well if
the smaller Information set 1s available compared to the larger
one.

However, these results are less clearly relevant when
large-scale aggregation occurs with common factors. The results
of section 3 show that virtually all of the forecasting ablility of
the full information set is available if just the common factors
are avallable.

The results give In this section are theoretiecal, In
practice, where models have to be ldentified and estimated, rela-
tive forecasting abilities of different information sets can be
less clean cutb, as shown by the simulation results of Lutkepohl

[1985].

6. Causation
A definition of "causation" that has found wide-spread

application says that x, causes Vet if Yeet is better forecast

(1),
g

the information set Iéa): Ye-gr Weo g J 2z 0. Thus, Rt _j contains

from the information set I Ve Ht—j’ Xp_jo j =2 0 than from




- 19 -

Information that is helpful ih forecasting ¥i,1 and which is not
in Iéz). Strictly, xy is a '"prima facie" cause of y. 4 in mean
with respect to the information set IéeJ. The definition Iis
discussed in Granger and Hatanaka [1964], Granger [1980a] and
elsewhere. As the definition is based on forecastability, aggre-
gation can be disturbing as information sets are deformed.

With ordinary small-scale aggregation the following
rules generally hold (i) if at the disaggregate level Xyt does
not cause Vi, te1 and ¥i,t does not cause Xy, t+1 for most j then
Sx,t will not cause Sy,t+1‘ (ii) If Xj p CAUSES ¥y 4,4 but Y36
does not cause X5 gl for most j, then S, will generally cause

S and 5 may appear to cause S Thug correct causal-
E+1 y,t

¥
ity is still found but a spurious feedback may occur because of

Z,b+1°

aggregation. However, aggregation may weaken the correct causal-
ity, as found for forecastability iIn section 5. (iii} If there is
feedback at the disaggregate level it will theoretiecally cccur at
the aggregate level, in general.

To 1llustrate the statements in (1i) consider the simple
situation where there are two micro-units and for each a pair of

variables, X, Y are measured, these being related by

X

Yig = 2455, 6-1

+

€ipr i=1,2

- X -
X = &5t biei,t-1’ i=1,2

where ex, EY are independent (2x1) vector white nolse processes.

If Sy ¥4 + Yp, and using a similar notation for other variables,

then
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X
- 1
Syp = 8'8p 9 * Sey ¢
SX
1
St = Sey,p * D'eg g where a' = (ag,ap), €F = (), b =
€
(by,bs). Causality will be found at the macrolevel if 2
E{sy,t+1sxt] £ 0
which will be true if
2 2
(6.1) a1(a1+pc102) + a2(02+pa102) + 0

where

2 wr

*a% = var(s}), o5 = Var(eh)

X X\ _
COV(£1,£2) = Po,o,.
Clearly (6.1) will usually ocecur {(but need not), so that the

causation that occurs at the microlevel will be found at the

macrolevel. However, it will also be generally true that
E[Sx,t+1’sy1t] + 0 as it is a perfect linear combination of Syt
_ ot X .

ssx,t = a's and Sex,t-1 which 1s a component of Sx,t-1' Thus

although there is no causation from th to Xj,t+1 at the micro-
level, it does occur at the macrolevel.

It is hardly surprising that temporal aggregation can be
disruptive of causal relations as past and future values get mixed
up, part of one aggregate will occur both before and after part of

another aggregate. If at the unit interval there iz one-way

~causation between a pair of series; after temporal aggregation a

feedback or two way causation may be found. As k, the number of

time units being aggregated over becomes large, stationary series
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appear to be just contemporaneously related and so actual causal-

ity can be lost,

7. <Cointegration

A pair of I{1) seriles Xt, Y, are sald to be cointegra-

tion if there exist a linear combination

which is stationary (or I(0)). This will oceur if X, Y, both
possess a common I{1) factor, with all other components being

I(0), so that

Y

n
=
..I..
o

t t t

where W, ~ I(1), i, Y both I(0). If the series are cointegrated

there will always exist an error-correction mechanism of the form

AX, =

" -p1zt_1 AY, + residual

+ lagged AXt, N

AY, =

t _p2zt-1 AY, + residual

+ lagged AXt, £
where at least one of Pys Py is nonzero.

s integrated series remain integrated under temporal
aggregation, it is clear that cointegration remains true for
series which are so aggregated. However, the form of the error-
correction models may be altered.

The effects of small-scale cross-gectional aggregation

has been studied by Gonzalo [1988]. For convenience, denote a

pair of series th, th for "state" j, which are aggregated into
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and similarly Syt‘

To show that a variety of results can occcur 1t should be
noted that (i) there can be cointegration at the aggregate level
but not at the disaggregated states, and (ii) can be cointegration
at the states but not at the aggregate level. To illustrate (1)
suppese there are Just two states (j=1,2), that Sxt' Syt are
cointegrated and that X = S;., X5 = 0 all &, ¥q = 0 all ¢t and

Yor = 8 More generally, X,  and Y;. can both be I{(0). To

yt-
illustrate (ii), suppose that all X4, Y4y, 1 = 1, 2 are I(1), 2z

SKt - aSyt = Zg * 2y +(A1-u)Y1t + (ﬁg—a)th

80 that S Syt are cointegrated only if both Ay = a and A5 = @

Xt
and this oceur only if A, = A5, which is excluded by assumption.
This result would not hold if Yips Ipp are cointegrated.

Gonzalo [1988] has sufficient reasons for cointegration
at one level of cointegration to imply cointegration at anothér

(higher or lower) level. For example, suppose that all X;., ¥y

are I{1) with Wold representations
(1_B)Xit = Cxi(B)eit
(1-B)Yit = Cyi(B)nit

stacking all the residuals produces a 2N x 1 vector
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with covariance matrix E[rtré] = Z.

If Sgys Syt are colntegrated it is shown that a suffi-
cient condition for all X,., Yy, to be cointegrated is that Y be
of full rank. This result assume no cointegration of components
across states. If, for example, Yieo th are colntegrated for
some i, j there are more possibilities.

A simple case has been considered by Lippi [1687] for
which Y;,, th are cointegrated for all i, J, and X;., Y;; are
cointegrated for all i it follows that X;, th are cointegrated
for all i ,j. Thus, there is a single common I(1) factor causing
all X;i, Y;. components to be I{1). In this case Set s Syt Wwill

also be I{1) because of this common factor and so will be cointe-

grated.

8. Conclusion

It is found that aggregation, both ecross section and
temporal, is ineclined to simplify relationships, with some proper-
ties being quite robust (integration, cointegration for example)
but others to be less-robust (causality, nonlinearity). For large
scale aggregation, the distribution properties of equation residu-
als can be a useful indicator of the precise or not of common

factors.
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