"ECONOMIC GOODNESS-OF-FIT

VS.

STATISTICAL GOODNESS-OF-FIT"

David Giles

January, 1999

(Seminar Overheads)

Introduction

- Many economic models derived by considering optimizing behaviour of agents.
- Can this be used to evaluate the "quality" of our empirical estimates of such relationships?
- Provide some background motivation based on work by Varian.
- Define "Economic Goodness-of-Fit" in context of demand systems.
- Provide some illustrative empirical results.
- Conclusions & directions for further research.

Background

- Basic ideas date back at least to Samuelson (1938, 1947), Afriat (1967, 1972).
- More recent work by Varian (1982a, 1982b, 1984, 1985).
- Generally we test an economic model by "fitting" it to some data, for a particular parametric functional form, and testing to see if the estimated parameters satisfy the restrictions implied by the economic theory.
- Why may this be less than satisfactory?

Most theories don't really need a parametric framework.

Why use "statistical significance" to judge the "economic significance" of the results?

Three Examples

1. Profit-Maximization:

$$(p^t, y^t)$$
; $t = 1, 2, \ldots, T$

Require $p^t y^t \geq p^t y^s$; $\forall t, s$

(Weak Axiom of Profit Maximization - Varian, 1984)

2. Cost-Minimization:

$$(w^t, x^t, y^t)$$
 ; $t = 1, 2, \ldots, T$

Require $w^t x^t \leq w^t x^s$; $\forall y^s \geq y^t$

(Weak Axiom of Cost Minimization - Varian, 1982a)

3. Utility-Maximization:

$$(p^t, x^t)$$
; $t=1,2,3,....,T$

Revealed preference:

$$x^{t}Rx^{s}$$
 iff $\exists x^{r},...,x^{u}$ satisfying

$$p^t x^t \geq p^t x^r, \dots, p^u x^u \geq p^u x^s$$

Require: $x^t R x^s \implies p^s x^s \le p^s x^t$

(Axiom of Revealed Preferences – Varian, 1982b)

Why a Statistical Approach?

- Varian (1982a,b; 1984) provides non-parametric methods for examining whether the above inequalities are satisfied, empirically.
- Non-Parametric methods are unduly "sharp" no "error term".
- So standard (parametric) inferential procedures tend to be used to examine economic hypotheses.

 Does "statistical significance" equate with "economic significance"?
- Don't ask: "Does optimization hold exactly?"
 Instead, ask: "Is optimization a reasonable way to describe this behaviour?"
- "Nearly Optimizing Behaviour" is good enough.

Non-Parametric Economic Goodness-of-Fit

- Ask: "How large are the violations of the theoretically required inequality?"
- Example (profit-maximization): Suppose we observe a pair of observations, s and t, such that $p^ty^t < p^ty^s$.
- A reasonable measure of this violation of the WAPM would be:

$$r^{ts} = [(p^t y^s - p^t y^t) / p^t y^t] = (p^t y^s / p^t y^t) - 1.$$

- These r^{ts} values are essentially "economic residuals". They could be listed, or their average or maximum could be reported.
- The distribution (pattern) of these residuals would also be informative (time-series or cross-section).

Parametric Goodness-of-Fit

- Use Consumer behaviour as an example.
 (Extend Varian, 1990.)
- Parametric utility function, $u(x, \beta)$
- "Money metric utility function",

$$m(p, x, \beta) = min. py$$

s.t. $u(y, \beta) \ge u(x, \beta)$.

 An "index of the degree of violation of utilitymaximizing behaviour" is:

$$i^t = m(p^t, x^t, \beta) / (p^t x^t).$$

 $N.B.: (1 - i^t)$ is "wasted expenditure".

- Can use this as an index of Goodness-of-Fit, and also as the basis for estimating β .
- In the latter case, need to decide on a loss function: e.g., min. $\Sigma(log(i^t))^2$.

Empirical Example: Cobb-Douglas Utility

- $u(x_1, x_2, x_3) = x_1^{a1} x_2^{a2} x_3^{a3}$; $a_1 + a_2 + a_3 = 1$
- The demand functions are: $x_i = [(a_i e)/p_i]$, where e = total expenditure.
- m = amount of money at prices (p_1, p_2, p_3) needed to choose an optimal bundle that has same utility as (x_1, x_2, x_3) .
- So, $(x_1^{a1} x_2^{a2} x_3^{a3})$ $= [(a_1 m) / p_1]^{a1} [(a_2 m) / p_2]^{a2} [(a_3 m) / p_3]^{a3}$ $m = (a_1)^{-a1} (a_2)^{-a2} (a_3)^{-a3} (p_1 x_1)^{a1} (p_2 x_2)^{a2} (p_3 x_3)^{a3}$ $log(m) = -a_1 log(a_1) - a_2 log(a_2) - a_3 log(a_3) +$ $a_1 log(p_1 x_1) + a_2 log(p_2 x_2) + a_3 log(p_3 x_3)$
- Estimate:

$$log(e^t) = -a_1 log(a_1) - a_2 log(a_2) - a_3 log(a_3) +$$

 $a_1 log(p^{t1}x^{t1}) + a_2 log(p^{t2}x^{t2}) + a_3 log(p^{t3}x^{t3}) + \varepsilon^t$

