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Introduction 
 

• Many economic models derived by considering 

optimizing behaviour of agents. 

 

•  Can this be used to evaluate the "quality" of our 

 empirical estimates of such relationships? 

 

• Provide some background motivation based on 

work by Varian. 

 

•  Define "Economic Goodness-of-Fit" in context of 

 demand systems. 

 

• Provide some illustrative empirical results. 

 

• Conclusions & directions for further research. 
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Background 

 

• Basic ideas date back at least to Samuelson (1938, 

1947), Afriat (1967, 1972). 

• More recent work by Varian (1982a, 1982b, 1984, 

1985). 

• Generally we test an economic model by "fitting" it 

to some data, for a particular parametric 

functional form, and testing to see if the estimated 

parameters satisfy the restrictions implied by the 

economic theory. 

 

• Why may this be less than satisfactory? 

 

Most theories don't really need a parametric   

  framework. 

  Why use "statistical significance" to judge the  

  "economic significance" of the results? 
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Three Examples 

1. Profit-Maximization: 

(pt , yt )  ; t = 1, 2, ..,T 

Require     ptyt    ptys   ;    t, s 

(Weak Axiom of Profit Maximization – Varian, 1984) 

 

2. Cost-Minimization: 

(wt, xt, yt )   ; t = 1, 2, ..,T 

Require   wtxt    wtxs   ;     ys   yt  

(Weak Axiom of Cost Minimization – Varian, 1982a)  

 

3. Utility-Maximization: 

(pt , xt )   ; t=1,2, 3, .......,T 

Revealed preference:  

xtRxs   iff     xr,.....,xu  satisfying 

 ptxt    ptxr,........, puxu    puxs 

Require:  xtRxs    psxs    psxt 

(Axiom of Revealed Preferences – Varian, 1982b) 
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Why a Statistical Approach? 

• Varian (1982a,b; 1984) provides non-parametric 

methods for examining whether the above 

inequalities are satisfied, empirically. 

 

• Non-Parametric methods are unduly "sharp" - no 

"error term". 

 

• So standard (parametric) inferential procedures 

tend to be used to examine economic hypotheses. 

Does "statistical significance" equate with 

"economic significance"? 

 

• Don't ask: "Does optimization hold exactly?" 

Instead, ask: "Is optimization a reasonable way to 

describe this behaviour?" 

 

• "Nearly Optimizing Behaviour" is  good enough. 
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Non-Parametric Economic Goodness-of-Fit 

• Ask: "How large are the violations of the 

theoretically required inequality?" 

 

• Example (profit-maximization):  

Suppose we observe a pair of observations, s and 

 t, such that    ptyt <  ptys . 

 

• A reasonable measure of this violation of the WAPM 

would be: 

rts = [(ptys  -  ptyt ) / ptyt] = (ptys  / ptyt ) - 1. 

 

• These rts values are essentially "economic 

residuals". They could be listed, or their average or 

maximum could be reported. 

 

• The distribution (pattern) of these residuals would 

also be informative (time-series or cross-section).  
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Parametric Goodness-of-Fit  

• Use Consumer behaviour as an example. 

(Extend Varian, 1990.) 

 

• Parametric utility function, u(x, β) 

 

• "Money metric utility function",  

m(p, x, β) = min. py 

s.t. u(y, β)  u(x, β). 

 

• An "index of the degree of violation of utility-

maximizing behaviour" is: 

it = m(pt, xt, β) / (pt xt). 

N.B.: (1 - it ) is "wasted expenditure". 

• Can use this as an index of Goodness-of-Fit, and also 

as the basis for estimating β. 

• In the latter case, need to decide on a loss function: 

e.g.,  min.  (log(it ))2 . 
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Empirical Example: Cobb-Douglas Utility 

• u(x1, x2, x3) = x1
a1 x2

a2 x3
a3 ;        a1 + a2 + a3 = 1 

 

• The demand functions are:  xi = [(ai e) / pi], where  

 

e = total expenditure. 

• m = amount of money at prices (p1, p2, p3) needed to 

choose an optimal bundle that has same utililty as 

(x1, x2, x3). 

