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Spherical Distributions 

 
In our list of assumptions about the error term in our linear multiple regression model, we 
included one that incorporated both homoskedasticity and the absence of autocorrelation. That is, 
the individual values of the errors are assumed to be generated by a random process whose 
variance (σ2) is constant, and all possible distinct pairs of these values are uncorrelated. We saw 
that this implied that the full error vector, ε, had a scalar covariance matrix, σ2In. We referred to 
this overall situation as one in which the values of the error term follow a “Spherical 
Distribution”. The purpose of this handout is to offer some background information about the 
origin of this terminology. 
 
The discussion is quite general, so that you will realize that it applies to any random variables, not 
just the error term in our regression model. Further, so that we can look at some diagrams, let’s 
consider the special case of two dimensions, rather than three, so that what would be a (3-
dimensional) sphere becomes a (2-dimensional) circle. So, consider the pair of random values εi 
and εj, which we’ll generically denote x and y. (This latter terminology has nothing to do with X 
and y in the regression model.) The values of these two random variables are plotted in the 
directions of the x and y axes in the graphs which follow.  
 
In the three-dimensional plots we will see the joint probability density function, p(x, y) in the 
direction of the z axis. All of these three-dimensional plots are for values in the range 

3,3  yx . Scales are given on the associated two-dimensional “contour” plots. The latter 
plots show “isolines” – that is, lines that join up (x, y) points that yield the same value (height) for 
p(x, y). These contours are exactly analogous to the contour lines that you see on a topographic 
map to depict the nature of the terrain. They reflect what you see when you look down vertically 
on to the three-dimensional (bivariate) density plots. 
 
The appearance of the density plots, and the shape of the associated contour plots, depend upon 
the variances of x and y, and the covariance (and hence correlation) between these two random 
variables.  
 
If x and y have the same variance (i.e, if εi and εj are homoskedastic), and if they are uncorrelated 
(i.e, if εi and εj are not autocorrelated), then the contours will form circles. If there were three 
random variables we would need a four-dimensional density graph, and the contours would form 
a sphere. Hence the term “Spherical Distribution”. If there  were four or more random variables 
the sphere would become a “hyper-sphere”. 
 
If x and y have different variances, the joint density surface is no longer symmetrical in the x and 
y directions, and then the coutour plot takes the form of an ellipse, rather than a circle. The same 
thing happens if x and y are correlated, even if they have the same variance. In this case, the slope 
of the primary axis of the ellipse is determined by the sign of the correlation between x and y.  
 
Some examples follow, all for the case where x and y follow a bivariate normal distribution with 
zero means for x and y. 
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In this final case: do x and y have the same means? Do they have the same variances? Are they 
correlated – if so, positively or negatively? 
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