Application: Citibank Data

U.S. consumption data, 1947 - 1987, Non-Durables, Durables & Services

1. Cobb-Douglas Utility:

	SURE Money M	<u> 1etric Estimator</u>
a_1	0.129	0.150
	(80.76)	(13.33)
a_2	0.358	0.473
	(60.94)	(39.88)
a_3	0.513	0.377
	(72.88)	(26.56)
	Average Wasted Expenditure	
	0.052	0.019
$log \mid \Omega \mid$	17.6	-7.1

2. Klein-Rubin Utility (LES Model):

SURE

Money Metric Estimator

eta_1	0.111	0.084
	(51.84)	(14.75)
eta_2	0.298	0.254
	(48.16)	(22.89)
β_3	0.591	0.662
	(28.54)	(18.56)
γ_1	-29.457	-164.160
	(-2.62)	(-5.78)
γ_2	-65.514	-519.120
	(-2.19)	(-5.4 8)
γ ₃	-431.639	-2185.800
	(-4.30)	(-4.90)
	Average Wasted Expenditure	
	0.685	0.005
$log~ \Omega~ $	1824.2	10.0

Application: Chen Dongling's Data

- Household expenditure in Hong Kong, Israel, Singapore, Malta, Mexico, Puerto Rico, Taiwan, Ecuador, Colombia, Korea, Thailand, Sri Lanka, Zimbabwe.
- Expenditure on Food, Beverages, Clothing, Housing, Durables, Medicine, Transport, Recreation, Other.
- Sample varies mid 1960's to mid 1980's.
- Have looked at Cobb-Douglas and LES models.
- Illustrate with C-D results for Singapore.

SINGAPORE

(Cobb-Douglas Model)

SURE

	Coefficient	Std. Error	t-Ratio
a1	0.55376	0.51861E-02	106.78
a2	0.93374E-01	0.13315E-02	70.128
a3	0.63934E-01	0.93584E-03	68.316
a4	0.61285E-01	0.17810E-02	34.411
a5	0.43446E-01	0.10659E-02	40.760
a6	0.20880E-01	0.13215E-02	15.800
a7	0.90675E-01	0.50432E-02	17.980
a8	0.44847E-01	0.19846E-02	22.598
a9	0.27795E-01	0.17020E-02	16.331

Money Metric Estimation

	Coefficient	Std. Error	t-Ratio
a1	0.56112	0.12312E-01	45.575
a2	0.93402E-01	0.81649E-02	11.439
a3	0.66873E-01	0.69614E-02	9.6064
a4	0.62492E-01	0.65889E-02	9.4845
a5	0.42553E-01	0.56502E-02	7.5313
a6	0.20485E-01	0.38966E-02	5.2572
a7	0.84076E-01	0.61502E-02	13.670
a8	0.45357E-01	0.55100E-02	8.2317
a9	0.23648E-01	0.47283E-02	5.0014

	Year	Fit	
	1963	0.1717019E-01	
	1964	0.1789235E-01	
	1965	0.1626308E-01	
	1966	0.1456958E-01	
	1967	0.1193746E-01	
	1968	0.1236099E-01	
	1969	0.1205157E-01	
	1970	0.1019978E-01	
	1971	0.1398006E-01	
	1972	0.1371392E-01	
	1973	0.1095797E-01	
	1974	0.1651435E-01	
	1975	0.2131675E-01	
	1976	0.1448834E-01	
	1977	0.1462583E-01	
	1978	0.1012950E-01	
	1979	0.4689684E-02	
	1980	0.1626083E-01	
	1981	0.2710507E-01	
	1982	0.2111993E-01	
	1983	0.1706796E-01	
	1984	0.3207137E-01	
Maria	C4.1 D	Mico	Mari
Mean	Std. Dev.	Min.	Max.
0.0157	0.0059	0.0047	0.0321

Concluding Remarks

- Frequently, our models are derived as the solution to an optimization problem.
- In such cases, we can use the concept of "Economic Goodness-of-Fit" to augment, or replace, conventional "Statistical Goodness-of-Fit" measures.
- A model which "fits" the data in the usual sense need not necesarily exhibit good "economic fit".
- Both parametric & non-parametric methods can be used to measure "economic fit". The latter also provide a different basis for determining the parameter values themselves.
- Can generalize to other problems, & loss functions.