 

• So,  (x1
a1 x2

a2 x3
a3)  

= [(a1 m) / p1]
a1[(a2 m) / p2]

a2[(a3 m) / p3]
a3 

m = (a1)
-a1 (a2)

-a2 (a3)
-a3

 (p1x1)
a1 (p2x2)

a2 (p3x3)
a3 

log(m) = -a1log(a1) - a2log(a2) - a3log(a3) +  

 a1log(p1x1) + a2log(p2x2) + a3log(p3x3) 

• Estimate: 

log(et) = -a1log(a1) - a2log(a2) - a3log(a3) +  

 a1log(pt1xt1) + a2log(pt2xt2) + a3log(pt3xt3) + εt 
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Application: Citibank Data 

 

U.S. consumption data, 1947 - 1987, Non-Durables, 

Durables & Services 

 

1. Cobb-Douglas Utility: 

SURE  Money Metric Estimator 

  a1  0.129   0.150    

(80.76)   (13.33) 

a2  0.358   0.473 

(60.94)   (39.88) 

a3  0.513   0.377 

(72.88)   (26.56) 

Average Wasted Expenditure 

0.052   0.019 

log |Ω |  17.6    -7.1 
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2. Klein-Rubin Utility (LES Model):  

SURE   Money Metric Estimator 

  

β1  0.111   0.084 

(51.84)   (14.75) 

β2  0.298   0.254 

(48.16)   (22.89) 

β3  0.591   0.662 

(28.54)   (18.56) 

γ1  -29.457   -164.160 

(-2.62)   (-5.78) 

γ2  -65.514   -519.120 

(-2.19)   (-5.48) 

γ3  -431.639   -2185.800 

(-4.30)   (-4.90) 

Average Wasted Expenditure 

0.685   0.005 

log |Ω |  1824.2   10.0 
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Application: Chen Dongling's Data 

 

• Household expenditure in Hong Kong, Israel, 

Singapore, Malta, Mexico, Puerto Rico, Taiwan, 

Ecuador, Colombia, Korea, Thailand, Sri Lanka, 

Zimbabwe. 

 

• Expenditure on Food, Beverages, Clothing, 

Housing, Durables, Medicine, Transport, 

Recreation, Other. 

 

• Sample varies - mid 1960's to mid 1980's. 

 

• Have looked at Cobb-Douglas and LES models. 

 

• Illustrate with C-D results for Singapore. 
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SINGAPORE 

(Cobb-Douglas Model) 

 

 

SURE 

 

     Coefficient        Std. Error      t-Ratio 

a1         0.55376        0.51861E-02     106.78 

a2         0.93374E-01    0.13315E-02     70.128 

a3         0.63934E-01    0.93584E-03     68.316 

a4         0.61285E-01    0.17810E-02     34.411 

a5         0.43446E-01    0.10659E-02     40.760 

a6         0.20880E-01    0.13215E-02     15.800 

a7         0.90675E-01    0.50432E-02     17.980 

a8         0.44847E-01    0.19846E-02     22.598 

a9         0.27795E-01    0.17020E-02     16.331 
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Money Metric Estimation 

 

          Coefficient     Std. Error       t-Ratio 

a1       0.56112        0.12312E-01     45.575 

a2       0.93402E-01    0.81649E-02     11.439 

a3       0.66873E-01    0.69614E-02     9.6064 

a4       0.62492E-01    0.65889E-02     9.4845 

a5       0.42553E-01    0.56502E-02     7.5313 

a6       0.20485E-01    0.38966E-02     5.2572 

a7       0.84076E-01    0.61502E-02     13.670 

a8       0.45357E-01    0.55100E-02     8.2317 

a9       0.23648E-01    0.47283E-02     5.0014 
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      Year            Fit 

     1963       0.1717019E-01 

     1964       0.1789235E-01 

1965       0.1626308E-01 

1966       0.1456958E-01 

     1967       0.1193746E-01 

     1968       0.1236099E-01 

     1969       0.1205157E-01 

     1970   0.1019978E-01 

     1971    0.1398006E-01 

     1972      0.1371392E-01 

     1973      0.1095797E-01 

     1974      0.1651435E-01 

     1975      0.2131675E-01 

     1976      0.1448834E-01 

     1977      0.1462583E-01 

     1978      0.1012950E-01 

     1979      0.4689684E-02 

     1980      0.1626083E-01 

     1981      0.2710507E-01 

     1982      0.2111993E-01 

     1983      0.1706796E-01 

     1984      0.3207137E-01 

  

Mean      Std. Dev.     Min.           Max. 

0.0157     0.0059       0.0047         0.0321 
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Concluding Remarks 

• Frequently, our models are derived as the solution 

to an optimization problem. 

 

• In such cases, we can use the concept of "Economic 

Goodness-of-Fit" to augment, or replace, 

conventional "Statistical Goodness-of-Fit" 

measures. 

 

• A model which "fits" the data in the usual sense 

need not necesarily exhibit good "economic fit". 

 

• Both parametric & non-parametric methods can be 

used to measure "economic fit". The latter also 

provide a different basis for determining the 

parameter values themselves. 

 

• Can generalize to other problems, & loss functions. 


